
Real-Time Screen Space
Rendering of Cartoon Water

Liordino dos S. Rocha Neto, Filipe Deó Guimarães, Antonio L. Apolinário Jr. and Vinı́cius M. Mello
Department of Computer Science

Federal University of Bahia
Salvador, Brazil

Fig. 1: Examples of the results achieved with our method for two different scenes.

Abstract—A non-photorealistic rendering style is constantly
chosen in games to emphasize the fantasy of the story. In
this scenario, the presence of natural elements such as water
is common. Simulation and rendering of water in 3D worlds
still presents some technical challenges though. This paper
describes an approach to render cartoon style water in real
time environments. The method takes a Smoothed Particles
Hydrodynamics (SPH) fluid simulation as input and obtains its
surface using a point splatting technique, employing a dynamic
cartoon style shading on its visualization. It also takes into
account refraction and reflection, and use a bilateral filter to
smooth the fluids surface and prevent a jelly-like appearance
in the final rendering. An empirical analysis were made in
order to determine a speed/quality trade-off. All steps of this
solution were implemented directly on the GPU, producing
cartoon water animation with a great number of particles at a
frame rates compatible with real-time applications such as games.

Keywords: water rendering, non-photorealistic rendering,
cartoon shading, smoothed particle hydrodynamics, gpu pro-
gramming, screen space rendering

I. INTRODUCTION

Stylized games using non-photorealistic rendering (NPR)
are becoming increasingly popular. The use of NPR rendering
as a mean to emphasize the fantasy aspects of the story, or
gameplay, has been proven effective [1]. In this scenario,
natural elements, such as water, sand or even sunlight, are
essential to give the game a coherent aspect.

Particle based simulations are used as an important tool
to provide realistic visual effects, like water, explosions and
smoke in applications such as games and movies [2]. Par-
ticularly in the game industry, it’s possible to notice the use
of simulated water in 2D games like “Disney’s Where’s My
Water”1 as a significant gameplay element [3]. The same can’t
be told about the majority of 3D games, where it’s commonly
used as a static decoration without much interaction. But,
as rigid body physics emerges as an important aspect of
games, water simulation could provide interesting gameplay
experiences thanks to its complex behaviour. Its use still feels
very natural, as water is an well known element for everyone
since its childhood early stages [3]. Within this context, due
to recent advances in computer graphics technology, manually
created animation, as in cartoon animation, is increasingly
being replaced by its computer-generated counterpart [4].

In the context of liquid simulation on interactive applica-
tions, methods like Smoothed Particle Hydrodynamics (SPH)
are preferred to grid based representations[5]. This occurs
due to the fact that on this kind of simulation the fluids
can flow in the entire scene without the need to define a
finite grid, which would be costly in terms of memory and
computation [5]. SPH fluid simulations are commonly resolved
by modelling surface tensions forces and using the Navier-
Stokes equation of conservation of momentum to derive the
fluids viscosity and pressure force fields [6]. This method is

1http://disney.go.com/wheresmywater/

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 184



also convenient to integrate on interactive environments and
physics systems, since particles can interact with the rest of
the scene geometry just like any other rigid body objects. Its
drawback is a more complex surface extraction for rendering
[5]. This extraction can be made using poligonization methods
like Marching Cubes, which requires the reconstruction of
the fluid surface in world space [5], or in screen space. The
former is usually computation and memory intensive, making
it not suitable for real-time use in games, while on the latter
the surface reconstruction occurs in screen space, becoming a
more affordable approach to achieve a real-time environment
experience, and preventing the usual grid artifacts of Marching
Cubes methods [5]. After extracting the fluid surface the next
step is to render it as a water like representation.

In this paper we present a real-time non-photorealistic
(NPR) water rendering method that works on top of a SPH
fluid simulation, achieving real-time performance using a
screen space surface extraction and smoothing method, while
taking reflection and refraction into account. The paper is
structured as follows: section II lists the related works, high-
lighting their contributions to our method, which is described
in section III. The fourth section shows our results, and after
that the paper is concluded in section V.

II. RELATED WORK

The rendering of liquid surfaces has been an active field
of research even before the adoption of water simulation
methods on it’s pipeline, with methods that simulate waves
using techniques like bump mapping [7]. The use of SPH
to simulate fluids with free surfaces was introduced by [6].
This work uses surface splatting and marching cubes poligo-
nization techniques to obtain the fluid surface, showing visual
comparisons between both. According to the authors, the
point splatting technique achieves plausible results, while the
rendering with marching cubes algorithm is more convincing,
but with a performance drawback. The work described on [8]
presents another technique for volume rendering of SPH data
which can render iso-surfaces. It’s a poligonization technique
that resamples the particles on a view-dependent grid, leaving
out of sight particles left aside the resampling process and
thus avoiding to process unnecessary data. It can achieve a
rate of 4.5 frames per second rendering a iso-surface of a
set of 2.2 million particles. Although these are interesting
results, a screen space approach is sufficient to meet our
method’s expected outcome, while being simpler to implement.
Another poligonization method is presented on [9]. This work
proposes a parallel implementation of the Marching Cubes
method that works both on CPUs and GPUs and that achieves
a performance gain by only considering grid nodes in a narrow
band around the fluids surface. It results on smooth surfaces,
but is designed for off-line rendering.

While the previous methods work in object space (except
for [6], which compares both approaches), in [5] a photorealis-
tic splatting-based approach is presented. Its surface extraction
occurs in screen-space, hence it’s not based on poligoniza-
tion, and consists of several steps performed directly on the
graphics hardware, using fragment shaders and intermediate
render targets. It achieves real-time performance and uses a
curvature flow smoothing algorithm to prevent a jelly-like
appearance on the fluids surface. The work presented in [10] is

also a photorealistic approach and extends [5] introducing an
adaptative curvature flow, which accounts for perspective, and
a physically based foam rendering method, using a layered
particle set. Another work based on [5] is showed in [11],
where the curvature flow smoothing is replaced by a two-step
bilateral filter. Our surface extraction approach is based on the
methods presented in [5] and [11], and unlike the one presented
in [10] don’t take foam rendering into consideration since it
would diverge of our non-photorealistic goal.

Some contributions like [12] and [13] help to address
the matter of rendering the fluid as a cartoon like water
representation, but they lack the level of detail that a tra-
ditional cartoon artist achieves, as they treat water as an
opaque object, ignoring its optical characteristics. A more
recent contribution [4] address this, taking into account optical
features like transparency, reflection and refraction, but it was
developed as a Maya plugin, making it unsuitable for real-
time environments. [12] take as input a liquid surface obtained
from a physically based liquid simulation system to render a
cartoonesque representation of water inspired in animations
such as Futurama and The Little Mermaid. [13] presents a
template-based approach, classifying water in different types,
like flowing water and water jets, and designing shapes that
can be grouped according to some rules. As mentioned earlier,
the work described on [4] is designed for off-line rendering,
and like the one described on [12], uses a surface from a three-
dimensional physically based fluid simulation as input, but
combines several shading steps to compose a NPR water that
take into account its optical features, while adding special lines
to represent the flowing motions of water and bold outlines
to the objects that interact with it. They also introduced an
automatic control of reflection and refraction.

Our work is based on the methods described on [5], [11]
and [4]. Like [5] and [11], we assume that a SPH fluid
simulation has already been carried out, and use its data as
input to our rendering method, which in our case is limited
to the positions of its particles in any order. This way, we
combine different aspects of these methods with our own
research to create a new one, adapting each approach to our
specific needs. Thus, we were able of designing a new method,
capable of rendering non-photorealistic water in real time
while considering its optical characteristics.

III. NPR WATER

The NPR method here presented can be broken down on
the following steps: from the particles position, surface depth
and thickness are extracted (explained in sections III-A and
III-C). Then, the surface depth is smoothed (section III-B),
and after that, a composing pass is performed, combining the
smoothed surface depth with a texture of the scene (without
the fluid) into its final rendering, using the extracted thickness
to create the transparency effect on the cartoon water shader,
based on the one described in [4] (section III-D).

A. Surface Extraction

The surface extraction process used in our method is based
on [5]. Its premise requires the fluid’s front-most surface to be
determined according to the camera’s viewpoint. To achieve
this the SPH particles are rendered as spheres, and through

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 185



depth test its closest values for each pixel are obtained and
stored in a texture using a depth replacement technique in the
fragment shader. The particles are rendered as spheres using
screen oriented quads, or simply point sprites, by discarding
the pixels outside the circle inscribed in the quad. The point
sprite size is computed relative to the viewers distance to the
fluid surface, making it bigger as the camera approaches the
fluid. This way we keep the particles close to each other,
preventing the occurrence of holes in the final rendering. The
surface normals are calculated from the depth values while
rendering. This provides a fluid surface representation from
the viewer’s point of view while avoiding any kind of complex
geometry.

B. Surface Smoothing

Since the surface depth is obtained from particles rendered
as spheres, it needs to be smoothed to prevent a jelly-like
appearance in the final rendering. A Gaussian blur filter could
be used, but the fluid’s silhouette edges would be lost in the
process, with the particles getting blended into background
surfaces [11]. The solution traditionally applied in literature
is the use of a Bilateral Filter [14]. Below we describe the
Bilateral Filter and an approximation of its implementation,
which divides the filter in two passes, a horizontal and vertical
one, for the sake of performance.

The Bilateral Filter employs a regular Gaussian filter with
a spatial kernel f , but unlike the standard Gaussian, the weight
of a pixel inside this kernel depends also on a function g in the
intensity domain [15]. This function decreases the weight of
pixels with large intensity differences, and essentially preserve
the edges while still smoothing the surface by means of a
combination of nearby depth values. Therefore, the output
value of the bilateral filter for a pixel s can be defined as
stated by [15]:

Js =
1

k

∑
p∈Ω

f(p− s)g(Ip− Is)Ip (1)

where p is a pixel on the image Ω, Ip and Is are the values of
pixels p and s on the intensity domain, and k is a normalization
term:

ks = f(p− s)g(Ip− Is) (2)

In practice, the bilateral filter combines two Gaussian
filters, one in the spatial domain and another on the intensity
domain, making the value of an output pixel s influenced
mainly by pixels that are close both spatially and in intensity
[15].

Since it iterates through both the width and the height of
the spatial kernel at the same time, the Bilateral Filter can
become expensive as the kernel size grows. Although it’s not
strictly separable due to it’s intensity dependency, it’s possible
to implement the Bilateral Filter in a separable way and still
satisfy the noise reduction and edge preservation requirements
[16], producing a aproximation of the Bilateral Filter while
creating some artifacts [11]. This is done by applying a one-
dimensional filter to the first dimension of the image, and
filtering the intermediate result in the subsequent dimensions
[16]. This way the computational complexity of the Bilateral
Filter becames O(p), making it faster than the full kernel

approach, which uses a two-dimensional kernel that makes
its complexity O(p2) (where p is the number of pixels in the
image) [17]. Both the Bilateral Filter and it’s separeted version
were applied in this projet and will be further analysed in
section IV.

To achieve a higher performance we managed to balance
the smoothing process according to the distance between the
camera and the fluid. Namely, as the camera gets closer to the
fluid we increase the size of the spatial kernel f . Analogously,
as the camera gets farther from the fluid, we decrease the value
of f . This simple variation results in a great visual boost while
reducing the overall cost, by reducing the use of unnecessary
large spatial kernels when the fluid is far enough not to have
a significant visual difference between a large kernel or a
smaller one. The visual improvement is given by increasing
the the kernel size as the camera gets closer to the fluid and
that results in a smoother fluid surface, while also increasing
the performance cost. Since getting a fluid close-up isn’t as
common as looking at the fluid from mid range or farther,
this shouldn’t have any major negative effects on the overall
performance.

C. Thickness

It’s expected that an object underwater become less visible
as the amount of fluid that is in front of it grows. To simulate
this behaviour we need to compute the amount of fluid between
the viewer and the nearest opaque object underwater for each
pixel. Like [5], we call this the “thickness” attribute, and use
it to attenuate the color and the transparency of the fluid.

Here the rendering process is similar to the one described in
the section III-A, but instead of the depth value the fragment
shader outputs the thickness of the particle at that position.
This value is computed by rendering a 2D Gaussian distri-
bution over each point sprite, turning on additive blending to
accumulate the amount of fluid at each position [11].

D. Water Rendering

Once the fluid surface is available the next step is to render
it applying the cartoon water effect. A proper representation
of water should have optical features, and so our method
take reflection and refraction into account, making use of a
illumination model based on [5]. The final illumination of the
Cartoon Water Shader Iwcs is obtained as follows:

Iwcs = a+ bFr (3)

where a is the refracted fluid color, b is the reflected scene
color and Fr is the reflection factor. The reflection effect,
represented by b, is simplified by taking into consideration
a cubemap texture, which is sampled using a reflection vector
computed through the surface normal and the view vector.
Naturally, this could be replaced by a dynamic generated
skybox or by a multi object composed scene.

Since our purpose is to render a cartoon like water, we
adapted the final shading equation and didn’t use a Fresnel
approximation as [5] employs it, as it would introduce a
realism factor in our method. Instead, we implemented a
simple interpolation function, based on [4], that determines
when to apply reflection or refraction according to the viewer’s

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 186



position. In a realistic driven rendering process it would be
ideal to show reflection and refraction simultaneously, as it
happens with actual fluids. In a cartoon driven process this
approach isn’t appropriate, though. A common approach in
traditional animation is to depict either reflection or refraction
separately, as artists tend to emphasize refraction when the
angle between the camera’s view vector and the fluid’s normal
is small and emphasize reflection otherwise [4], although the
artist usually doesn’t actually calculate the angle, but define
this intuitively. In an interactive environment, such as a game,
an unwanted flickering would appear if the transition between
reflection and refraction was too sharp. To avoid that kind of
negative effect and create a smooth transition between both
effects we make use of the aforementioned interpolation:

Fr =


KRmax if x < cos smax

KRmin if x > cos smin

f(n̄ · V̄ ,KRmax,KRmin) Otherwise
(4)

Ft =


KTmax if x < cos smax

KTmin if x > cos smin

f(n̄ · V̄ ,KTmax,KTmin) Otherwise
(5)

where Fr and Ft are respectively the computed reflection and
transparency factors and both f(n̄ · V̄ ,KRmax,KRmin) and
f(n̄ · V̄ ,KTmax,KTmin) are cubic polynomial interpolation
functions. The vectors n̄ and V̄ represent the normal direction
and the viewpoint direction, respectively. KRmax and KRmin

and the maximum and minimum reflection, while KTmax and
KTmin are the maximum and minimum transparency, respec-
tively. To understand the interpolation process it’s necessary
to define a θc, the angle where the critical change between
reflection and refraction occurs, and θs, the interpolation
interval. Finally, x is the cosine resulting from the dot product
between the normal and viewpoint direction. The interpolation
occurs when x is between cos smin and cos smax, and when its
value is outside these limits only one of the effects is shown.
A graphical explanation of a similar interpolation is presented
by [4].

To create the cartoon style we use a technique described
in [18], which consists in a modification of the shading
model that creates large blocks of the same color with sharp
transitions between them. This technique discards the specular
component, and apply a quantization in the cosine of the angle
between the normal and the light source, creating a fixed
number of levels. This quantized cosine value (Qcos), which
is normally used in the diffuse term, is obtained:

Qcos = (bcos (L · n)c)1

l
(6)

where L is the direction of light source, n is the surface normal
and l is the number of levels. We could also change this to
use the ceiling instead of the floor of the dot product between
L and n, resulting in a slightly brighter output.

Based on [4], we extend this approach dividing these levels
in 3 regions: bright, medium and dark. This is done by defining
two thresholds that we call Tbc and Tdc for the bright and
medium values, respectively, as shown in equation 8. The goal
here is to turn the intensity that are over Tbc brighter, and the
ones that are under Tdc darker, while keeping the medium

values unchanged. This is done by multiplying the bright and
dark values by two factors: Fbc, which must be greater than 1,
for the bright values, and Fdc, less than 1, for the dark values.
By doing this we can ultimately limit the visual aspect of the
fluid in three color levels, which prevents the water surface
to have a blobby appearance, while keeping the cartoon style
with simplified color regions. The quantized diffuse intensity
is then obtained as follows:

Id =


QcosFdc if Qcos > Tdc
QcosFbc if Qcos < Tbc
Qcos Otherwise

(7)

Based on the process described in III-C the value of the
thickness T (x, y) is used to control the blending of the fluid’s
refracted color so that the background color is more attenuated
as the fluid gets thicker. The fluid color a is then defined by

a = lerp(IdCf , Cs, e
−T (x,y)Fr) (8)

where Cf is the untreated fluid color that when multiplied by
the quantized diffuse term Id generates the cartoonified color
and Cs is the scene refraction based on the thickness previously
extracted. We use an exponential fall-off, e−T (x,y), in order to
make a vary in an interesting way with the thickness [5]. At
this point the previously described refraction factor, Fr, is used
to further restrain the fluids transparency.

To achieve the transparency effect, first the scene without
the fluid is rendered to a background texture S(x, y), which
is in turn perturbed based on the surface normal n to convey
the illusion of refracting the background, composing the scene
color as follows:

Cs = S(x+ βnx, y + βny) (9)

This sample also employs a β factor, which increases
linearly with the thickness:

β = T (x, y)λ (10)

where λ is a constant that determines how much of the
background is refracted, and depends on the type of fluid. Its
intention is to make the color scene distortion stronger as the
thickness value increases.

At this point all acquired values are put together following
the equation 3 and Iwcs is generated for each fragment.

IV. RESULTS AND DISCUSSION

All presented results were obtained on a machine with
an Intel Core i7 4770 processor, which have a 3.4 GHz
clock, 16 GB DDR3 RAM and a NVIDIA GeForce GTX 680
in 1024 x 768 resolution. This video card have a 2048MB
GDDR5 memory and 1536 CUDA cores. As far as the de-
velopment environment goes, we utilized Visual Studio 2010,
CUDA, OpenGL and GLSL in Windows 7 to develop our
project, which was integrated with Fluids v3 [19], a real-
time SPH fluid simulator. The datasets used to run all tests
were 2 scenes provided by the Fluids v3 simulator: Large
Ocean Waves, and Dual Wave Pool. The Large Ocean Waves
dataset is composed of 262144 particles and a bounding box
of dimensions 400x200x400 (width, height, depth) in world

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 187



coordinates, while the Dual Wave Pool scene comprises 65536
particles in a 200x100x200 bounding box. Figures 2 and 3
shows images of the Large Ocean Waves and Dual Wave Pool
scenes respectively, each one with the fluid involved by its
bounding box, textured with an ambient image.

Performance values for both scenes are shown in table I.
We compare the smoothing with the full kernel and separated
versions of the bilateral filter with different kernel sizes. With
these values it’s possible to notice that the kernel size has
a stronger influence in the full kernel than in the separate
one. This can be explained by the quadratic behaviour of the
full kernel filter, in contrast with the separated one, which
have a linear performance, as explained in section III-B. It’s
noteworthy that the values shown in I include the simulation
cost.

TABLE I: Performance comparison (in Frames Per Second) of
our method with different settings

Large Ocean Waves Kernel Size FPS
Full Kernel 10 40

20 30
30 17

Separated 10 42
20 38
30 37

Dual Wave Pool
Full Kernel 10 86

20 47
30 22

Separated 10 95
20 84
30 78

Figure 2 shows the Large Ocean Waves scene rendered
without depth smoothing and with smoothing using the full
kernel and separated versions of the bilateral filter. The same
rendering methods are shown in figure 3, but for the Dual
Wave Pool scene instead. There are clearly visible bumps on
the fluids surface that show the non-smoothed rendering of
the scenes, which are smoothed out by both versions of the
bilateral filter. Although this process makes the fluid more
natural, it’s still possible to notice some bumps with a close-up
on the fluid surface as seen in figure 5a. Figures 5b and 5c
shows how the fluid surface become smoother as the kernel
size grows. Since the fluid color is simplified to achieve the
cartoon look, these bumps make the color change often through
the surface, creating artifacts that becomes more visible as
the camera approaches the liquid. Also we can clearly see a
high occurrence of artifacts created by the separated bilateral
filter on the fluid borders. These artifacts, which appears as a
consequence of the axis-aligned nature of the separated filter,
ends up masked by the shading effects of a photorealistic
rendering like [11], but in a non-photorealistic scenario they
are visible, making the use of the separated version of the
bilateral filter infeasible to reach our goals.

Figures 4 and 5 shows the visual results of the final
rendering using the full kernel version of the bilateral filter as
its kernel size grows. Figure 4 shows the results from a distant
view while 5 does the same for a close-up, both with the Large
Ocean Waves scene. Here we can clearly see how the fluids
surface get smoother as the kernel size of the filter grows. The
close-up figures shows that while a smoother surface can be

obtained with a larger kernel it is not sufficient to eliminate
the blobby aspect of the fluid if the viewer is close to it, living
room for improvements in this aspect.

(a) Without smoothing

(b) Full kernel bilateral filter

(c) Separable bilateral filter

Fig. 2: The final rendering of the Large Ocean simulation with
262144 particles.

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 188



(a) Without smoothing

(b) Full kernel bilateral filter

(c) Two-step bilateral filter

Fig. 3: The final rendering of the Dual Wave Pool simulation
with 65536 particles.

(a) Kernel size 10

(b) Kernel size 20

(c) Kernel size 30

Fig. 4: The final rendering of the Large Ocean simulation with
different kernel sizes.

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 189



(a) Kernel size 10

(b) Kernel size 20

(c) Kernel size 30

Fig. 5: Close-up of the Large Ocean Waves scene with different
kernel sizes.

Figure 6 shows 3 different renders: the figure 6a shows the
fluid without any optical effect, only with the opaque cartoon
color, figure 6b shows the fluid with the reflection effect,
without refraction, and the figure 6c shows the fluid only with
the refraction effect. Here it’s possible to notice how these
effects helps to convey some realism to the otherwise opaque
fluid surface without harming the non-photorealistic look.

(a) Cartoon fluid without optical effects

(b) Cartoon fluid with reflection

(c) Cartoon fluid with refraction

Fig. 6: Fluid’s optical components.

Finally, figure 7 shows the behaviour of stray particles. The
figure 7a shows how the presence of a stray particle impacts
the final rendering when it is close to the fluid surface in the
camera Z axis and the figure 7b shows the impact when it is
far from the fluid. In both images the relevant particles are
highlighted by red circles. Here we can notice that when a
stray particle is far enough from the fluids surface there is
no influence of it in the smoothing process, and its edges are

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 190



preserved, but as they approaches the surface this influence
grows, generating some artifacts around the particle until it
finally enters the fluid again.

In order to improve the reader’s visualization and evalua-
tion of our results, a video was made available 2.

(a) Close to the fluid surface (Z axis)

(b) Far from the fluid surface (Z axis)

Fig. 7: Stray particles behaviour.

V. CONCLUSION AND FUTURE WORK

In this project we were able to achieve a real time vi-
sualization of NPR water based on a SPH fluid simulation
by using literature established techniques in new contexts,
adapting them to meet our goals. The method here proposed
should be able to be seamlessly integrated with any particle
simulation ready game engine to obtain the results presented
in the previous section.

Regarding future works, the Bilateral Filter used in this
work left room for optimization in both visual and performance
aspects and an adaptive curvature flow technique like the one
applied in [10] could be used to replace it, but a further analysis
would be required to define the best approach. The render
method could also be benefited by a separated treatment of
stray particles while obtaining the surface depth [5], since this

2http://bit.ly/CartoonWaterShader

kind of particle don’t form a surface. We believe that such a
feature might improve the Bilateral Filter results, considering
it would allow a higher smooth level on its intensity do-
main while creating fewer artifacts. Additionally, our method
could benefit from using lower resolution textures to render
intermediate steps, sacrificing some quality to improve it’s
performance.

Finally, some cartoon rendering methods, not focused on
fluids, employs the incorporation of bold outlines on rendered
objects. An evaluation of the effect of such methods on a
cartoon fluid might aggregate some new visual effects to this
work.

ACKNOWLEDGMENT

Although we ended up choosing a screen space approach,
we thank Stefan Auer for sending us code-snippets of the
surface extraction described in [8]. We’d also like to thank
Mark Harris, from NVIDIA, for his suggestions and support
on the beginning of our project, and Torsten Späte, who gently
provided the code for the GLSL shaders used on his Fluid
Sandbox project3, which is based on [11]. Finally, we’d like to
thank Rama Hoetzlein, author of the Fluids v3 project [19], for
his support to our project since it’s conception, and FAPESB,
for financing the machines used in the development and tests
of this work.

REFERENCES

[1] M. McGuire, “An introduction to stylized rendering in games,” in
SIGGRAPH 2010 Course Notes, 2010.

[2] S. Green, “Volumetric particle shadows,” Nvidia Developer Zone
http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/smo
keParticles/doc/smokeParticles.pdf, 2008.

[3] T. Kellomäki, “Water simulation methods for games: a comparison,” in
Proceeding of the 16th International Academic MindTrek Conference.
ACM, 2012, pp. 10–14.

[4] M. You, J. Park, B. Choi, and J. Noh, “Cartoon animation style
rendering of water,” in Advances in Visual Computing. Springer, 2009,
pp. 67–78.

[5] W. J. van der Laan, S. Green, and M. Sainz, “Screen space fluid
rendering with curvature flow,” in Proceedings of the 2009 symposium
on Interactive 3D graphics and games. ACM, 2009, pp. 91–98.

[6] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid simu-
lation for interactive applications,” in Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation. Euro-
graphics Association, 2003, pp. 154–159.

[7] C. T. Pozzer, “Uso de técnicas de sı́ntese de imagem aplicadas a um
ambiente de representação de superfı́cies lı́quidas estáticas e dinâmicas,”
Ph.D. dissertation, MSc Thesis, Computer Science Department, ITA,
2000.

[8] R. Fraedrich, S. Auer, and R. Westermann, “Efficient high-quality
volume rendering of sph data,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 16, no. 6, pp. 1533–1540, 2010.

[9] G. Akinci, M. Ihmsen, N. Akinci, and M. Teschner, “Parallel surface
reconstruction for particle-based fluids,” in Computer Graphics Forum,
vol. 31, no. 6. Wiley Online Library, 2012, pp. 1797–1809.

[10] F. Bagar, D. Scherzer, and M. Wimmer, “A layered particle-based fluid
model for real-time rendering of water,” in Computer Graphics Forum,
vol. 29, no. 4. Wiley Online Library, 2010, pp. 1383–1389.

[11] S. Green, “Screen space fluid rendering for games,” in Proceedings for
the Game Developers Conference, 2010.

3http://bit.ly/FluidSimulationDemoEvolvesToFluidSandbox

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 191



[12] A. M. Eden, A. W. Bargteil, T. G. Goktekin, S. B. Eisinger, and J. F.
O’Brien, “A method for cartoon-style rendering of liquid animations,”
in Proceedings of Graphics Interface 2007. ACM, 2007, pp. 51–55.

[13] J. Yu, X. Jiang, H. Chen, and C. Yao, “Real-time cartoon water
animation,” Computer Animation and Virtual Worlds, vol. 18, no. 4-
5, pp. 405–414, 2007.

[14] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Computer Vision, 1998. Sixth International Conference on.
IEEE, 1998, pp. 839–846.

[15] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-
dynamic-range images,” 2002.

[16] T. Q. Pham and L. J. Vliet, “Separable bilateral filtering for fast video
preprocessing,” in In IEEE Internat. Conf. on Multimedia & Expo,
CD14. IEEE, 2005, pp. 1–4.

[17] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, “A gentle intro-
duction to bilateral filtering and its applications,” in ACM SIGGRAPH
2007 courses. ACM, 2007, p. 1.

[18] D. Wolff, OpenGL 4.0 Shading Language Cookbook. Packt Publishing,
Jul. 2011.

[19] R. C. Hoetzlein, “Fluids v.3 - a large-scale, open source fluid simulator,”
Released under Z-lib license, 2012.

SBC - Proceedings of SBGames 2013 Computing Track – Full Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 192




