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Abstract—The availability of multicore CPUs and pro-
grammable GPUs have risen the provision of processing power
for applications. In case of games, this means increased scene
realism and more sophisticated artificial intelligence and physics
simulations, for example. However, using more power raises
energy consumption and system temperature. Therefore, energy
consumption and thermal management are research fields that
have been receiving increased attention over the last years. This
work proposes a multi-thread game architecture based on the
GPGPU paradigm to make use of available hardware while
providing energy consumption and thermal control management
for multiple GPU processors.

Index Terms—thermal management, parallel computing,
multi-thread, GPGPU, game loop models, real-time systems,
multiple GPUs.

I. INTRODUCTION

Realism level in games has been increasing over the years
not only due to modeling and rendering enhancements, but
also by improvements in other areas as animation, artificial
intelligence, and physics simulation. The rise in processing
power has made it possible to implement all those enhance-
ments. Currently, this processing power is available through
multicore processors and GPUs.

The development of sophisticated GPU architectures has led
also to the GPGPU paradigm, where real-time applications
(as games and simulations) adopt GPUs for rendering and
general computation. For example, nVidia GeForce 8§ series
GPUs started to provide processing power for massive parallel
mathematics and physics problems. Examples of using the
GPU to process these kinds of tasks are Monte Carlo [1],
artificial intelligence [2], crowd simulation [3], fluid simulation
[4], and ray casting [5].

However, using these multicore processors and GPUs raise
energy consumption and chip temperature. For example, this
raises concerns as energy waste, high hardware power re-
quirements, and thermal management. As a result, research
on energy consumption and thermal control has received more
attention over the last years.

In the energy consumption area, an example is the devel-
opment of techniques as Dynamic Voltage Scaling (DVS),
which enables applications to manipulate the processor clock
frequency to reduce energy consumption and processor tem-
perature as a consequence ([6], [7], and [8]).

In the thermal control area, an example is research on
dynamic thermal management [9], [10], which has become
necessary for these new multicore hardware. Thermal manage-
ment is important because if the system temperature increases
too much, the hardware can be severely damaged.

In the GPU area, the latest nVidia GPU series (codenamed
”Kepler” [11]) enables developers to implement different
thermal management policies through a library named NVML
(nVidia Management Library [12]. Previous generations of
nVidia GPUs implemented thermal management automatically
through the graphics device driver, which works well when the
system has only one GPU. However, in a system with more
GPUs, there is some energy waste resulting in unnecessary
temperature increase.

In these cases, the automatic thermal management policy
implemented by GPU device drivers usually sets up the GPU
clock to the highest possible value whenever the GPU is
working. When the GPU is idle, the driver sets the GPU
clock to the lowest possible value. Using this policy generates
energy waste when the system has two or more GPUs, and
some GPU needs to wait for another one to finish processing
before carrying on running tasks. In this case, a good strategy
is reducing GPU clocks in order to balance GPU processing
times, thus balancing hardware usage and lowering system
temperature and energy consumption.

Although research on energy management and thermal
control is a topic that has been gaining attention, we were
not able to find works that combined game architectures with
energy management concerns. In order to help in filling this
gap, this work proposes a novel parallel game loop architecture
with GPU thermal management based on heuristics. Our ar-
chitecture takes advantage of new GPUs that make it possible
for developers to implement different thermal management
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policies.

We want to be able to achieve an acceptable FPS (frames
per second) rate for the application, while providing automatic
energy management. An acceptable FPS application rate is
about 30 frames per second [13].

In order to achieve this goal, we designed two test cases.
With the the first one, we wanted to explore this new GPU
functionality to learn how this functionality works and if it
would be valuable to apply it in a game architecture. The
second one tests our proposed architecture as a whole.

The work is organized as follows. Section II presents works
related to game loops and energy management. Section III
presents our game loop architecture. Section IV discusses the
two test cases. Finally, Section V presents the conclusions.

II. RELATED WORK

The availability of multicore CPUs and programmable
GPUs have risen the provision of processing power for
applications. For example, for games this means increased
scene realism and more sophisticated artificial intelligence and
physics simulations. However, using more power raises energy
consumption and system temperature.

Our work proposes a multi-thread game loop architecture
that addresses both concerns by: 1) integrating GPUs as a re-
source in game loops; and 2) providing an energy management
scheme[a]. This section presents works related to both areas,
in separate subsections.

This section provides works related to game loop architec-
tures and energy management. However, we were not able
to find works that combined game architectures with energy
management.

A. Game Loop Architectures

Games and some visual simulations provide the illusion
that everything is happening at once. This illusion” is a
peculiarity of interactive real-time applications. We say that
these applications have real-time requirements because if these
applications are not able to process their tasks on time, the user
experience will not be good enough — in fact, user experience
could be severely impaired, thus breaking the illusion”.

A game processes tasks that fall into three general groups:
data acquisition, data processing, and presentation. Data ac-
quisition means gathering data from available input devices
as mice, joysticks, keyboards, touch screens, and motion
sensors. The data processing part refers to interpreting user
input, applying simulation rules (the simulation logic), physics
simulation, artificial intelligence simulation, and related tasks.
The presentation refers to providing feedback to the user about
the current simulation state, through images and audio.

During the game lifetime, the game tasks runs periodically.
A model that organizes how these game tasks run is known as
a game loop model. The literature presents some works that
address this subject, such as: Dalmau [14], Valente et al. [13],
Dickinson [15], Watte [16], Gabb and Lake [17], Joselli et al
[18], and Mo6nkkonen [19].
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The simplest possible game loop model corresponds to
an architecture with three steps: reading player input, game
update and render. In this model, the game runs the three tasks
sequentially. As a consequence, the simulation is perceived as
running faster in more powerful machines, and running slower
in slower machines. Dalmau [14] provides an example about
this game loop model.

A strategy to solve hardware architecture dependency is to
use uncoupled models, which uncouples the rendering and
update stages. These uncoupled models can be single-threaded
([13], [14]) or multi-threaded ([13], [17], [19]).

The Multi-thread Uncoupled Model and the Single-thread
Uncoupled Model use a time parameter to adjust the game
loop frequency [13]. By using these models, the application
is able to adjust its execution with time, so the game runs
in a similar way in different machines while maintaining
interactivity. More powerful machines will be able to run the
game more smoothly, while less powerful ones will still be
able to provide some experience to the user.

Nowadays, multicore processors are common in desktops,
mobile devices and video game consoles. Current game loops
must consider this fact in order to maximize hardware usage.
This includes parallelizing tasks into multiple threads. How-
ever, dealing with concurrent programming introduces another
set of problems, such as data sharing, data synchronization,
and deadlocks. Also, as Gabb and Lake [17] state, that not
all tasks can be fully parallelized due to dependencies among
them. For example, the game is unable to render a character
in the correct state before computing the game logic and
updating the overall game state. Hence, serial tasks represent
a bottleneck to parallelizing simulation computation.

Rhalibi et al. [20] present a different approach for real-
time loops by taking into consideration dependencies among
game related tasks. Their model divides the loop steps into
three concurrent threads, creating a cyclic-dependency graph
to organize the ordering in game related processing. Each
thread divides the rendering and update tasks according to
their dependency.

Monkkonen [19] presents multi-thread game loop models
that are grouped into two categories: function parallel models
and data parallel models. The first category correspond to
models that present concurrent tasks, while the second one
concerns models that try to process data entirely in parallel, if
possible. As an example (first category), Monkkonen proposed
the Asynchronous Function Parallel Model, which does not
wait for task completion to perform its job. The Asynchronous
Function Parallel Model runs the render stage using the last
complete game state, even if the update stage is still computing
the new one. As an example related to the second category,
there is the Synchronous Function Parallel Model [19], which
processes the game physics in a separated thread while the
main thread process the characters animations.

The first work that integrated GPGPU into a game loop
model was Zamith et. al [21]. Zamith et. al proposed using
GPUs as math co-processors in real-time applications (as
games and physics simulations). The work by Zamith et. al
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[21] extended the Single-thread Uncoupled Model [22] by
creating a secondary thread responsible for managing the GPU
as a math co-processor.

Zamith et. al [23] present another model that integrates
GPGPU into game loops, as an architecture where the GPU
runs game physics and the CPU runs other tasks that GPUs
cannot process (as reading player input or networking). This
approach extends the Multi-thread Uncoupled Model [17] by
defining a manager that is responsible for distributing tasks
between the GPU and the CPU. The work by Zamith et. al
[23] implements a static load balancing scheme, using a Lua
script to allocate tasks on processors.

Joselli et. al [18] present a Multi-thread Uncoupled Model
with an automatic load balancing scheme that also integrate
GPGPU. The automatic load balancing scheme uses heuristics
to define task allocation on processors (considering hardware
with multicore CPUs and programmable GPUs). This load
balancing scheme is able to work dynamically, moving tasks
between processors during the application lifetime to guaran-
tee task load balance.

Joselli et. al [24] present a Multi-thread Uncoupled Model
for mobile devices that uses cloud computing. This archi-
tecture enables the game application to use cloud services
for image recognition and speech recognition, for example.
This architecture provides modules to access cloud services,
networking, social networks, input, rendering, Al processing,
and publishing player achievements to social networks.

B. Energy Management and Thermal Control

There are several works in the literature that explore Dy-
namic Voltage Scaling (DVS) techniques to implement energy
management as a result of reducing temperature. DVS is a
technique that enables to reduce processor temperature by
manipulating processor clock frequency through software [6]
(71, [8].

Applications that use DVS are real-time applications that
solve an optimization problem — to maximize CPU idle
time while minimizing energy consumption and meeting real-
time requirements. In order to accomplish this goal, the
algorithm applies a policy and reduces or raises the processor
clock through DVS. The kinds of tasks that exist in these
applications are usually recurrent — they are processed several
times during the application lifetime. As a result, it is possible
to analyse task behavior according to clock frequency changes.

Our game loop architecture employs an idea similar to DVS
through nVidia’s NVML library. The main difference is that
our architecture applies the idea to GPUs, and works related
to DVS apply the idea to CPUs only. This section explores
some of these works.

Trevor et. al [25] analyses four algorithms related to energy
management and thermal control that employ DVS techniques:
FLAT, COPT, PAST, and AVG. These algorithms use different
policies to change processor clock as means to optimize
energy consumption. Trevor et. al [25] wanted to compare
the algorithms to learn about how much energy they could
save. The FLAT algorithm defines a fixed value for voltage
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to use during the entire application. The COPT algorithm
takes advantage of a task performance history to learn about
how much energy a task usually requires, in order to adjust
the processor clock to meet the energy requirement. The
PAST algorithm uses the last CPU idle time value as basis
to calculate a CPU clock value that is able to improve energy
consumption and keep the task real-time requirements. The
AVG algorithm is similar to the PAST algorithm. The main
different is that the AVG algorithm uses an average of all CPU
idle times as basis to calculate the new CPU clock value.

Kim et. al [26] propose a DVS optimization algorithm.
This algorithm aims at minimizing the time spent computing
periodic tasks. In this algorithm, each task has a priority and a
deadline. The tasks are organized in a queue data structure that
defines the task priorities. When a task reaches its deadline,
the algorithm moves the task to the end of the queue. While
a task is running, the algorithm analyses the task to define the
appropriate processor voltage value to use in order to achieve
the optimization goal.

Another work by Kim et. al [27] proposes another DVS op-
timization algorithm, now focused on preemptive task control.
In their model, the tasks have different priority levels. This
algorithm changes processor voltage values to achieve two
goals: 1) to reduce the elapsed time of a lower-priority task
before it is time to process a higher priority task; 2) to delay
running a higher-priority task so as a lower-priority completes
execution without being preempted.

Xiaobo et. al [28] developed a DVS algorithm to manage
processor energy consumption in a system that has a memory
energy management system controlled by hardware. This
memory management system is independent and cannot be
controlled through software. Xiaobo et. al [28] consider their
results satisfactory as they are able to raise the CPU processor
clock and still have benefits in total energy consumption,
because their approach takes into consideration the effects
of the independent memory management system on energy
consumption.

Zhang et. al [29] propose a DVS algorithm composed by
two parts: The first part is pre-computed (off-line) while
the second one runs on-line. In the first part, the algorithm
analyzes a log file containing task information to learn about
the average task running time and task priority. In the second
part (on-line), the algorithm uses the task information to
calculate the clock frequency in order to minimize energy
consumption while meeting the task real-time requirements.

III. THE PROPOSED GAME LOOP

This work proposes a parallel game loop architecture for
multiple GPUs that provides a module to manage GPU energy
consumption. This work extends the architecture by Joselli et.
al [30], which yields an efficient automatic load balancing
scheme for game tasks among GPUs.

Before going further, it is necessary to define two concepts:
1) a "task” is something that the game needs to process using
either the CPU or the GPU. For example, processing artificial
intelligence, physics, and rendering; 2) an “idle state” in the
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Fig. 1. Parallel game loop model with multiple GPUs.

CPU or GPU happens when there is nothing to process. In
this state, a task does not exist.

Some game related tasks (as reading input devices, playing
audio, and applying force feedback effects on joysticks) can
be performed only by CPUs. Other kinds of tasks (as intense
mathematics calculations), can be performed either on CPUs
or GPUs. Finally, some tasks are processed only by GPUs, as
rendering.

The proposed architecture comprises one main thread and
several secondary threads. The main thread is responsible
for reading player input, running the Energy Manager, and
rendering. The secondary threads correspond to update tasks
(as tasks related to Al and Physics). Some update tasks run
on GPU (GPGPU task). In order to guarantee data consistency
for rendering, the architecture uses a synchronization scheme
based on semaphores. Fig. 1 illustrates the architecture.

The architecture assigns a CPU thread to each GPGPU task.
As GPGPU tasks are not able to access main memory (due to
GPU hardware limitations), the CPU thread stores a copy of
some game data (as player input and physics simulation data)
to share with the GPGPU task. Fig. 1 also illustrates this one-
to-one relationship. The reader should refer to [21] for more
details on this approach.

The Energy Manager (EM) represents the core of the
architecture. The EM is responsible for monitoring the GPU
temperatures and adjusting GPU clocks to avoid wasting
energy, managing all the different tasks, and synchronizing
all threads and data exchange. The EM adjusts GPU clock
frequencies (processor and memory access) and synchronizes
all threads. Besides, the EM is also a task that the CPU runs.

The EM synchronizes all threads (including the main one)
each time the game loop runs to share player input data among
the threads (Sync threads A in Fig. 1). The EM performs
another synchronization step to gather data from each GPGPU
task thread for the render task, so the rendering process
happens correctly and consistently (Sync threads B in Fig. 1).
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When a task that requires heavy GPU processing is running
(e.g. rendering), the EM observers energy consumption of
other GPUs (dedicated to other tasks) and reduces the clocks
of these GPUs when it detects that these GPUs are idle.
Otherwise, if the EM detects that a GPU is not running a
task on time, it adjusts the GPU clocks (memory access and
processor) to obtain better performance.

In parallel architectures, a thread could finish processing
before another one. Consequently, it is possible that some
threads enter the idle state. A strategy to solve this problem is
to keep all threads occupied through a load balancing scheme.
The architecture provides this strategy as it is an extension of
Joselli et. al [18].

Several times, GPUs are fast enough to process all their
game tasks and wait for game rendering. If the graphics card
driver controls the GPU temperatures automatically, it adjusts
the GPU clocks (memory access and processor) to the highest
possible value when they are active. Therefore, a good strategy
is to apply an energy management policy that reduces GPU
clocks (and consequently, system temperature).

The EM employs heuristics to decide when it should change
the GPU clock frequency (memory access and processor).
Our architecture provides a default heuristic to accomplish
this task. However, it is possible to define other heuristics
through Lua scripts, if desired. This makes it possible to test
different energy management heuristics without rebuilding the
application.

Next subsection details the default heuristic that the Energy
Manager applies.

A. The Default Energy Manager Heuristic

The heuristic accepts two input parameters, each one being
a high-precision floating point value (double). The first one
is a double value representing rendering elapsed time. The
second one is a double value representing the GPGPU task
elapsed time, for a given thread i. The heuristic produces
one output parameter, an integer number with three possible
values: —1, which informs that the EM should reduce the GPU
clock frequency; 1, which informs the EM to increase the GPU
clock frequency and 0, which informs the EM to maintain the
current GPU clock frequency.

The heuristic compares performance of a single GPU (run-
ning a GPGPU task) with the rendering GPU. If a GPU is
faster than the rendering GPU, the heuristic determines that
the GPU should have its clock reduced. If the GPU is slower
than the rendering GPU, the heuristic determines that the GPU
should have its clock increased. Otherwise, the heuristic does
nothing.

The architecture needs to run the heuristic periodically to
evaluate the system in order to perform energy management.
Games are dynamic applications with tasks that game tasks can
be processed very quickly (e.g. a simple particle system). If the
architecture fails to run the heuristic in reasonable time, energy
management can become inefficient. Thus, we chose to run the
heuristic every 10 frames to start with, because we found this
to be a reasonable value. If we used an interval much higher
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than that, the heuristic could miss valuable information about
task performance. If we used a value much lower than that
(like at every frame), running the heuristic that often could
become a burden to the game.

The EM is responsible for running the heuristic for all GPUs
(running GPGPU tasks) in the system. The metric that the
heuristic uses to compare performance is the mean elapsed
time for the past 10 frames (for both GPGPU and render
tasks). As the GPU configurations could possibly change, it
is necessary to wait some time for the new configurations to
take effect. Hence, the heuristic waits for 10 frames before
running again. Algorithm 1 presents the heuristic pseudocode.

Algorithm 1 Energy Manager Heuristic Algorithm

if frameCount == 10 then
meanElapsedTimeRender =
Time(frameCount)
meanGPGPUelapsedTime =
Time(frameCount)
if GPGPUelapsedTime < elapsedTimeRender then
return -1
else
if GPGPUelapsedTime > elapsedTimeRender then
return 1
else
return 0
end if
end if
else
if frameCount == 20 then
frameCount = 0
end if
end if

getMeanRenderElapsed-

getMeanGPGPUElapsed-

IV. TESTS AND RESULTS

This section describes the tests we have performed to inves-
tigate the feasibility of our architecture. We have conducted
two tests.

The first test is a benchmarking to learn about the new
functionality that the Kepler GPU series offer on energy
management. We were interested to know if following this
path would be interesting.

The second test solves a physics simulation on the GPU
using our architecture. This physics simulation corresponds to
an explosion (sound wave propagation) that travels through an
environment with large obstacles, a problem that requires high
processing power.

The test platform is an Intel i7 with four physical cores of
3.60 GHz, 8GB RAM memory and two GPUs: nVidia K20
and nVidia GTX480. The GTX480 runs the render task and
the K20 runs the GPGPU task.

Both tests use NVML library API calls [12] to change
memory access and clock frequencies in the K20 GPU. This
API works by providing both values in one call, as a value-pair.
Currently, there is a hardware limitation as the possible values

Computing Track — Full Papers

to use are limited. The NVML offers functions to query the
possible value-pairs according to the GPU model. For exam-
ple, currently the K20 GPU accepts the following value-pairs:
2,600/758, 2,600/705, 2,600/666, 2,600/640, 2,600/614
and 314/314 (memory /processor clock frequency).

The remaining of this section discusses the two tests.

A. Test 1: Benchmarking

We implemented a benchmark to answer this question: If we
changed the GPU clocks, what would be the performance gain
or loss considering the nature of the task? By nature of the
task, we mean tasks that require more memory accesses versus
tasks that require more processing power. We were interested
in learning about GPU thermal and energy consumption with
different kinds of tasks.

The benchmark applications are based on three applications
that ship with the nVidia SDK [31]: cdpAdvancedQuick-
sort, cdpLUDecomposition, radixSortThrust. The cdpAd-
vancedQuicksort application implements a parallel quick sort
algorithm. The cdpLUDecomposition application runs a par-
allel LU decomposition. The radixSortThrust application im-
plements a parallel version of the radix sort algorithm.

We selected these specific applications because:

« they demand high computation power;

« the sorting algorithms demand more memory access than

GPU processing;

e the LU decomposition requires more GPU processing
than memory access;

« these specific applications are simpler to extend than
other ones that exist in the nVidia SDK;

o the cdpAdvancedQuicksort and cdpLUDecomposition al-
gorithms use a new GPU functionality — dynamically
parallelism [32] — and we were interested to learn how
would affect the task performance.

Dynamically parallelism [32] is a new functionality avail-
able in the Kepler GPU series that makes it possible for a GPU
kernel to spawn other kernels. In previous GPU architectures,
spawning GPU kernels was only possible through the CPU.
Fig. 2 illustrates the dynamically parallelism scheme, where
the arrows indicate the act of invoking a kernel.

CPU GPU

CPU task| _, GPU task

—
|GPU task| [GPU task][GPU task| [GPU task]

GPU task
CPUTask| < |GPU task| [GPU task| [GPU task|

Fig. 2.

Dynamic parallelism in Kepler GPU series.

We extended these applications in two ways: ) by im-
plementing functionality to record a log file containing the
temperature and clock values at each step; and ¢) by having
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the applications accept parameters that indicate the memory
and processor clock values to use. Nowadays, these appli-
cations work only with the K20 GPU, as changing memory
and processor clocks is a functionality first introduced in the
Kepler GPU series.

The original applications are able to run the algorithms
with different domain sizes. We selected the same domain
size for all of them: 8,192 elements. We selected this value
for all applications because this was the maximum value that
the cdpLUDecomposition application accepted (the other ones
accepted higher values).

The tests consisted in running each application 1, 000 times,
using different clock frequencies. The tests recorded the GPU
temperature and elapsed times (memory transfer and GPU pro-
cessing) for each clock frequency. We decided to execute each
application 1,000 times because the processor temperature
does not change immediately after changing clock frequency.
This is a behavior that Hefner and Blackburn [33] suggested
and we were able to confirm it. However, changing clock
frequencies affects immediately the elapsed times of memory
transfer and GPU processing.

1) Results: Table I presents the benchmark results. Column
memory/GPU indicates the clock frequencies of memory ac-
cess and GPU processor, respectively. Columns memory and
GPU represent the elapsed time of memory transfer and GPU
processing, in milliseconds. All values in Table I represent the
averages of all 1,000 runs.

The results in Table I demonstrates that the application that
requires more GPU processing (cdpLUDecomposition) is the
most affected when the GPU processor clock changes.

Fig. 3 displays memory access elapsed times of sorting algo-
rithms (cdpAdvancedQuicksort, radixSortThrust) when mem-
ory access clock changes Fig. 3 illustrates that changing
memory clock does not impact memory access performance
for these applications.

35

‘cdpAdvancedQuickson —
radixSortThrust ssssess
3k 4
25 A
@
E Ll ,
o
£
°
2
g 15 F B
w
1k 4
05 A
0
2,600 314
Memory clock frequency (MHz)
Fig. 3.  Memory access elapsed time of cdpAdvancedQuicksort and radix-
SortThrust.

Fig. 4 illustrates the GPU processing elapsed time using
different clock values, for these applications: textitcdpAd-
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vancedQuicksort, radixSortThrust. It is possible to notice in
Fig. 4 that the GPU processing time is almost constant
regardless of clock value.

90

cdpAdvancedQuicRson —
radixSortThrust 2229058

Elapsed time (ms)

768 705 666 640 614 314
GPU processing clock frequency (MHz)

Fig. 4. GPU processing elapsed time of cdpAdvancedQuicksort and radix-
SortThrust.

Fig. 5 display the results about memory access regarding
the cdpLUDecomposition application. This figure illustrates
that despite the 2, 6000 hz clock frequency being significantly
higher than the 314M hz frequency, the speedup (1.07) is not
significative.

0.035

Memory access b

0.025

0.02 |

0.015

Elapsed time (ms)

0.01 |

0.005

2,600 314
GPU processing clock frequency (MHz)

Fig. 5. GPU processing elapsed time (cdpLUDecomposition).

Changing the GPU processor clock frequency directly af-
fects the performance of this application. We expected this
behavior as cdpLUDecomposition requires high computational
power. Fig. 6 illustrates that the cdpLUDecomposition perfor-
mance changes linearly as processor clock changes.

Fig. 7 illustrates a chart with temperature variations for all
three applications, considering a batch of 1,000 runs for each
application. In order to prevent a test batch from interfering
with another batch, the three batches used the same initial
condition: the GPU temperature at (37 degrees celsius). This
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TABLE I
APPLICATION BENCHMARKING PERFORMANCE

cdpAdvancedQuicksort | cdpLUDecomposition | radixSortThrust
memory/GPU | memory GPU memory GPU memory | GPU
2,600/768 0.032 3.003 0.030 | 8,020.080 3.036 | 80.845
2,600/705 0.032 3.005 0.030 | 12,147.500 3.026 | 81.123
2,600/666 0.032 3.013 0.030 | 16,315.200 3.014 | 80.397
2,600/640 0.032 3.010 0.030 | 20,500.800 3.032 | 80.453
2,600/614 0.032 3.048 0.030 | 24,715.400 3.038 | 81.583
314/314 0.032 3.079 0.032 | 28,861.500 3.060 | 80.233
80000 GPU procésswng — % cdpAdva\nc_edsQai_clgﬁfgsr:
2 20000 1 g 45 i 1L
g g ’_X_M,JW—L i
u—:? 15000 Bl g' 40 ”_Al( 1
i r
[
10000 b 35 ‘X_‘
ir
i
s
5000 30 E
e 7OSGF’U proceizﬁ'lg clock frei;tjoency (MHz:314 o ’ ° Tim;:)ms) * 20
Fig. 6. GPU processing elapsed time (cdpLUDecomposition). Fig. 7. GPU temperature as a function of time.

is the temperature we measured when the GPU was in an idle
state, after just powering up the system.

Fig. 7 illustrates that the temperature rises over time and
then stabilizes at some point. The cdpAdvancedQuicksort was
the slowest one to reach temperature stabilization (in 7.5
milliseconds) ending at 45 degrees celsius, while the radix-
SortThrust application was the fastest to reach temperature
stabilization (2 milliseconds), ending at 47 degrees celsius.
Finally, the cdpLUDecomposition reached temperature stabi-
lization in 3 milliseconds, ending at 50 degrees celsius.

The benchmark results suggest that applications have unique
behaviors regarding GPU processing. As examples, some tasks
in applications require more memory access, while other tasks
demand more processing power. In this sense, an energy
management strategy must take into account the nature of
tasks. In case of games, a challenge is to develop strategies
that change clock frequencies dynamically in a simple way,
while keeping real-time and interactivity requirements.

The benchmarking applications cdpAdvancedQuicksort and
cdpLUDecomposition use dynamic parallelism, a new feature
of Kepler GPU series that enables a GPU kernel to invoke
other GPU kernels. We were interested in learning about how
this feature would affect our tests. However, after running
the tests we did not have strong evidences to affirm that this
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feature affected or not affected the test performance.

B. The Physics Model: Shock-wave Explosion

The second test corresponds to a shock wave simulation
that models how a shock wave (originated from an explosion)
travels through an environment with large obstacles, such as
a city block with tall buildings. The application used the
resulting amplitude field to render the propagation of a shock-
wave-like effect at each frame step. Although this example
is not a game, the shock-wave simulation requires solving a
physics model in real-time, which is a common feature found
in current games.

Solving these kinds of simulations through an analytical
solution becomes impossible depending on the medium se-
lected for the simulation. This is the case of our test. In
these cases it is necessary to use approximative techniques
to solve the simulation. In this regard, we selected Finite
Difference Methods (FDM) [34]. Generally speaking, it is not
possible to solve FDMs in real-time due to high computing
demands. However, due to the high processing power of GPUs,
processing FDMs in real-time becomes possible. The reader
should refer to [34] for implementations details about solving
FDM on GPUs (that also applies to the physics simulation that
this test solves).
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1) Test Scene Description: The outdoor environment was
represented by a lattice with larger cells, using Reynolds
boundary condition [35] to simulate domain continuity. The
buildings were represented by zeroing the velocity of the cells
that intercepted the visual models at the ground level. The
kernel parameters for this experiment are: Ah = 1.0 meter,
At = 0.0033 seconds, and the domain was variable from
128 x 128 points to 4096 x 4096, doubling the square size.
As Ah = 1.0, the scene follows the same proportion. In other
words, for each simulation the test doubles the square size,
starting from 128 x 128 meters to 4096 x 4096 meters. Domain
sizes larger than 4096 x 4096 are infeasible to process using
our test hardware.

Fig. 8 display the test scene geometry and the evolution
of the shock-wave propagation effect in time. The wave
propagation starts in (A) and ends in (D). The buildings
interfere in the wave propagation. Parts (A) and (B) omit
buildings to help in visualizing wave reflection. Parts (C) and
(D) present the complete scene.

2) Results: Fig. 9 illustrates that changing clocks in GPUs
responsible for the GPGPU tasks does not influence the
rendering elapsed time. This result suggests that the rendering
task is the heaviest one in our example.

140

120

)
i<
g 100 —m- 128x128
2 —o— 256x256
E 8 512x512
v —&— 1024x1024
£ 60
£ —— 2048x2048
3 w0 4096x4096
Q
8 -
o2

ol

2600/758 2600/705 2600/666 2600/640 2600/614  314/314

Memory/processor clock frequency (MHz)

Fig. 9. Render task elapsed time.

Fig. 10 illustrates a pattern: when the processor clock value
changes (while keeping the same memory clock value and
domain size), the elapsed time does not change significantly.
Changes in elapsed time are significant only when the memory
access clock also changes.

Fig. 11 illustrates a similar pattern as Fig. 10. For a given
domain size, the temperature does not change significantly
when the processor clock value changes (while keeping the
same memory access clock). The GPU temperature changes
more significantly when the application varies the GPU mem-
ory access clock.

When using 2,048 x 2,048 as the domain size, the test
performance is 33 FPS, which we consider a reasonable
FPS rate. On the other hand, the test performance is worse
when using a larger domain (4,096 x 4,096), resulting in
approximately 8,3 FPS. Fig. 11 illustrates these results (the
FPS is calculated as % where X is the time in seconds that
Fig. 11 represents).
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Fig. 11. The GPU temperature.

These results demonstrate that there is energy consumption
reduction while not hindering application performance. How-
ever, we were not able to know the specific amount of saved
energy as the NVML library does not provide an API to query
this information.

V. CONCLUSION AND FUTURE WORKS

The rise in processing power regarding current multicore
CPUs and programmable GPUs makes it possible to have more
sophisticated games and real-time simulations. However, these
hardware require more energy to operate, thus elevating energy
consumption.

In systems with multiple GPUs, the energy consumption
problem could become worse if we consider the GPUs running
at full speed while the application do not use the full process-
ing power available in the system. These situations open up
the possibility to energy waste.

As new GPUs (the Kepler GPU series) enable indirect
energy management through changing GPU clocks, we con-
sidered that using this functionality for energy management in
games could be a promising idea. We first approached the idea
by conducting a benchmark test to explore this functionality.
We believed the test results were interesting enough to start
exploring this functionality in a game architecture.

In this sense, this paper proposed a scheme to manage GPU
energy consumption in games through a multi-thread game
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Fig. 8.
Parts (C) and (D) present the complete scene.

model. Although we have not tested the proposed architecture
with a real game, we tested the architecture with a game-
related task (a physics simulation) that has high processing
demands, while being able to keep real-time requirements. Our
architecture also makes it possible to define heuristics through
Lua scripts. This enables testing different energy management
heuristics without rebuilding the application.

Research on energy management for games is scarce. We
were not able to find works related to this topic in the
literature. Additionally, the Kepler GPU series represent the
first generation of GPUs that enables energy management. In
this regard, our work represents a first and modest attempt
at proposing a solution for this area. e research on energy
management for games is a novel area that has a long and
promising road ahead, which requires further investigation.
A possible future work regards investigating how applying
energy management policies could affect overall quality in
games, as these policies can reduce available processing power
in the system.
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