
Penspective: a Perspective-Aware Game Map Editor

with Natural Interaction

Alexandre M. F. de Sousa, Anderson C. M. Tavares, Carlos H. Morimoto

Department of Computer Science - DCC

Institute of Mathematics and Statistics - IME

University of Sao Paulo - USP

{alemart, acmt, hitoshi}@ime.usp.br

Abstract—Current WIMP (Windows, Icons, Menus, Pointers)
interfaces used in most computer game map editors impose
complex interactions to level designers. In this paper we present a
novel map editing tool based on a Natural User Interface (NUI)
that uses common drawing objects, such as pens and erasers,
to build and edit map elements, as well as hand gestures to
manipulate them. As a proof-of-concept, we have implemented
a tile-based map editor featuring a 3D NUI with multitouch
capabilities. The real-time prototype, built using two Microsoft
Kinect devices and a regular LCD screen, displays the levels in
3D while adjusting the perspective according to the location of
the user.

Keywords—level design; sketching; natural interaction; 3D
user interface; post-WIMP; off-axis perspective projection; depth-
sensing; Kinect.

I. INTRODUCTION

Map editors play an important role in the process of
creating video-games. They provide a user interface that allows
designers to build levels, defined as the virtual spaces in
which the player interacts and plays. These programs can be
distributed as stand-alone solutions, or can be bundled with
game engines: software systems that provide a set of resources,
including code abstractions that deal with low-level routines
(graphics, sounds, asset management, etc.), to simplify the
process of developing games [1].

Currently, most map editors use WIMP (Windows, Icons,
Menus, Pointers) interfaces. During the process of designing
levels, the user will often rely on cluttered menus or hotkeys to
perform frequent operations such as inserting or transforming
certain map elements. By being restricted to using devices like
the mouse, keyboards, joypads or even touchscreens, current
map editors impose complex interactions to level designers.
The complexity of the user interfaces is also increased, as they
demand that users perform many steps to accomplish certain
goals.

In Human-Computer Interaction (HCI) research, advances
in computer hardware and software stimulated the development
of a new generation of user interfaces: these are the post-
WIMP interfaces [2]. According to van Dam, they contain at
least one interaction technique that isn’t based on regular 2D
widgets. The motivation behind these interfaces is to leverage
the pre-existing, mundane knowledge of the users, in order
to make the communication to the computers more similar to
activities of the non-digital world. By employing elements of

Fig. 1: Penspective.

the users’ everyday knowledge, we can design interfaces that
reduce the gap between human goals and the actions required
to accomplish them [3].

A common way of drawing sketches is to use pen and
paper. These well-known objects are very versatile and widely
used. Since they are present almost everywhere, using them
feels like second nature. This idea can also be applied to map
editing, reducing the complexity of the interfaces and enabling
more natural interactions.

Besides interaction, visualization also plays an important
role for usability and user experience in games [4]. 3D
games can increase the user degree of immersion. However,
the immersion may be reduced if the system does not use
information from the real environment within which the user
stands. The sensation of depth in a 3D scenario improves if the
environment adjusts its perspective according to the viewpoint
of the user.

In this paper, we introduce Penspective, a novel tile-based
map editor that builds upon the idea of using a pen to draw
level elements on a grid paper, an eraser to remove them, and
finger movements to transform them. In our proof-of-concept,
the levels are built on a grid, where each cell holds a 3D
block with adjustable height. Our prototype, shown in Figure 1,
is displayed on a regular LCD screen, transforming it into
a 3D natural user interface with multitouch capabilities. The
system displays the maps in 3D while adjusting the perspective
according to the user’s head, giving the illusion that the map is
actually lying behind the screen. The motivation of this work is
to present a new form of interaction for map editing, providing
level designers a “natural” way to perform their tasks.

SBC - Proceedings of SBGames 2013 Computing Track – Short Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 17



II. RELATED WORK

Map editors have been around for decades. Older editors
used to create tile-based maps for 2D games include Games
Factory [5] and Mappy [6]. Newer alternatives include Tile
Studio [7] and Tiled [8] (both are free software). Although
they contain varying features, they all draw upon the same
interaction: one will use a mouse to select certain tiles and
place them on the level.

Designed for building 3D virtual worlds, other alternatives
include: Ambierra’s irrEdit [9] and Unity3D [10]. The latter
is a popular cross-platform game engine that includes a built-
in 3D world editor, while the first is an editor distributed as
a standalone application. In spite of the advantages of these
solutions, both make heavy use of the mouse, demanding that
users spend considerable time manipulating the interface as
they perform sequences of operations (e.g., selecting appro-
priate tools in a menu, manipulating certain widgets to fine-
tune parameters of the map, etc.) to achieve their design goals.
In addition, the mapping between 3D tasks and 2D controls
is less natural compared to what one would experience in a
purely bidimensional application, thus increasing indirection
and cognitive distance [2].

In the field of computer-aided architectural design, there is
work exploring non-traditional user interfaces. In an attempt to
intuitively convey the designers’ goals, Mistry et al. developed
Inktuitive [11], a tool that lets them create 3D objects while
taking advantage of the intuitive process of using pen and
paper. As the user draws an outline of the desired object on a
paper, the drawing is captured by a computer and transformed
into a polygonal entity in the digital world. The user can
then lift the pen above the paper to specify the height of
the object, which is viewed on a vertical LCD screen. Lee
and Ishii’s Beyond [12] allows users to combine collapsible
physical tools with hand gestures in “beyond the screen” 3D
design. The designers will hold either a pen to draw forms, or a
saw to perform sculpting and cutting. Hand gestures are used,
as modes of operation, to complement the direct manipulation
performed with the tools.

III. DESIGN

Under the WIMP paradigm, it’s not unusual that relatively
complex applications such as map editors include a lot of
widgets. Complex interfaces that have too many widgets
cluttering up the screen may turn the application hard to learn
and hard to use. With that in mind, we have taken design
decisions that leverage advantages of physical tools and users’
pre-existing knowledge, attempting to explore natural ways of
designing maps for games.

Our map editor is inspired by the notion of grid papers.
Similarly to any regular paper, one is capable of using a pen
to draw elements on the paper, as well as removing them with
an eraser. Due to the fact that our system supports physical
artifacts representing different tools, there is no need of an
additional menu to select the desired tool. As the indirection
decreases, so does the complexity of the interface. Rather than
adding more modes of operation, the use of an actual pen and
an actual eraser provide obvious drawing metaphors, revealing
a seamless bridge between the physical and the digital realms.

(a) Drawing blocks. (b) Removing blocks.

(c) Moving (selection phase). (d) Moving (dragging phase).

(e) Adjusting height (before). (f) Adjusting height (after).

Fig. 2: Interacting with the map editor.

Initially, the editor displays an empty grid. Each cell of the
grid can be filled with a block corresponding to materials such
as: wall, fire, grass, water or dirt. These blocks can have their
heights adjusted by the designer, so that 3D maps can be built.
As depicted in Figure 1, the system also provides an illusion
of depth. Like a magic paper, it’s as if the 3D map is actually
present in the physical world.

Our map editor supports the following operations:

1) Drawing: similarly to a drawing activity, as the
designer drags the pen over the surface, blocks are
placed on the map. Figure 2a illustrates the process;

2) Erasing: erasing works in the same fashion as draw-
ing. As the user touches the surface with the eraser,
the corresponding blocks are removed from the map.
Figure 2b shows the operation;

3) Moving: human beings frequently use their hands to
grab and push physical objects. In our editor, blocks
are moved using a finger (see Figures 2c and 2d).
Touching a block with a finger starts the operation,
selecting that element. Then, the selected block is
moved around the map as the user drags the finger
over the surface. The block is placed on its final
position when the user no longer touches the surface;

4) Selecting a block type: on the right of the screen

SBC - Proceedings of SBGames 2013 Computing Track – Short Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 18



there is a panel featuring a few block types. The
designer selects one of them to change which block
types are placed on the map during the drawing activ-
ity. This operation is akin to the notion of changing
the ink of the pen;

5) Adjusting height: the height adjustment is done
right after new blocks are drawn over the map. The
designer starts the operation by keeping the pen in
contact with the surface and placing a finger on the
screen. Then, lifting the pen changes the height of the
recently drawn blocks, as depicted in Figures 2e and
2f. The operation finishes once the finger is lifted.
With that gesture, designers can use their dominant
hand to adjust the height of the blocks, as pens are
frequently holded with that hand.

IV. SYSTEM DESCRIPTION

The system is composed by four components: Multitouch
Interaction, Above-The-Surface Interaction, Skeleton Tracking
and Main Application. The Multitouch Interaction module
turns a flat surface into a touch sensitive region. That module
is closely related to the Above-The-Surface Interaction sub-
system, responsible for tracking, in 3D space, physical objects
that were previously in contact with the surface. The Skeleton
Tracking subsystem tracks the user in physical space. Finally,
Main Application uses the other subsystems to actually present
the map editor to the user. The following sections describe the
subsystems:

A. Multitouch interaction

The advent of low-cost RGB-D cameras has enabled the
detection of touch events on ordinary surfaces. Using a Mi-
crosoft Kinect, Wilson [13] has described an image processing
technique that detects touch on a non-instrumented tabletop.
Although the results are not as accurate as they would with
capacitive touch screen technologies, the approach is good
enough for various applications, with the added benefit that
the physical space above the surface may also be exploited.

In this project, a Microsoft Kinect sensor is used to turn
a regular LCD screen into a multitouch surface. Additionally,
the surface is also capable of detecting which objects touch it
(be it a pen, an eraser or a finger). Given that the Kinect also
includes a color camera, by extracting the colors of the neigh-
borhood of the touch points, one is capable of recognizing the
corresponding physical artifacts using a variation of Lee and
Yoo’s elliptical boundary model [14].

B. Above-the-surface interaction

By using a Kinect device instead of a regular touchscreen,
we devised a technique so that the user is also able to interact
in the 3D space above the surface. Depth and color cameras
are again combined. Initially, the color image is converted
to grayscale. Once the user touches the surface with his/her
finger or with other physical artifact, the grayscale image is
used in order to take a rectangular template around the area in
which the touch event had ocorred. The background is removed
using depth data. Then, the touching object is tracked using a
weighted template matching technique.

Given a fixed lookup radius r and an empirically deter-
mined factor α ∈ [0, 1], the pair pt of coordinates correspond-
ing to the top-left position of the template in time t will be
given by picking (x, y) that minimizes the function:

costt(x, y) =











α · (1−R(x, y)) + if dt(x, y) ≤ 1
(1− α) · dt(x, y)

∞ otherwise

where dt(x, y) is the normalized Euclidean distance
‖(x, y) − pt−1‖ / r and R(x, y) ∈ [0, 1] is a normalized
matching value computed through fast template matching
routines, using correlation coefficient methods [15]. R(x, y)
increases as the matching between the stored template and the
data at position (x, y) of the current image improves. As the
touching object is tracked in the grayscale image derived from
the color camera, its distance is extracted through the depth
image.

C. Skeleton Tracking and Off-Axis Perspective

This module tracks the user head for the Off-Axis Perspec-
tive Projection. The first step is the calibration. The calibration
is done once by tracking 4 points: the right shoulder and the
right arm directed to the right, up and front. These points are
input for the Singular Value Decomposition (SVD) method to
get the transformation matrix which maps coordinates from
the device to the world coordinates. Ho [16] explains how
to get the rigid body transformation matrix, decomposed into
translation and rotation matrices. The origin of the world
coordinate system coincides with the point representing the
bottom-left corner of the screen.

Off-Axis Perspective projection is responsible for creating
an illusion of depth for the scenario, adjusting its projection
by using the position of the user head. Kooima [17] explains
the process. The portion of the scene projected onto the screen
does not depend on the orientation of optical axis of the user
ocular system [18].

The technique needs 3 points from the surface (the bottom-
left, bottom-right and top-left corners) to calculate the 3 axis
representing the screen orientation. These points, along with
the user eye position, form an assymmetrical pyramid. The
perpendicular projection of the eye to the surface is used
to calculate the parameters needed for the projection matrix.
The pyramidal volume of the projection is assymmetrical, thus
incurring in an oblique projection, whose necessary steps are
described by Majumder [18].

V. RESULTS

Figure 3 shows a prototype of Penspective. The user is able
to draw maps within a grid of fixed size. In order to give the
illusion of depth, the displayed graphics change according to
the viewpoint of the user. We use a blue pen and a green eraser
as the physical tools. Blocks can be drawn with the pen and
removed with the eraser and moved with a bare finger. The
height adjustment operation can also be performed.

The hardware setup features two Microsoft Kinect devices
and a 23” LCD monitor. Our prototype, developed in C++,

SBC - Proceedings of SBGames 2013 Computing Track – Short Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 19



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3: Prototype (a,b) changing the viewpoint, (c) erasing, (d)
drawing, (e,f,g) height adjustment, (h) moving a block.

has been tested using an Dell Vostro 4350 laptop (featuring an
Intel Core i5 2.50 GHz dual-core CPU and running Ubuntu
GNU/Linux 12.10) and an iMac (Intel Core 2 Duo, 2.66 GHz
CPU running Ubuntu 13.04), both connected to a wired local
network. In our setup, the iMac performs the skeleton tracking,
while the laptop is responsible for the other tasks. One of the
Kinect sensors has been placed at about 80cm far from the
LCD screen, pointing to it. The other Kinect tracks the user
and has been placed at about two meters from the person.
The subsystems presented in Section IV exchange data using
Virtual Reality Peripheral Network [19].

VI. CONCLUSION

Envisioning more direct ways of building maps compared
to WIMP-based alternatives, we have presented a form of
interaction that combines simple gestures with the intuitive

idea of drawing on grid paper. Using physical tools such as
pen and eraser, we have designed a 3D natural user interface to
create maps for games. We have also built a working prototype
in order to show the viability of the concept. Preliminary tests
show that the user is capable of moving, drawing, erasing and
adjusting the height of 3D blocks in a map of fixed size. The
rendering is adjusted according to the location of the user,
giving an illusion of depth. Future work includes the design of
more advanced gestures for crafting maps and the conducting
of a more in-depth user study.

REFERENCES

[1] A. S. Perucia, A. C. de Berthêm, G. L. Bertschinger, and R. R. C.
Menezes, “Desenvolvimento de jogos eletrônicos,” São Paulo: Novatec,
2005.

[2] A. van Dam, “Post-WIMP user interfaces,” Communications of the

ACM, vol. 40, no. 2, pp. 63–67, Feb. 1997.

[3] R. J. Jacob, A. Girouard, L. M. Hirshfield, M. S. Horn, O. Shaer, E. T.
Solovey, and J. Zigelbaum, “Reality-based interaction: : a framework
for post-WIMP interfaces,” in Proceeding of the twenty-sixth annual

CHI conference on Human factors in computing systems - CHI ’08,
ACM. New York, New York, USA: ACM Press, 2008, p. 201.

[4] B. Bowman, N. Elmqvist, and T. J. Jankun-Kelly, “Toward Visualization
for Games: Theory, Design Space, and Patterns,” IEEE Transactions on

Visualization and Computer Graphics, vol. 18, no. 11, pp. 1956–1968,
Nov. 2012.

[5] E. S. Martinez, “Games Factory,” 2013. [Online]. Available:
http://www.arrakis.es/∼esanchez/

[6] TileMap, “Mappy.” [Online]. Available: http://www.tilemap.co.uk/
mappy.php

[7] M. Wiering, “TileStudio,” 2012. [Online]. Available: http://tilestudio.
sourceforge.net/

[8] T. r. Lindeijer, “Tiled,” 2013. [Online]. Available: http://www.
mapeditor.org/

[9] Ambierra, “Ambierra irrEdit,” 2013. [Online]. Available: http:
//www.ambiera.com/irredit/

[10] U. Technologies, “Unity3D,” 2013. [Online]. Available: http://www.
unity.com

[11] P. Mistry, K. Sekiya, and A. Bradshaw, “Inktuitive: an intuitive physical
design workspace,” in 4th International Conference on Intelligent

Environments (IE 08). IET, 2008, pp. P11–P11.

[12] J. Lee and H. Ishii, “Beyond: collapsible tools and gestures for
computational design,” in Proceedings of the 28th of the international

conference extended abstracts on Human factors in computing systems

- CHI EA ’10, ACM. New York, New York, USA: ACM Press, 2010,
pp. 3931–3936.

[13] A. D. Wilson, “Using a depth camera as a touch sensor,” in ACM

International Conference on Interactive Tabletops and Surfaces - ITS

’10, ACM. New York, New York, USA: ACM Press, 2010, p. 69.

[14] J.-Y. Lee and S. I. Yoo, “An elliptical boundary model for skin color
detection,” in Proc. of the 2002 International Conference on Imaging

Science, Systems, and Technology. Citeseer, 2002.

[15] A. Kaehler and G. Bradski, Learning OpenCV: Computer Vision with

the OpenCV Library, 1st ed. O’Reilly Media, 2008.

[16] N. Ho, “Finding Optimal Rotation and Translation Between
Corresponding 3D Points,” 2013. [Online]. Available: http:
//nghiaho.com/?page id=671

[17] R. Kooima, “Generalized Perspective Projection,” 2013. [Online]. Avail-
able: http://csc.lsu.edu/∼kooima/articles/genperspective/index.html

[18] A. Majumder, “View-Perspective Projection,” 2011. [Online]. Available:
http://www.ics.uci.edu/∼majumder/CG/classes/wk3-cls1-persp.pdf

[19] R. M. Taylor, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and
A. T. Helser, “VRPN: a device-independent, network-transparent VR
peripheral system,” in Proceedings of the ACM symposium on Virtual

reality software and technology - VRST ’01. New York, New York,
USA: ACM Press, 2001, p. 55.

SBC - Proceedings of SBGames 2013 Computing Track – Short Papers

XII SBGames – São Paulo – SP – Brazil, October 16th - 18th, 2013 20




