SBC - Proceedings of SBGames 2013

Computing Track — Full Papers

Adaptive High-Level Strategy Learning in StarCraft

Jiéverson Maissiat
Faculdade de Informatica
Pontificia Universidade Catdlica
do Rio Grande do Sul (PUCRS)
Email: contact@jieverson.com

Abstract—Reinforcement learning (RL) is a technique to com-
pute an optimal policy in stochastic settings whereby, actions from
an initial policy are simulated (or directly executed) and the value
of a state is updated based on the immediate rewards obtained
as the policy is executed. Existing efforts model opponents in
competitive games as elements of a stochastic environment and
use RL to learn policies against such opponents. In this setting,
the rate of change for state values monotonically decreases over
time, as learning converges. Although this modeling assumes that
the opponent strategy is static over time, such an assumption is
too strong when human opponents are possible. Consequently, in
this paper, we develop a meta-level RL mechanism that detects
when an opponent changes strategy and allows the state-values
to “deconverge” in order to learn how to play against a different
strategy. We validate this approach empirically for high-level
strategy selection in the Starcraft: Brood War game.

I. INTRODUCTION

Reinforcement learning is a technique often used to gener-
ate an optimal (or near-optimal) agent in a stochastic environ-
ment in the absence of knowledge about the reward function
of this environment and the transition function [9]. A number
of algorithms and strategies for reinforcement learning have
been proposed in the literature [15], [7], which have shown to
be effective at learning policies in such environments. Some
of these algorithms have been applied to the problem of
playing computer games from the point of view of a regular
player with promising results [17], [10]. However, traditional
reinforcement learning often assumes that the environment
remains static throughout the learning process so that when
the learning algorithm converges. Under the assumption that
the environment remains static over time, when the algorithm
converges, the optimal policy has been computed, and no
more learning is necessary. Therefore, a key element of RL
algorithms in static environments is a learning-rate parameter
that is expected to decrease monotonically until the learning
converges. However, this assumption is clearly too strong when
part of the environment being modeled includes an opponent
player that can adapt its strategy over time. In this paper,
we apply the concept of meta-level reasoning [4], [19] to
reinforcement learning [14] and allow an agent to react to
changes of strategy by the opponent. Our technique relies on
using another reinforcement learning component to vary the
learning rate as negative rewards are obtained after the policy
converges, allowing our player agent to deal with changes in
the environment induced by changing strategies of competing
players.

This paper is organized as follows: in Section II we review
the main concepts used in required for this paper: the different

Felipe Meneguzzi
Faculdade de Informatica
Pontificia Universidade Catdlica
do Rio Grande do Sul (PUCRS)
Email: felipe.meneguzzi@pucrs.br

kinds of environments (II-A), some concepts of machine
learning (II-B) and reinforcement learning (II-C); in Section IIT
we explain the StarCraft game domain, and in Section IV we
describe our solution. Finally, we demonstrate the effectiveness
of our algorithms through empirical experiments and results in
Section V.

II. BACKGROUND
A. Environments

In the context of multi-agent systems, the environment is
the world in which agents act. The design of an agent-based
system must take into consideration the environment in which
the agents are expected to act, since it determines which Al
techniques are needed for the resulting agents to accomplish
their design goals. Environments are often classified according
to the following attributes [12]: observability, determinism,
dynamicity, discreteness, and the number of agents.

The first way to classify an environment is related to its
observability. An environment can be unobservable, partially
observable, or fully observable. For example, the real world
is partially observable, since each person can only perceive
what is around his or herself, and usually only artificial
environments are fully observable. The second way to classify
an environment, is about its determinism. In general, an
environment can be classified as stochastic or deterministic. In
deterministic environments, an agent that performs an action
a in a state s always result in a transition to the same state s’,
no matter how many times the process is repeated, whereas
in stochastic environments there can be multiple possible
resulting states s’, each of which has a specific transition
probability. The third way to classify an environment is about
its dynamics. Static environments do not change their transition
dynamics over time, while dynamic environments may change
their transition function over time. Moreover an environment
can be classified as continuous or discrete. Discrete envi-
ronments have a countable number of possible states, while
continuous environments have an infinite number of states.
A good example of discrete environment is a chessboard,
while a good example of continuous environment is a real-
world football pitch. Finally, environments are classified by
the number of agents acting concurrently, as either single-
agent or multi-agent. In single-agent environments, the agent
operates by itself in the system (no other agent modifies the
environment concurrently) while in multi-agent environments
agents can act simultaneously, competing or cooperating with
each other. A crossword game is a single-agent environment

Xl SBGames — Sao Paulo — SP — Brazil, October 16th - 18th, 2013 17

SBC - Proceedings of SBGames 2013

whereas a chess game is a multi-agent environment, where two
agents take turns acting in a competitive setting.

B. Machine Learning

An agent is said to be learning if it improves its perfor-
mance after observing the world around it [12]. Common is-
sues in the use of learning in computer games include questions
such as whether to use learning at all, or wether or not insert
improvement directly into the agent code if it is possible to
improve the performance of an agent. Russell and Norvig [12]
state that it is not always possible or desirable, to directly
code improvements into an agent’s behavior for a number of
reasons. First, in most environments, it is difficult to enumerate
all situations an agent may find itself in. Furthermore, in
dynamic environments, it is often impossible to predict all the
changes over time. And finally, the programmer often has no
idea of an algorithmic solution to the problem.

Thus, in order to create computer programs that change
behavior with experience, learning algorithms are employed.
There are three main methods of learning, depending on the
feedback available to the agent. In supervised learning, the
agent approximates a function of input/output from observed
examples. In unsupervised learning, the agent learns patterns
of information without knowledge of the expected classifica-
tion. In reinforcement learning, the agent learns optimal behav-
ior by acting on the environment and observing/experiencing
rewards and punishments for its actions. In this paper, we focus
in reinforcement learning technique.

C. Reinforcement Learning

When an agent carries out an unknown task for the first
time, it does not know exactly whether it is making good or bad
decisions. Over time, the agent makes a mixture of optimal,
near optimal, or completely suboptimal decisions. By making
these decisions and analyzing the results of each action, it can
learn the best actions at each state in the environment, and
eventually discover what the best action for each state is.

Reinforcement learning (RL) is a learning technique for
agents acting in a stochastic, dynamic and partially observable
environments, observing the reached states and the received
rewards at each step [16]. Figure 1 illustrates the basic process
of reinforcement learning, where the agent performs actions,
and learns from their feedback. An RL agent is assumed to se-
lect actions following a mapping of each possible environment
state to an action. This mapping of states to actions is called a
policy, and reinforcement learning algorithms aim to find the
optimal policy for an agent, that is, a policy that ensure long
term optimal rewards for each state.

RL techniques are divided into two types, depending on
whether the agent changes acts on the knowledge gained
during policy execution [12]. In passive RL, the agent simply
executes a policy using the rewards obtained to update the
value (long term reward) of each state, whereas in active RL,
the agent uses the new values to change its policy on every
iteration of the learning algorithm. A passive agent has fixed
policy: at state s, the agent always performs the same action
a. Its mission is to learn how good its policy is — to learn
the utility of it. An active agent has to decide what actions
to take in each state: it uses the information obtained by

Xl SBGames — Sao Paulo — SP — Brazil, October 16th - 18th, 2013

Computing Track — Full Papers

Positive Feedback

Execute an action

Learn
from the Q2 Environment
feedback H TN *
< EL
Negative Feedback
Fig. 1. Model to describe the process of reinforcement learning.

reinforcement learning to improve its policy. By changing its
policy in response to learned values, an RL agent might start
exploring different parts of the environment. Nevertheless, the
initial policy still biases the agent to visit certain parts of the
environment [12], so an agent needs to have a policy to balance
the use of recently acquired knowledge about visited states
with the exploration of unknown states in order to approximate
the optimal values [6].

1) Q-Learning: Depending on the assumptions about the
agent knowledge prior to learning, different algorithms are
used. When the rewards and the transitions are unknown, one
of the most popular reinforcement learning techniques is Q-
learning. This method updates the value of a pair of state and
action — named state-action pair, Q(s, a) — after each action
performed using the immediately reward. When an action a is
taken at a state s, the value of state-action pair, or Q-value, is
updated using the following adjustment function [1].

Q(Sa (1) — Q(Sa CL) + Oé[?" + Vmaxa’GA(s’)Q(S/v a/) - Q(57 Cl)]
Where,

e s represents the current state of the world;
e q represents the action chosen by the agent;

e ((s,a) represents the value obtained the last time
action a was executed at state s. This value is often
called Q-value.

e 1 represents the reward obtained after performing
action a in state s;

e ' represents the state reached after performing action
a in state s;

e a' € A(s') represents a possible action from state s';

o Mmaryca(s)Q(s’,a’) represents the maximum Q-
value that can be obtained from the state s’, inde-
pendently of the action chosen;

e « is the learning-rate, which determines the weight of
new information over what the agent already knows —
a factor of 0 prevents the agent from learning anything
(by keeping the Q-value identical to its previous value)

18

SBC - Proceedings of SBGames 2013

whereas a factor of 1 makes the agent consider all
newly obtained information;

e v is the discount factor, which determines the im-
portance of future rewards — a factor of 0 makes
the agent opportunistic [14] by considering only the
current reward, while a factor of 1 makes the agent
consider future rewards, seeking to increase their long-
term rewards;

Once the Q-values are computed, an agent can extract the
best policy known so far (™) by selecting the actions that
yield the highest expected rewards using the following rule:

7 (s) = arg max Q(s,a)

In dynamic environments, Q-learning does not guarantee
convergence to the optimal policy. This occurs because the
environment is always changing and demanding that the agent
adapts to new transition and reward functions. However, Q-
learning has been proven efficient in stochastic environments
even without convergence [13], [18], [1]. In multi-agent sys-
tems where the learning agent models the behavior of all
other agents as a stochastic environment (an MDP), Q-learning
provides the optimal solution when these other agents — or
players in the case of human agents in computer games — do
not change their policy choice.

2) Exploration Policy: So far, we have considered active
RL agents that simply use the knowledge obtained so far to
compute an optimal policy. However, as we saw before, the
initial policy biases the parts of the state-space through which
an agent eventually explores, possibly leading the learning
algorithm to converge on a policy that is optimal for the states
visited so far, but not optimal overall (a local maximum).
Therefore, active RL algorithms must include some mechanism
to allow an agent to choose different actions from those
computed with incomplete knowledge of the state-space. Such
a mechanism must seek to balance exploration of unknown
states and exploitation of the currently available knowledge,
allowing the agent both to take advantage of actions he knows
are optimal, and exploring new actions [1].

In this paper we use an exploration mechanism known as
e-greedy [11]. This mechanism has a probability € to select a
random action, and a probability 1 — € to select the optimal
action known so far — which has the highest Q-value. In order
to make this selection we define a probability vector over the
action set of the agent for each state, and use this probability
vector to bias the choice of actions towards unexplored states.
In the probability vector © = (z1, 2, ..., Z,), the probability
x; to choose the action i is given by:

_J (=€) +(e/n), if Q of i is the highest
Y= e/n, otherwise

where n is the number of actions in the set.

D. Meta-Level Reasoning

Traditionally, reasoning is modeled as a decision cycle, in
which the agent perceives environmental stimulus and responds
to it with an appropriate action. The result of the actions
performed in the environment (ground-level) is perceived by

XIl SBGames — Sao Paulo — SP — Brazil, October 16th - 18th, 2013

Computing Track — Full Papers

the agent (object-level), which responds with a new action, and
so the cycle continues. This reasoning cycle is illustrated in
Figure 2 [4].

Ground Level Execution
Perception Action Selection
Object Level Reasoning

Fig. 2. Common cycle of perception and actions choice.

Meta-reasoning or meta-level reasoning is the process of
explicitly reasoning about this reasoning cycle. It consists of
both the control, and monitoring of the object-level reasoning,
allowing an agent to adapt the reasoning cycle over time, as
illustrated in Figure 3. This new cycle represents a high level
reflection about its own reasoning cycle.

Ground Level Execution
Perception l T Action Selection
Object Level Reasoning

Monitoring l T Control

Meta-Reasoning

Meta Level

Fig. 3. Adding meta-level reasoning to the common cycle of perception and
choice of actions.

When meta-level reasoning is applied to learning algo-
rithms, this gives rise to a new term: meta-learning [14], [5].
Meta-learning represents the concept of learning to learn, and
the meta-learning level is generally responsible for controlling
the parameters of the learning level. While learning at the
object-level is responsible for accumulating experience about
some task (e.g, take decisions in a game, medical diagnosis,
fraud detection, etc.), learning at the meta-level is responsible
for accumulating experience about learning algorithm itself. If
learning at object-level is not succeeding in improving or main-
taining performance, the meta-level learner takes the responsi-
bility to adapt the object-level, in order to make it succeed. In
other words, meta-learning helps solve important problems in
the application of machine learning algorithms [20], especially
in dynamic environments.

19

SBC - Proceedings of SBGames 2013

III. STARCRAFT

Real-time strategy (RTS) games are computer games in
which multiple players control teams of characters and re-
sources over complex simulated worlds where their actions
occur simultaneously (so there is no turn-taking between
players). Players often compete over limited resources in order
to strengthen their team and win the match. As such RTS
games are an interesting field for the Al, because the state
space is huge, actions are concurrent, and part of the game
state is hidden from each player. Game-play involves both the
ability to manage each unit individually micro-management,
and a high-level strategy for building construction and resource
gathering (macro-management).

StarCraft is an RTS created by Blizzard Entertainment,
Inc.'. In this game, a player chooses between three different
races to play (illustrated in Figure 4), each of which having
different units, buildings and capabilities, and uses these re-
sources to battle other players, as shown in Figure 5. The

Protoss
Episode |V

TEEmET Zerg
Episode VI

Episode V

Fig. 4. StarCraft: Brood War — Race selection screen.

game consists on managing resources and building an army of
different units to compete against the armies built by opposing
players. Units in the game are created from structures, and
there are prerequisites for building other units and structures.
Consequently, one key aspect of the game is the order in which
buildings and units are built, and good players have strategies
to build them so that specific units are available at specific
times for attack and defense moves. These building strategies
are called build orders or BOs. Strong BOs can put a player in a
good position for the rest of the match. BOs usually need to be
improvised from the first contact with the enemy units, since
the actions become more dependent on knowledge obtained
about the units and buildings available to the opponent [8],

[3].

! StarCraft website in Blizzard Entertainment, Inc. http://us.blizzard.com/
pt-br/games/sc/

Xl SBGames — Sao Paulo — SP — Brazil, October 16th - 18th, 2013

Computing Track — Full Papers

Fig. 5.

StarCraft: Brood War — Batttle Scene.

IV. META-LEVEL REINFORCEMENT LEARNING
A. Parameter Control

As we have seen in Section II-C, the parameters used in the
update rule of reinforcement learning influence how the state
values are computed, and ultimately how a policy is generated.
Therefore, the choice of the parameters in reinforcement
learning — such as « and v — can be crucial to success
in learning [14]. Consequently, there are different strategies to
control and adjust these parameters.

When an agent does not know much about the environment,
it needs to explore the environment with a high learning-rate
to be able to quickly learn the actual values of each state.
However, a high learning-rate can either prevent the algorithm
from converging, or lead to inaccuracies in the computed value
of each state (e.g. a local maximum). For this reason, after the
agent learns something about the environment, it should begin
to modulate its learning-rate to ensure that either the state
values converge, or that the agent overcomes local maxima.
Consequently, maintaining a high learning-rate hampers the
convergence of the Q-value, and Q-learning implementations
often use a decreasing function for « as the policy is being
refined. A typical way [14] to vary the a-value, is to start
interactions with a value close to 1, and then decrease it
over time toward 0. However, this approach is not effective
for dynamic environments, since a drastic change in the
environment with a learning-rate close to 0 prevents the agent
from learning the optimal policy in the changed environment.

B. Meta-Level Reasoning on Reinforcement Learning

The objective of meta-level reasoning is to improve the
quality of decision making by explicitly reasoning about the
parameters of the decision-making process and deciding how
to change these parameters in response to the agent’s perfor-
mance. Consequently, an agent needs to obtain information
about its own reasoning process to reason effectively at the
meta-level. In this paper, we consider the following processes
used by our learning agent at each level of reasoning, and
illustrate these levels in Figure 6:

e ground-level refers to the implementation of actions
according to the MDP’s policy;

20

http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/
http://us.blizzard.com/pt-br/games/sc/

SBC - Proceedings of SBGames 2013

e object-level refers to learning the parameters of the
MDP and the policy itself;

e meta-level refers to manipulating the learning param-
eters used in object-level,

Execution

Perception l TActionSeIection

Reasoning

Learning

Monitoring J/ T Control

Meta-Reasoning

Parameter Control

Fig. 6. Modeling the meta-level reasoning in reinforcement learning.

Our approach to meta-level reasoning consists of varying
the learning-rate (known as aw—value) to allow an agent to han-
dle dynamic environments. More concretely, at the meta-level,
we apply RL to learn the a—value used as the learning-rate at
the object-level RL. In other words, we apply reinforcement
learning to control the parameters of reinforcement learning.

The difference between RL applied at the meta-level and
RL applied at the object-level is that, at the object-level, we
learn Q-value for the action-state pair, increasing it when
we have positive feedback and decreasing it when we have
negative feedback. Conversely, at the meta-level, what we
learn in the a-value, by decreasing it when we have positive
feedback and increasing it when we have negative feedback —
that is, making mistakes means we need to learn at a faster rate.
Our approach to meta-level reinforcement learning is shown in
Algorithm 1.

Algorithm 1 Meta-Level Reinforcement Learning
Require: s,a, R
I: o< a—(0.05%R)

: if a < 0 then
a+0

end if

if a > 1 then
a+—1

. end if

B SAN A

8: Q(s,a) + Q(s,a) + (a*xR)

The meta-level reinforcement learning algorithm requires
the same parameters as Q-learning: a state s, an action a
and a reward R. In Line 1 we apply the RL update rule for
the a-value used for the object-level Q-learning algorithm. At
this point, we are learning the learning-rate, and as we saw,

Xl SBGames — Sao Paulo — SP — Brazil, October 16th - 18th, 2013

Computing Track — Full Papers

« decreases with positive rewards. We use a small constant
learning-rate of 0.05 for the meta-level update rule and bound
it between 0 and 1 (Lines 2—7) to ensure it remains a consistent
learning-rate value for Q-learning. Such a small learning-rate
at the meta-level aims to ensure that while we are constantly
updating the object-level learning-rate, we avoid high varia-
tions. Finally, in Line 8 we use the standard update rule for
Q-learning, using the adapted learning-rate. As the algorithm is
nothing but a sequence of mathematical operations, it is really
efficient when it comes to time. Thus, it is able to execute in
few clock cycles and could be utilized in real-time after each
action execution.

Since we are modifying the learning-rate based on the
feedback obtained by the agent, and increasing it when the
agent detects that its knowledge is no longer up to date, we
can also use this value to guide the exploration policy. Thus, we
also modify the e—greedy action selection algorithm. Instead
of keeping the exploitation-rate (e—value) constant, we apply
the same meta-level reasoning to the e—value, increasing the
exploration rate, whenever we find that the agent must increase
its learning-rate — the more the agent wants to learn, the more
it wants to explore; if there is nothing to learn, there is nothing
to explore. To accomplish this, we define the exploitation-rate
as been always equal to the learning-rate:

€=«

V. EXPERIMENTS AND RESULTS

In this section, we detail our implementation of meta-
level reinforcement learning and its integration to the Starcraft
game, followed by our experiments and their results.

A. Interacting with StarCraft

The first challenge in implementing the algorithm is the
integration of our learning algorithm to the proprietary code
from Starcraft, since we cannot directly modify its code and
need external tools to do this. In the case of StarCraft, commu-
nity members developed the BWAPI, which allows us to inject
code into the existing game binaries. The BWAPI (Brood War
Application Programming Interface)® enables the creation and
injection of artificial intelligence code into StarCraft. BWAPI
was initially developed in C++, and later ported to other
languages like Java, C# and Python, and divides StarCraft in
4 basic types of object:

e Game: manages information about the current game
being played, including the position of known units,
location of resources, etc.;

e Player: manages the information available to a player,
such as: available resources, buildings and controllable
units;

e Unit: represents a piece in the game, either mineral,
construction or combat unit;

e Bullet: represents a projectile fired from a ranged unit;

Since the emergence of BWAPI in 2009, StarCraft has
drawn the attention of researchers and an active community

2An API to interact with StarCraft: BroodWar http:/code.google.com/p/
bwapi/

21

http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/
http://code.google.com/p/bwapi/

SBC - Proceedings of SBGames 2013

of bot programming has emerged [2]. For our implementation,
we modified the open source bot BTHAI [8], adding a high-
level strategy learning component to it’. Figure 7 shows a
screenshot of a game where one of the players is controlled
by BTHALI, notice the additional information overlaid on the
game interface.

w Brood War

- =N

MENU

Fig. 7. BTHAI bot playing StarCraft: Brood War.

B. A Reinforcement Learning Approach for StarCraft

Following the approach used by [1], our approach focuses
on learning the best high-level strategy to use against an
opponent. We assume here that the agent will only play as
Terran, and will be able to choose any one of the following
strategies:

e Marine Rush: is a very simple Terran strategy that
relies on quickly creating a specific number of workers
(just enough to maintain the army) and then spending
all the acquired resources on the creation of Marines
(the cheapest Terran battle unit) and making an early
attack with a large amount of units.

o Wraith Harass: is similar, but slightly improved, Ma-
rine rush that consists of adding a mixture of 2—
5 Wraiths (a relatively expensive flying unit) to the
group of Marines. The Wraith’s mission is to attack
the opponent from a safe distance, and when any of
the Wraiths are in danger, use some Marines to protect
it. Unlike the Marine Rush, this strategy requires
strong micromanagement, making it more difficult to
perform.

e Terran Defensive: consists of playing defensively and
waiting for the opponent to attack before counterat-
tacking. Combat units used in this strategy are Marines
and Medics (a support unit that can heal biological
units), usually defended by a rearguard of Siege Tanks.

o Terran Defensive FB: is slightly modified version of
the Terran Defensive strategy, which replaces up to

3The source code can be fount at: https:/github.com/jieverson/BTHAIMOD

Xl SBGames — Sao Paulo — SP — Brazil, October 16th - 18th, 2013

Computing Track — Full Papers

half of the Marines by Firebats — a unit equipped
with flamethrowers that is especially strong against
non-organic units such as aircrafts, tanks and most of
Protoss’ units.

e Terran Push: consists of creating approximately five
Siege Tanks and a large group of Marines, and moving
these units together through the map in stages, stop-
ping at regular intervals to regroup. Given the long
range of the Tank’s weapons, opponents will often not
perceive their approach until their units are under fire,
however, this setup is vulnerable to air counterattack
units.

After each game, the agent observes the end result (victory
or defeat), and uses this feedback to learn the best strategy.
If the game is played again, the learning continues, so we
can choose the strategy with the highest value for the current
situation. If the agent perceives, at any time, that the strategy
ceases to be effective — because of a change in the opponent’s
strategy, map type, race or other factors — the agent is able to
quickly readapt to the new conditions, choosing a new strategy.

C. Experiments with StarCraft

To demonstrate the applicability of our approach we have
designed an experiment whereby a number of games are played
against a single opponent that can play using different Al bot
strategies. We seek to determine if our learning methods can
adapt its policy when the AI bot changes. Each game was
played in a small two-player map (Fading Realm) using the
maximum game speed (since all players were automated). The
game was configured to start another match as soon as the
current one ends. For the experiment, all the Q-values are
initialized to 0, and the learning-rate («v) is initialized to 0.5.
Our experiment consisted of playing the game a total of 138
matches where one of the players is controlled by an imple-
mentation of our meta-learning agent. In the first 55 matches,
the opponent have played a fixed Terrain policy provided by
the game and in subsequent matches, we have changed the
opponent policy to the fixed Protoss policy provided by the
game. It is worth noting that our method used very little
computation time—it runs in real time, using accelerated game
speed (for matches between two bots).

Victories and Defeats

MarineRush
TerranDefensive =
TerranPush |
TerranDefensiveFB ©
WraithHarass & s—

TOTAL

o

20 40 60 80 100 120 140 160

Defeats m Victories Games Played

Fig. 8.
strategy.

Comparison between the number of victories and defeats of each

22

https://github.com/jieverson/BTHAIMOD
https://github.com/jieverson/BTHAIMOD
https://github.com/jieverson/BTHAIMOD
https://github.com/jieverson/BTHAIMOD
https://github.com/jieverson/BTHAIMOD
https://github.com/jieverson/BTHAIMOD
https://github.com/jieverson/BTHAIMOD
https://github.com/jieverson/BTHAIMOD

SBC - Proceedings of SBGames 2013

Win-Rate Comparison

MarineRush

TerranDefensive
TerranPush I
TerranDefensiveFB I —
WraithHarass I
TOTAL I —

0% 20% 40% 60% 80% 100%

® Victories ™ Defeats

Fig. 9.
strategy.

Graphic that presents a comparation between the win rate of each

The results obtained are illustrated in the graph of Figure 8
and Figure 9, which shows that our meta-learning agent
consistently outperforms fixed opponents. Moreover, we can
see that the agent quickly learns the best strategy to win against
a fixed policy opponent when its strategy changes. As it learns,
its learning-rate should tend to decrease towards 0, which
means that the agent has nothing to learn. After the change
in opponent policy (at game execution 55), we expected the
learning-rate to increase, denoting that the agent is starting to
learn again, which was indeed the case, as illustrated by the
graph of Figure 10. The learning rate should remain above 0
until the RL algorithm converges to the optimal policy, and
then start decreasing towards 0. We note that, although the
learning-rate may vary between 0 and 1, it has never gone
beyond 0.7 in the executions we performed.

Learning-rate
0,7
0,6
0,5
0,4
0,3

0,2

0,1

1
O VNS OV T QO O N X
= N Mo n o oV~N~N

0,1

N < O O
< < 0 O O

102
108
114
120
126
132
138

Executions

Fig. 10. Learning-rate variation over time.

Finally, the graphic in Figure 11 illustrates the variation
of the strategies Q-values over each game execution. We can
see that the Wraith Harass strategy was optimal against the
first opponent policy, while the Terrain Push has proven to
be the worst. When the opponent changes its policy, we can
see the Q-value of Wraith Harass decreases, resulting in an
increase in exploration. After the execution 85, we notice that

Xl SBGames — Sao Paulo — SP — Brazil, October 16th - 18th, 2013

Computing Track — Full Papers

the Terrain Defensive FB strategy stood out from the others,
although the basic Terrain Defensive strategy has shown to
yield good results too. Wraith Harass and Marine Rush seem
to lose to the second opponent policy, and Terrain Push shows
remain the worst strategy.

High-level Strategies

QValue

W—U—G—N
1 ISR

Executions

TerranDefensiveFB TerranPush

= \WraithHarass

TerranDefensive MarineRush

Fig. 11. Strategies Q-Value over time.

VI. CONCLUSION

In this paper we have developed a reinforcement learning
mechanism for high-level strategies in RTS games that is able
to cope with the opponent abruptly changing its play style.
To accomplish this, we have applied meta-level reasoning
techniques over the already known RL strategies, so that we
learn how to vary the parameters of reinforcement learning
allowing the algorithm to “de-converge” when necessary. The
aim of our technique is to learn when the agent needs to learn
faster or slower. Although we have obtained promising initial
results, our approach was applied just for high-level strategies,
and the results were collected using only the strategies built
into the BTHAI library for Starcraft control. To our knowledge,
ours is the first approach to mix meta-level reasoning and rein-
forcement learning that applies RL to control the parameters of
RL. The results have shown that this meta-level strategy can be
a good solution to find high-level strategies. The meta-learning
algorithm we developed is not restricted to StarCraft and can
be used in any game in which the choice of different strategies
may result in different outcomes (victory or defeat), based on
the play style of the opponent. In the future, we aim to apply
this approach to low-level strategies, such as learning detailed
build orders or to micro-manage battles. Given our initial
results, we believe that meta-level reinforcement learning is
a useful technique in game AI control that can be used on
other games, at least at a strategic level.

ACKNOWLEDGMENT

The authors would like to thank the members of the BTHAI
and BWAPI groups for making available and documenting the
tools that made this work possible.

23

(1]

(2]

(31

(51

(6]

(71

9]

[10]

SBC - Proceedings of SBGames 2013

REFERENCES
C. Amato and G. Shani. High-level reinforcement learning in strat-
egy games. In Proceedings of the 9th International Conference on

Autonomous Agents and Multiagent Systems, pages 75-82, 2010.

M. Buro and D. Churchill. Real-time strategy game competitions. Al
Magazine, 33(3):106-108, 2012.

D. Churchill and M. Buro. Build order optimization in starcraft.
In Proceedings of the Seventh Annual AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, pages 14-19, 2011.
M. T. Cox and A. Raja. Metareasoning: A manifesto. In Proceedings
of AAAI 2008 Workshop on Metareasoning: Thinking about Thinking,
pages 106-112, 2008.

K. Doya. Metalearning and neuromodulation.
15(4):495-506, 2002.

I. Ghory. Reinforcement learning in board games. Technical Report
CSTR-04-004, University of Bristol, 2004.

T. Graepel, R. Herbrich, and J. Gold. Learning to fight. In Proceed-
ings of the International Conference on Computer Games: Artificial
Intelligence, Design and Education, pages 193-200, 2004.

Neural Networks,

J. Hagelbick. Potential-field based navigation in starcraft. In Proceed-
ings of the 2012 IEEE Conference on Computational Intelligence and
Games (CIG), pages 388-393. IEEE, 2012.

L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A
survey. Arxiv preprint ¢s/9605103, 4:237-285, 1996.

S. Mohan and J. E. Laird. Relational reinforcement learning in infinite
mario. In Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, pages 1953-1954, 2010.

Xl SBGames — Sao Paulo — SP — Brazil, October 16th - 18th, 2013

[11]

[18]

[19]

[20]

Computing Track — Full Papers

E. Rodrigues Gomes and R. Kowalczyk. Dynamic analysis of multia-
gent g-learning with e-greedy exploration. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 369-376.
ACM, 2009.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach,
volume 2. Prentice Hall, 2009.

T. Sandholm and R. Crites. Multiagent reinforcement learning in the
iterated prisoner’s dilemma. Biosystems, 37(1-2):147-166, 1996.

N. Schweighofer and K. Doya. Meta-learning in reinforcement learning.
Neural Networks, 16(1):5-9, 2003.

P. Stone, R. Sutton, and G. Kuhlmann. Reinforcement learning for
robocup soccer keepaway. Adaptive Behavior, 13(3):165-188, 2005.

R. Sutton and A. Barto. Reinforcement learning: An introduction,
volume 1. Cambridge Univ Press, 1998.

M. Taylor. Teaching reinforcement learning with mario: An argument
and case study. In Proceedings of the Second Symposium on Educa-
tional Advances in Artifical Intelligence, pages 1737-1742, 2011.

G. Tesauro and J. O. Kephart. Pricing in agent economies using
multi-agent g-learning. Autonomous Agents and Multi-Agent Systems,
5(3):289-304, 2002.

P. Ulam, J. Jones, and A. K. Goel. Combining model-based meta-
reasoning and reinforcement learning for adapting game-playing agents.
In Proceedings of the Fourth AAAI Conference on Al in Interactive
Digital Environment, 2008.

R. Vilalta, C. G. Giraud-Carrier, P. Brazdil, and C. Soares. Using meta-
learning to support data mining. International Journal of Computer
Science & Applications, 1(1):31-45, 2004.

24

