
Towards a Game Design Patterns Suggestion Tool
The documentation of a computerized textual analysis experiment

Marcos S. O. Almeida, Lucio G. Valentin,
Rogério A. Gonçalves

Computer Science Coordination
Federal University of Technology – Paraná (UTFPR)

Campo Mourão, PR, Brazil
{marcossilvano, lgvalentin, rogerioag}@utfpr.edu.br

Flávio S. C. da Silva

Computer Science Department
University of São Paulo (USP)

São Paulo, SP, Brazil
fcs@ime.usp.br

Abstract—Throughout the last decade, designers and
researchers have made attempts to bring improvements to the
game design process through proposals of tools and methods.
Some studies have focused on the analysis of design elements of
popular games in order to understand the factors that may have
contributed to their commercial and critical success. Among
them, the Game Design Patterns project has been discussed in a
number of publications. However, the identification of the
patterns of a game is a long term process that must be entirely
done by designers. No attempts of using computer tools to aid
this process were documented. In this context, this paper presents
an experimentation of use of textual analysis techniques to
suggest patterns that may be contained in games. The results
show that, while not mature enough to be used in real world
scenarios, its achievements were positive and have room for
improvements.

Keywords—game design; game design patterns; similarity
analysis applied

I. INTRODUCTION

The primary task of game designers can be synthesized as
the creation of successful games, whether commercial or
critical. Throughout the last decade, designers and researchers
have made an attempt to bring improvements to the game
design area by proposing new tools and methods. Their
objective is to help designers to create better games. Most of
such efforts are summarized in the work of [1]. Some of these
attempts have focused on recognizing the recurring
characteristics of the design of existing games in order to build
a structured collection of reusable design concepts. In such
works, there is a belief that the analysis of the parts of
successful games may help in the creation of new ones, by
reusing them. Among these works, the Game Design Patterns
(GDP) approach [2] seeks to extract and document recurring
patterns of game design in order to provide a framework for
analysis and design of games.

The identification of which patterns are used in a game is a
long term process that must be entirely done by designers.
Currently there are almost four hundred patterns documented in
the project wiki1 but more may be added. What if designers

1 http://gdp2.tii.se/index.php/Main_Page (visited on 2013/06/24)

would have to read thousands of patterns before deciding
which ones could benefit their project? To facilitate this
process, designers could do opposite: take a known game they
judge to have interesting features for their project and then,
from the collection of patterns for this game, select the desired
ones. But to achieve this, we would need a way to suggest
which patterns were contained in the game chosen by the
designer. No attempts of using computer tools to aid this
process were documented. On the other hand, computer textual
analysis techniques are frequently used to check the similarity
between contents. They are often applied in content suggestion
for users in web based services for movies, music and games
rental and acquisition. In this context, would be feasible to use
these techniques to help designers to identify the patterns used
in a game? We believe that is possible to analyze a game
description and match it with the patterns in order to discover
which ones are used. Throughout this text, we will present an
experiment towards this effort.

In this paper we present the initial experiments with
computerized textual analysis techniques towards a game
design patterns suggestion system. Firstly we present a brief
conceptual background of the research field. Next, we describe
the textual analysis method implemented and a description of
the tool tailored for the experiment. Finally, we discuss the
preliminary results obtained.

II. CONCEPTUAL BACKGROUND

Since the early years of game designing, the Game Design
Document (GDD) has been widely adopted as the mainstream
tool in the industry [3]. However, some authors have pointed a
considerable lack of formalization and standardization in the
document [1]. They agree that, despite the visible success of
the industry, the lack of game design tools hinders the
progression of the design process as currently known.

In 1994, Costikyan [4] started a discussion about the need
for greater formalism on game design. He suggested the build
of a common design vocabulary as a framework that could
allow designers to analyze and describe games. According to
him, designers should have a way to dissect games, to
understand the elements that compose them and to identify
those elements that benefit or harm them. His speech has been
echoed by many authors that have followed the same research

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

73

field: the constitution of a framework for the analysis and
design of games through a collection of reusable design
concepts. Among then, the Game Design Patterns (GDP)
project [5], seeks to extract recurring design concepts and to
structure them as design patterns, much like in software
engineering [6]. The project has achieved a collection of almost
four hundred patterns, currently documented in the project
wiki, becoming the most active work in its field of research.

A. Related Work

The game design patterns approach has been subject of
analysis and discussion in a number of publications by many
authors, which are related in the GDP project wiki. Some of
these works have applied the GDP framework to analyze and
compare existing games and design concepts.

Loh and Soon [7] applied the GDP framework to analyze
and compare the fundamental concepts presented in some
board and computer games through the patterns they present.
The patterns were identified in the selected games by a reverse
engineering approach, in which analysts did observations and
experiments over the games. Although a common practice for
analyzing games, the resulting set of patterns from the reverse
engineering may vary if the analysis is performed by distinct
designers, which directly relates to the different interpretations
of each designer.

To help addressing this bias, Tolmie, DiPaola and Charles
[8] proposed to represent the set of patterns of a game as a
graph structure, which graphically highlights the inter-relations
between patterns and allow a better overview of a game’s
patterns, thus facilitating its comprehension. As a result of their
work, they have built a software application for interactive
visualization of the GDP graph structure which is generated
from a previously selected set of patterns. The application does
not automatically identify the patterns from the game
description: this must be done by the designers.

Samarnggoon [9] tried to diminish the bias resulting from
identification of a game’s patterns by using graph mining
techniques. As an experiment, he used the board game
Monopoly as a study case and asked ten designers to create a
GDP graph for the game through manual reverse engineering.
Then, he took the ten different graph versions and, using graph
mining techniques, he converged then into one single version
that would represent a consensus between the different visions
of the designers.

In the context of those two works, we intent to provide an
input to the graph structure that represents GDP map of a
game. More specifically, we want to aid the designers in the
identification of which patterns are used in a game, a process
currently done manually, by providing a suggestion tool based
on textual similarity analysis. Fig. 1 illustrates this process.

Fig. 1. Pure manual identification of patterns (on the left) and computer
aided suggestion (on the right).

B. Similarity Analysis and Content Suggestion

Computer science’s data mining is the area concerned with
information processing and retrieval techniques. Formally
known as “knowledge discovering”, it comprises various
research fields, including similarity analysis and
recommendation systems [10]. Those two are specifically
important to this paper experiment: the similarity analysis can
show how close two documents are and a recommendation
system may use it to suggest contents to a user.

Virtually all of today major web sites that rent, sell or
advertise any kind of products and services to end users
employ some content suggestion, which is done by
recommendation systems. According to [10], the main
applications of recommendation systems are product
suggestions at on-line retailers, movie recommendations and
news articles. The key idea behind the technique is to discover
the user’s preferences and, based on this, which content
recommend to him. Blogs and other regular content providers,
like YouTube, employ recommendation systems. Netflix has
been using computer aided suggestion for a long time. It
suggests movies and TV shows to the user based on the type of
content he usually watches. Amazon does the same when
recommending products to costumers.

The techniques that a recommendation system employs
may vary according to the type of data to be analyzed.
Rajaraman, Leskovec and Ullman [10] classify two types of
recommendation systems: content-based systems and
collaborative filtering. The first type examines document
contents in order to discover which of them seems to be more
related. For instance, a book store system may analyze the
summary of a reader’s books and, using content similarity
analysis, match it with thousands of other book’s summaries in
order to suggest the most similar. On the other hand,
collaborative filtering is based on the user opinion: a movie
retail web system may recommend movies to a costumer by
matching his ratings of the movies he already watched with the
ratings of others users in order to find similar costumers to him,
and then, which movies they have already watched that he
didn’t.

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

74

As for the present work, the content-based recommendation
systems, which employ similarity analysis techniques, are very
usefully to the suggestion of the most related GDP of a game
based on the analysis of their content. The patterns wiki
contains the full descriptions of the patterns and we can obtain
the game descriptions from many sources from the web. The
explanation of the techniques and the process employed are
described in the following section.

III. THE EXPERIMENT

The experiment consisted of selecting a game, obtaining its
description and matching it with all the GDP descriptions in
order to find the patterns which have the most similar content,
thus suggesting them to the user. To achieve this, a software
application was built in order to automate the entire process.

A. Methods and Tools

A software application (Fig. 2) to execute the experiment
was built using the Java platform and Apache Lucene [11], a
library for text processing. The software was a key element in
the experiment once it provides functionalities that allowed us
to agilely extract and check the necessary data. By using the
app, we were able to get the patterns suggestion for the game
by inserting the game’s name in the search field. As can be
seen in Fig. 2, we could also configure the parameters of the
similarity analysis process. Those parameters are: the number
of terms of each document that will be used in the similarity
matrix, the number of reviews for the selected game that will
be processed during analysis and the size of the patterns list to
be shown in the result box.

Beyond helping us to collect the necessary data and
executing the similarity algorithms, the tool allowed us to
reduce the load of checking the correspondence between each
suggested pattern and the game by providing the pattern
description (this process is described in a later section).
Another feature implemented in the software is the ability to
plot a relationship map of a game design pattern for quickly
visualization (Fig. 3). By looking into the map we can check
the suggested patterns and the patterns to which these relate.
While not specifically valuable to the experiment of this paper,
it will serve in future works.

Fig. 2. Screenshot of the suggestion tool built with Java.

Fig. 3. Relationship map of a game design pattern. The related patterns are
positioned around the selected pattern, which is at the center.

The software application downloads all the necessary data
for the experiment from specific websites. The patterns
descriptions are obtained from the GDP project wiki. The
textual data is then cleaned (removes formatting) in order to
extract only the desired information to the experiment, which
are the patterns description. For the game description, there
were two options as source of data: game manuals or game
reviews. Game reviews were considered more appropriated to
this experiment as they contain game design analysis, whereas
game manuals are more concerned in teaching the user on how
to play the game. Thus, the website GameFaqs2 was used as the
source of game reviews as it has many reviews for each game.

The entire process performed by the software application to
recommend patterns can be summarized in the following steps
(see Fig. 4):

1. When first used, the application will download, extract
and clean the descriptions of all the patterns from the
GDP project wiki. (The information regarding the
patterns are indexed with Lucene and stored locally for
better performance).

2. The user enters a game name;

3. The software obtains and cleans the game reviews
from GameFaqs website;

4. The data is indexed with the Lucene library and stored
in a proper data structure.

5. The game description data is compared with the
description data of each pattern using a similarity
algorithm, which indicates how close the two textual
contents are.

6. At the end, the suggestions of GDPs for the game are
listed in a descending order of similarity.

The data structure, the indexing process as well as the
methods for similarity analysis are described in the next
subsections.

2 http://www.gamefaqs.com/ (visited on 2013/06/24)

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

75

Fig. 4. Operation method of the suggestion tool.

B. Similarity analysis method employed

There are some techniques that can be used to denote how
similar two documents are. In our case, we want the algorithm
to tell us how similar a game description and a pattern
description are. After discovering the similarity between each
pattern and the game description, we can sort the resulting list
in a descending order of similarity: from the most to the least
similar.

The first step of the similarity algorithm between two
documents employed consists of extracting all the terms (words
or other strings of characters other than white space [10]) from
the document content. This is done with the Apache Lucene
library, which removes the stop words and stems the resulting
terms.
 According to [10], stop words are the least important terms
in the processing of natural language, once they help to build
ideas but do not carry any significance by themselves.
Examples of stop words are articles and pronouns. In the
experiment, we used the same stop words dictionary from
MySQL [12], Onix [13] and Ranks [14] systems.

After removing stop words from the text, the Lucene stems
the remaining terms. The stemming is the process of reducing
inflected words to their root form [10]. As an example, the
words “stemmer”, “stemming” and “stemmed” are reduced to
the root form “stem”.

After the processing is completed by Lucene, the (root)
terms of a document are stored into an associated one
dimensional matrix, which is used to store the terms frequency
within the document: the number of times the term appears in
the document. Each document has its own frequency matrix.
The matrix length is equal to the total number of terms of all
documents. Each position in the matrix corresponds to a term
frequency inside the document (replaced later in this
experiment by the TF.IDF score [10] for better results, as
discussed bellow).

When the frequency matrices of the two documents – game
review and pattern description – are done, the cosine similarity

[10] between them can be calculated. Singhal [15] states that
the cosine similarity technique gives a useful measure of how
similar two documents are likely to be in terms of their subject
matter. This is especially useful for the experiment described in
this paper. We are interested in finding documents with similar
meaning and not character-level similarity, which wouldn’t say
much about how close are a pattern and a game. With this
objective in mind, we later combined another technique
suggested by [10] that is taken as useful for measuring the
similarity of meaning between documents: the TF.IDF score.

After the first run of experiments, we soon noticed that the
pattern suggestions tool was overvaluing common terms like
“game” or “player” in the frequency matrix, as they really were
the most common terms in the analyzed documents. However,
the importance of these terms was very low to our analysis.
Thus, we had to consider the importance of each word within a
document to discover its most meaningful terms. For this, we
replaced the frequency matrix by a matrix of TF.IDF scores of
the terms. The TF.IDF (Term Frequency times Inverse
Document Frequency) gives a score based on the importance of
a word in a document [10], which gave us better results in the
experiment (as demonstrated in the next section). The TF.IDF
obtainment process is explained hereafter.

C. The TF.IDF Score

According to [10], the TF.IDF score can be used to find the
terms that best describe the document they belong to. To obtain
the score of the importance of a term i in a document j, we use
the equation (1).

 score(i, j) = TFij x IDFi (1)

The TFij in (1) represents the Term Frequency of the term i
in the document j. The IDFi in (1) represents the Inverse
Document Frequency of the term i over the entire collection of
documents under analysis. They are calculated by the equations
(2) and (3), respectively.

 TFij = fij / Ntermsj (2)

The equation (2) shows us how the term frequency is
calculated. In (2), the frequency of the term i in the document j
(fij), which is the number of times the term occurs in the
document, is normalized by the total number of terms of the
document (Ntermsj). If a term count is equal to the total
number of terms in the document, then the TF for this term will
be 1. Otherwise, the TF will have a value between 0 and 1.The
more the term appears in a document, the higher will be its TF
value.

 IDFi =log2(Ndocs/Ni) (3)

In equation (3) we have the obtaining of the inverse
document frequency (IDF), which gives us the presence of the
term i in the entire collection of documents. Ni represents the
number of documents in which the term i appears and Ndocs,
the total number of documents in the collection.

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

76

D. Running the Experiment

The results of the experiment discussed in this paper
represent a work in progress. The software tool built is not
complete and mature enough to be used in real world scenarios,
but the achievements done so far are very positive and
encouraging. We chose to show the gradual results of the
experiment instead of only the final (and better) results as a
way to report the complete process and justify the decisions
made.

The games chosen to be tested were classic games from the
third generation of videogame consoles. A total of three games
were used to run the experiment: Super Mario Bros. [16], Ninja
Gaiden [17] and Tetris [18]. Two of these games were select
because they were the best selling games of their platforms
[19] [20]: Super Mario Bros. for the NES [21] and Tetris for
the Game Boy [22]. The third game, Ninja Gaiden, also for the
NES platform, was chosen by a personal preference of the
authors.

The experiments were done comprising various trials
towards better suggestions of patterns (the results are shown in
the next section). By better suggestions we understand having
more patterns related to a game in the list showed by the
software tool. Instead of using just one game review, we
progressively tested the patterns suggestions against all the
available reviews for each game. In all the tests, we
experimented the two similarity algorithms previously pointed,
cosine similarity with frequency matrix and cosine similarity
with TF.IDF score matrix. The former was the first
implemented in the software and the later, as a measure to
improve the suggestion mechanism.

1 2 3 4 5
0
2
4
6
8

10
12
14
16
18

Cosine with Frequency Matrix Cosine with TF.IDF Matrix

Game reviews

C
or

re
ct

 p
at

te
rn

s

Fig. 5. Progression of the correct suggestions of patterns over the number of
reviews for the game Tetris (Game Boy).

1 2 3 4 5 6 7 8 9 10
0
2
4
6
8

10
12
14
16
18
20

Cosine with Frequency Matrix Cosine with TF.IDF Matrix

Game reviews

C
or

re
ct

 p
at

te
rn

s

Fig. 6. Progression of the correct suggestions of patterns over the number of
reviews for the game Ninja Gaiden (NES).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

5

10

15

20

25

Cosine with Frequency Matrix Cosine with TF.IDF Matrix

Game reviews

C
or

re
ct

 p
at

te
rn

s

Fig. 7. Progression of the correct suggestions of patterns over the number of
reviews for the game Super Mario Bros (NES).

E. Results and discussions

The results for the experiments are synthesized in the
graphs shown in the Fig. 5, 6 and 7. We ran the software tool
for each one of the chosen games and collected the list of
patterns suggested. We then checked each of the patterns to see
which were accepted for the games, which means that, we
manually verified if the suggested patterns were really
contained in the games. This was comprised of a manual task
of reading each one of the patterns description and verifying its
acceptance to the game’s concepts. Then, we counted how
many accepted patterns the tool suggested and used this as a
measure of evaluation for the experiment. It is important note
that, as a recommendation system, the tool doesn’t “know”
when a pattern is accepted or not, it simply recommend it in
order of similarity to the game description, in terms of their
subject matter.

Fig. 5, 6 and 7 show the graphs that contain the tests results
for the three games selected for the experiment. As can be
observed in the graphs, using the cosine similarity mixed with
the TF.IDF score matrix gave notably better results. These
results help to corroborate with the suspicion that, when
combined, the cosine similarity and the TF.IDF score form a
useful tool to measure the similarity between two documents in
terms of their subject matter.

The analysis of different games with an unequal number of
reviews helped us to note another fact: as can be seen in the
three presented graphs, the number of reviews has strongly
influenced the results. More than that, it was directly related to
the number of accepted suggestions of patterns. In most cases,
the more game reviews we used in the analysis process, the
more patterns were appropriately suggested by the tool.

The suggestion lists obtained for the three games are shown
in the Tables I, II and III. The accepted patterns in each table
are presented in bold. In these tables, we limited the resulting
list of suggested patterns to the first thirty positions (from a
total of four hundred). Above this, we couldn’t find any
accepted patterns in the list, although we don’t believe that
“thirty” is a rule for all games, which will be subject of study
on future experiments. While the perfect result would be
having all the correct patterns grouped in the beginning of the
list, and not scattered in the first thirty positions, the current
result is very positive, if we consider that the suggested

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

77

patterns were all positioned between the first thirty positions of
a four hundred list. This suggests that, although not perfect, the
employed technique is going towards the desired results.

TABLE I. LIST OF SUGGESTED PATTERNS FOR TETRIS

Nº. Pattern Nº. Pattern

1 Line of Sight 16 Crossmedia Gameplay

2 High Score Lists 17 Meta Games

3 Puzzle Solving 18 Difficulty Levels

4 Challenging Gameplay 19 Levels

5 Time Limits 20 Zero-Player Games

6 Casual Gameplay 21 Time Limited Game Instances

7 Geometric Progression 22 AI Players

8 Development Time 23 Obstacles

9 Free Game Element Manipulation 24 Speed Runs

10 Game Worlds 25 Score Tracks

11 Non-Player Help 26 Back-to-Back Game Sessions

12 Single-Player Games 27 Gameplay Statistics

13 Split-Screen Views 28 Ghosts

14 Extra-Game Consequences 29 Dice

15 Tiles 30 Diegetically Tangible Game Items

TABLE II. LIST OF SUGGESTED PATTERNS FOR NINJA GAIDEN

Nº. Pattern Nº. Pattern

1 Back-to-Back Game Sessions 16 Cutscenes

2 Levels 17 Feigned Die Rolls

3 Backtracking Levels 18 Drop-In Drop-Out

4 Challenging Gameplay 19 Avatars

5 Crossmedia Gameplay 20 Loot

6 Difficulty Levels 21 Trick Taking

7 Quick Returns 22 God Fingers

8 Death Consequences 23 Combat

9 Lives 24 Traverse

10 Enemies 25 Exaggerated Perception of
Influence

11 Invisible Walls 26 Game Worlds

12 Weapons 27 Freedom of Choice

13 Boss Monsters 28 Non-Player Help

14 Split-Screen Views 29 Damage

15 Dynamic Difficulty Adjustment 30 Illusion of Open Space

TABLE III. LIST OF SUGGESTED PATTERNS FOR SUPER MARIO BROS.

Nº. Pattern Nº. Pattern

1 Levels 16 Parallel Lives

2 Warp Zones 17 Enemies

3 Power-Ups 18 Thematic Consistency

4 Crossmedia Gameplay 19 Lives

5 Boss Monsters 20 Difficulty Levels

6 Friendly Fire 21 Diegetic Consistency

7 Back-to-Back Game Sessions 22 Avatars

8 Dice 23 High Score Lists

9 Speed Runs 24 Multiplayer Games

10 Challenging Gameplay 25 Rescue

11 Temporary Abilities 26 Big Dumb Objects

12 Quick Travel 27 Movement

13 Privileged Movement 28 Diegetically Tangible Game Items

14 Ghosts 29 Backtracking Levels

15 Traverse 30 Obstacles

IV. FINAL THOUGHTS AND FUTURE WORK

Recommendation systems have been used successfully in
on-line services for consumer’s content suggestion, like
retailers, movie services and news articles. Even outside this
scope, these systems can be applied to measure the similarity
between groups of textual contents, thus recommending the
contents with higher similarity. This is particularly valuable to
the question that driven this work: would be feasible to use
these techniques to help designers to identify the patterns used
in a game? The results of the experiment described in this
paper shows that it is possible, but improvements in the
algorithm used may lead to a better outcome.

The similarity method employed in the software tool
specifically built for the experiment presented throughout this
paper, has showed encouraging results. It helped us to confirm
that both the cosine similarity and the TF.IDF score are really
useful methods to analyze the similarity between two
documents in terms of their subject matter. The cosine
similarity method alone was able to achieve some results, but
the mixing with the TF.IDF score matrix gave a notably better
outcome. While it didn’t have achieved the most reliable
results, all the appropriately suggested patterns were grouped,
with some scattering, at the first positions of the list, which
brings a promising initial result.

Another important fact that deserves to be noted is that the
reviews used in the similarity analysis during the experiment
were mostly written by end users. Although some of them
cover important aspects of the game being reviewed, they may
lack some more technical language, like the one usually
employed by professional game designers or even the
specialized media writers. Clearly, the problem is where to find
a good source of game reviews with technical quality.

During the evaluation phase of the experiment, when we
had to confront each of the suggested patterns with the game
by reading the patterns definition, we noticed that some
patterns that should have been suggested for the game had
relations with the suggested ones. We observed this fact when
visualizing the patterns relations through the relationship maps
generated by the software tool. In this sense, it’s possible that
patterns that have some relations may translate them into the
games that use these patterns, but this was clearly a suspicion
and not an observed fact. However, this would be a probable
subject of study and experimentation in the next step of the
present work.

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

78

As future work, we intent to implement other similarity
algorithms in order to compare the results with the ones
presented in this paper. Rajaraman, Leskovec and Ullman [10]
as well as Singhal [15] present other techniques that may be
triable.

Another possibility of a further study is the employment of
collaborative filtering techniques in an attempt to enhance the
suggestion algorithm. We can create a collaborative tool where
designers and users may choose the most probably correct
patterns for a specific set of games and, based on the similarity
of these games with the ones under analysis, we may suggest
the patterns. An experiment of this kind may allow us to
combine collaborative filtering with automatic content analysis
in order to get more adequate suggestions of game design
patterns.

With more solid results, we may have the tool available to
public usage and experimentation, allowing a broader
collecting and processing of usage data, thus improving the
recommendation process via the combined techniques of
content similarity and collaborative filtering. When we reach
this mark, we will have a fully functional tool that may provide
an easy way for big studio designers, independent developers
and game specialists to analyze and create games using the
game design patterns framework.

REFERENCES
[1] Neil, K. Game Design Tools: time to evaluate. Proceedings of

DiGRA Nordic 2012.

[2] S. Björk, S. Lundgren, and J. Holopainen. Game Design Patterns. In
DIGRA Conf., 2003.

[3] Kreimeier, B. Game Design Methods: a 2003 survey. Gamasutra,
March 2003. http://www.gamasutra.com/view/feature/2892/
game_design_methods_a_2003_survey.php.

[4] Costikyan, G. I have no words & I must design. Interactive Fantasy,
Eng., n2, 1994.

[5] S. Björk and J. Holopainen. Patterns in Game Design (Game
Development Series). Charles River Media, December 2004.

[6] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns:
elements of reusable Object-Oriented Software. Addison-Wesley,
(1994).

[7] Loh, S. and Soon, S. H. Comparing computer and traditional games
using game design patterns. In Proceedings of the 2006 international
conference on Game research and development, CyberGames '06, pages
237{241, Murdoch University, Australia, Australia, 2006. Murdoch
University.

[8] Tolmie, J.; DiPaola, S.; Charles, A. Towards an interactive visualization
of game design patterns. In DIGRA Conf., 2005.

[9] Samarnggoon, K. An analysis of game design using graph-based
substructure mining technique. In Computer Research and Development
(ICCRD), 2011 3rd International Conference on, volume 1, pages 368
{372, march 2011.

[10] A. Rajaraman, J. Leskovec and J. D. Ullman. Mining of Massive
Datasets. 2013, http://infolab.stanford.edu/~ullman/mmds.html.

[11] Lucene. The lucene search engine. http://lucene.apache.org/, 2012.

[12] MySQL: Open Source Database Management System.
http://www.mysql.com/.

[13] Onix, Onix Text Retrieval Toolkit, http://www.lextek.com/onix/.

[14] Ranks, Ranks Web Page Analyzer Tool, http://www.ranks.nl.

[15] A. Singhal, Modern Information Retrieval: A Brief Overview. Bulletin
of the IEEE Computer Society Technical Committee on Data
Engineering 24 (4): 35–43. 2001.

[16] Nitendo, Super Mario Bros. Nintendo Enterteinment System: NES
[Cartridge], Japan: Nintendo Co. Ltd, 1985.

[17] Tecmo, Ninja Gaiden. Nintendo Enterteinment System: NES
[Cartridge], Japan: Tecmo Co. Ltd, 1988.

[18] Bullet Proof, Tetris. Nintendo Enterteinment System: NES [Cartridge],
Japan: Bullet Proof Software, 1989.

[19] List of best selling videogames, Wikipedia,
http://en.wikipedia.org/wiki/List_of_best-selling_video_games

[20] Global sales per game. Videogame Chartz,
http://www.vgchartz.com/gamedb/.

[21] Nintendo, NES: Nintendo Entertainment System (videogame console).
Japan: Nintendo Co. Ltd., 1983.

[22] Nintendo, Game Boy (videogame console). Japan: Nintendo Co. Ltd.,
1989.

SBC – Proceedings of SBGames 2013 Art & Design Track – Full Papers

79

