
LuaGame: A framework for developing games in Lua for the Digital TV

Diego Barboza Débora Muchaluat-Saade* Esteban Clua

*Laboratório MídiaCom

Instituto de Computação, Universidade Federal Fluminense, Brasil

Abstract

Digital Television is a growing platform for software

development. Interactive applications are an important

part of this platform that aims at higher image and

sound quality, as well as a communication channel

with the viewer. Digital games are an engrossing

media that is making its way into various devices, such

as mobile phones, the Internet and Digital TV systems.

However, game development may be a high

demanding and complex area and, without the proper

tools, the development for limited resource platforms

as set-top boxes could be a harsh task. Therefore, this

paper presents a framework that facilitates this process,

allowing developers to use its base structure and focus

on the creation of game specific content in a

component-based development model. We propose a

framework called LuaGame, present its architecture

and show its usage in a practical example.

Keywords: Ginga, Lua, Digital TV, frameworks,

games

Authors’ contact:
{dbarboza, esteban}@ic.uff.br

*debora@midiacom.uff.br

1. Introduction

A framework can be defined as a set of classes that

presents an abstract design for solutions of a family of

related problems and supports reuse [Johnson and

Foote 1988]. Those classes should be flexible and

allow extensions, requiring low effort on the

development of applications, where it should be

necessary to focus only on their particularities.

 In the game development context, game engines are

employed as auxiliary tools, combining frameworks

with higher level tools, such as visual editors and

integration tools.

 Interactivity is one of the guidelines for the

Brazilian Digital Terrestrial Television System

(SBTVD-T) [Brasil 2006] and it should be used to

provide different kinds of applications, such as

electronic guides, shopping channels, bank and

educational services, among others [Barbosa and

Soares 2008]. Digital games are an interactive

application type that could help Digital TV become

popular in the country, since the national industry is in

an expansion and growing moment [Ferreira and Souza

2009].

 In this work, we propose a novel game

development framework architecture for Digital TV

using Lua [Sant'Anna et al. 2008] as the programming

language. The purpose of this framework is to model

common behavior of various games and provide tools

that allow the development without coding ordinary

tasks, such as resource management, control loop and

user input treatment. This way, we provide a basic

application structure that the developer can use and

focus only on filling its empty spaces, which are

specific components and behavior for his game.

 This paper is organized as follows: Section 2

discusses some related work and Section 3 presents

some concepts about game development tools. Section

4 describes the proposed framework architecture and

Section 5 briefly presents a sample application built

with the LuaGame framework. Section 6 presents the

conclusion and suggestions for future work.

2. Related Work

ATHUS [Segundo et al. 2010] is a framework proposal

that uses Lua adding a layer between applications and

the digital TV middleware. This framework has some

basic functionality, such as drawing images to the

screen, controlling application speed, checking for

collision and creating menus.

 TuGa [Ferreira and Souza 2009] presents a two-

layer middleware in Java, to be used together with

Ginga-J, considering its reference implementation

[ABNT/CEET 2007]. The layers separate the code for

hardware abstraction and the code that provides game

functionalities. This is an interesting proposal, because

it makes it easier to port the tool to other platforms and

reuse most of its code, at the same time that games

developed using the framework should not need any

modification to run on different platforms.

 The present work is an extension of GingaGame

[Barboza and Clua 2009], a framework developed in

Java using the reference implementation

[ABNT/CEET 2007]. The framework’s proposal is to

provide an application model that controls the game’s

update and drawing functions, manages its resources,

controls objects’ lifecycle, manages scenes and handles

user input. We separate the framework code from

platform specific code, aiming at easier portability, and

providing components for game developing. Also, we

aim at software reuse, so we provide framework

classes that could be extended for defining reusable

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 49

components that could be used by other applications

with minimum effort. In this work, we refine

GingaGame’s architecture. This architecture was

revised and ported to work with Lua, so it could be

executed as NCL nodes [ABNT 2007] and work with

middleware Ginga.

3. Game framework architectures

There are various levels of game development tools.

They range from lower abstraction levels, where

different graphics APIs and libraries (for managing

user input, physics, scene graph, etc) are combined

providing a more flexible, yet complex, environment,

to higher levels with drag-and-drop graphical

interfaces that allows the making of a game in a visual

manner, with minimal or even no programming

requirement.

 Game development tools typically provide a basic

set of functionalities necessary for building games, and

may include additional elements targeting at any

specific stage of this process.

 These functionalities include: Control loop

(defines the application’s life-cycle); Scene graph

(used for organizing a game scene); Render

(component responsible for communicating with the

graphics hardware); Input (provides an interface with

input devices); Content management (handles

external content loaded into the game); Physics

(updates the interaction between dynamic objects in a

scene and handles collisions, friction, torque and other

physics effects); Scripting (some tools employ scripts

for game specific code, separating it from the native

tool code); Multimedia support (controls music,

sound effects and video playback); Network (provides

an interface for connection and message exchange in

multiplayer games over a network); Artificial

intelligence (components used for defining the

behavior of some game objects using an AI technique);

Editor (graphical editors are provided by some high

level tools to edit scenes, bind relations between

objects, position actors and so on).

 There is a relation between the degree of freedom

provided by a game development tool and its

construction, maintenance and usage. Low level tools

offer more customization but are more complex and

demand more development time. High level tools,

otherwise, allow the user to create games with less

programming, although those tools are usually more

restrict on the kind of games they support. A complete

toolset is of great importance on the game development

process, providing tools and APIs that programmers

should use for coding the game’s logic, editor tools for

level designers, animation tools for animators and so

on.

4. Lua Game framework

This work describes a framework for game

development that encapsulates common tasks and

provides an application model that the developer may

use to add components and define the desired behavior

for its game. This framework is called LuaGame and it

can be used for developing games for digital TV

systems based on the Ginga middleware, such as the

Brazilian Digital TV System [ABNT 2007] and IPTV

systems [ITU-T 2011].

 The framework’s architecture was developed to

provide software reuse. Its components may be

employed in different contexts and can be extended for

creating new components. Figure 1 presents an

overview of the framework’s architecture and each

component is described right below. This is the current

state of the framework, but more components should

be added in the future.

Figure 1: Architecture of the LuaGame framework

 Application: this component manages the whole

game. This class handles the game loop, stores and

defines which scenes will be displayed at a time,

and receives input events and propagates to the

remaining components. Also, it controls the game

speed and provides time interval between frames

to the components, so the behavior of the

components should be time independent;

 Component: provides a common base interface

for building game components. Components that

inherits from this class may specify input, update

and draw functions that are automatically called

by the framework;

 GameObject: a game object is a container used

for grouping various components together in a

unique object. Conceptually, each component may

be used to model a part of a whole and the game

object is the aggregation of those parts. For

instance, a game object “car” may be defined as

the aggregation of components such as wheels,

body, motor, steering wheel and etc;

 Scene: a scene is used for decomposing the game

into logic units that are presented one at a time. A

scene is the composition of various components

and game objects and may be shown or hidden as

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 50

necessary. Scene samples include the main menu,

each game level, high score screen, among others;

 Screen: this class prepares the draw area on the

beginning of each frame, renders the images

drawn during the frame, and sends the final

resulting image to the graphics device;

 Sprite: provides functions such as color keying

and image cropping for drawing images in the

game;

 AnimatedSprite: an animated sprite is an

extension of the Sprite class that provides an

interface to define image crop and frame

sequences to build animations. The animation may

be controlled by the size of each frame, the frame

interval and the update speed;

 BoundingBox: defines a bounding box around an

object for intersection checks;

 Text: used for rendering texts on screen, allowing

the definition of the string to be printed, its color,

font, font size and text orientation;

 TileMap: a brick map used for drawing two-

dimensional scenery from an image that is

segmented into blocks, each one representing part

of the scenery. This class allows the configuration

of the block size on the source image, the map size

within the game, and the content of each cell;

 FPSCounter: component used for debugging that

prints the current frame rate on the screen.

 With LuaGame, we provide some of the

functionalities mentioned in Section 3. Our framework

exposes an application model that controls the game

loop, provides access to rendering and input functions,

manages external content loading, handles basic

collision detection and defines a common component

interface for scripting in Lua. Artificial intelligence

components, multimedia and network support, as well

as a more refined physics engine and a visual editor

will be handled in future work.

5. Application examples

This section presents a sample application developed

using our framework. We chose a simple application as

demonstration, so we could present its code entirely

and show how the framework is used.

 The application simulates a dice roll on the screen,

using the component AnimatedSprite to represent the

dice object. The application waits for the user input

and rolls the dice when a key is pressed. When this

happens, the dice is animated and a countdown is

started. When the countdown ends, the animation is

stopped and the result is presented. With this

application, we demonstrate the usage of animated

images and its control methods. Also, we define

behavior to the scene and read user input.

 For developing this application, we define a scene

that will present the dice image, process user input and

run the countdown. The scene is defined by its

declaration and the declaration of its attributes. Later,

we need to tell to the framework that the defined scene

inherits from the framework’s Scene class, using the

method Scene:new. The attributes are: a reference to

the dice image, a time counter and a time limit (both in

milliseconds), and a flag that tells if the dice is rolling.

 Once the class is defined, the load method (Listing

1) is used for loading the image (Figure 2). This image

has one line with six animation frames (framesX/Y) and

its animation (fps), configured as five frames per

second. The image is loaded with the method load and

centralized on the screen using its width and height

(cropWidth/Height).

Figure 2: Complete dice image. It is cropped by the

animation class and only one face is drawn at a time

function DiceApplication:load()

 self.dice = AnimatedSprite:new()

 self.dice.framesX = 6

 self.dice.framesY = 1

 self.dice.fps = 5

 self.dice:load('media/dice.png')

 self.dice.x

 = 320 - self.dice.cropWidth / 2

 self.dice.y

 = 240 - self.dice.cropHeight / 2

 self:addComponent(self.dice, 'dice')

end

Listing 1: Dice image load

 User input is processed by the method

keyPressHandler. The key is checked and, based on

the key pressed, we either exit the application or roll

the dice, if it is not rolling. The dice animation is

started by the method dice:start that makes the

animation frames change five times per second, until a

command makes it stop. We also set rolling to true so

the application knows the dice is rolling (Listing 2).

function DiceApplication:keyPressHandler(evt)

 if evt.key == 'e' then

 Application.showSceneByName(

 'ApplicationsMenu')

 return

 elseif (evt.key == 'r' and not self.rolling)

then

 self.rolling = true

 self.dice:start()

 end

end

Listing 2: Handling user input

 The update method controls the dice rolling time.

After the dice is rolled, the elapsed time is accumulated

using the delta time between frames provided by the

application guaranteeing that it is a time close to the

wall clock and frame rate independent, i.e., the

application seems to run at the same speed, even in

different environments with variable frame rates.

 The accumulated time is compared to the target

time, and when it is equal or larger than the target, the

dice roll should stop. The animation is then paused

(dice:pause) and the last animation frame is presented

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 51

as the roll result. We set rolling to false, so a new roll

should be triggered by user input (Listing 3). Figure 3a

shows the resulting application running.

function DiceApplication:update()

 if (self.rolling) then

 self.elapsedTime

 = self.elapsedTime

 + Application.deltaTime

 if (self.elapsedTime >= self.targetTime)

then

 self.rolling = false

 self.dice:pause()

 self.elapsedTime = 0

 end

 end

 Scene.update(self)

end

Listing 3: Dice roll update method

Figure 3: Sample applications developed with the framework.

 We also developed a tic tac toe application (see

Figure 3b) that works with multiple images (the tic tac

toe frame, the red box that works as a cursor, and the

circle and cross used to represent the player’s actions),

text output (for printing the score), more complex user

input (using the keyboard arrows to move through the

cells and using the confirm button to make a play, and

defines a game logic that solves the tic tac toe to find

out if one of the players is the winner.

 Using our framework, for both this application and

the previously mentioned dice application, we could

focus on programming only the game specific part,

defining scenes and components to be added in the

game, without concerns on how the underlying

framework is handling update and draw calls, how the

scenes are presented, or even how images are loaded,

animated and drawn on the screen.

6. Conclusion

In this work we presented an initial step of the creation

of a generic and extensible framework for developing

games for Digital TV systems using the Lua language.

The developed framework abstracts common

development task, managing scenes and resources,

handling user input, drawing and updating

components, etc. This allows the developer to focus on

game specific code that models the behavior of its

game entities.

 Some application samples were developed to

validate the framework and demonstrate its

functionalities. The code of a complete application was

presented and it could be used as a base sample of the

framework usage.

 Future work will include the definition of more

components to be developed and included in the

framework, enhancing its functionalities. We will also

develop more examples and approach functionalities,

such as a basic physics engine and interaction with

NCL documents for audio and video playback.

References

ABNT/CEET, 2007. Televisão digital terrestre - Codificação

de dados e especificações de transmissão para

transmissão digital – Parte 4: Ginga-J - Ambiente para a

execução de aplicações procedurais.

ABNT, 2007. Televisão digital terrestre - Codificação de

dados e especificações de transmissão para radiodifusão

digital Parte 2: Ginga-NCL para receptores fixos e

móveis – Linguagem de aplicação XML para codificação

de aplicações.

BARBOSA, S.D.J. AND SOARES, L.F.G., 2008. TV digital

interativa no Brasil se faz com Ginga: Fundamentos,

Padrões, Autoria Declarativa e Usabilidade. In T.

Kowaltowski & K. Brealtman (orgs.) Jornada de

Atualizações em Informática - JAI 2008. Rio de Janeiro,

RJ: Editora PUC-RIO, 2008. pp.105-174.

BARBOZA, D. AND CLUA, E., 2009. Ginga Game: A

Framework for Game Development for the Interactive

Digital Television. SBC – Proceeding of SBGames 2009.

Available from: http://usuarios.rdc.puc-

rio.br/sbgames/09/_proceedings/dat/_pdfs/computing/Pro

ceedings_Computing_Full.pdf [Accessed 02 Aug 2012].

BRASIL, 2006. Decreto n 5.820, de 29 de Junho de 2006.

Implantação do Sistema Brasileiro de Televisão Digital

Terrestre - SBTVD-T. DOU de 27/11/2006.

http://www.planalto.gov.br/ccivil_03/_Ato2004-

2006/2006/Decreto/D5820.htm [Accessed 01 Aug 2012].

FERREIRA, D. A. AND SOUZA, C. T., 2009. TuGA: Um

Middleware para o Suporte ao Desenvolvimento de Jogos

em TV Digital Interativa. Centro Federal de Educação

Tecnológica do Ceará. Available from: http://tuga-

sdk.googlecode.com/files/TuGA_Middleware.Jogos.TV

Digital_v1.6.pdf [Accessed 01 Aug 2012].

ITU-T, 2011. Recommendation ITU-T H.761. Nested

context language (NCL) and Ginga-NCL. Avaibale from:

http://www.itu.int/rec/T-REC-H.761-201106-I/en

[Accessed 01 Aug 2012].

JOHNSON, R. AND FOOTE, B., 1988. Designing Reusable

Classes. Journal of Object Oriented Programming

Volume 1, Number 2 (June/July 1988). 22-35. Available

from: http://www.laputan.org/drc.html [Accessed 01 Aug

2012].

SANT'ANNA, F., CERQUEIRA, R. AND SOARES, L., 2008.

NCLua: objetos imperativos lua na linguagem declarativa

NCL, Proceedings of the 14th Brazilian Symposium on

Multimedia and the Web, October 26-29, 2008, Vila

Velha, Brazil. DOI: 10.1145/1666091.1666107.

SEGUNDO, R., SILVA, J., TAVARES, T., 2010. ATHUS: A

Generic Framework for Game Development on Ginga

Middleware. SBC – Proceedings of SBGames 2010.

Available from:

http://sbgames.org/sbgames2010/proceedings/computing/

full/full12.pdf [Accessed 02 Aug 2012].

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 52

