
Developing 2D games in a declarative way
Sérgio Correia, Rodrigo Gonçalves de Oliveira, Roger Zanoni

{sergio.correia, rodrigo.goncalves, roger.zanoni}@openbossa.org
Nokia Institute of Technology (INdT)

Av. Torquato Tapajós, 7200, 69093-415, Manaus/AM – Brazil

Abstract

This work presents an open source game framework that provides
ready-to-use QtQuick elements representing basic game entities
needed by most of games, such as layers, sound, physics, view-
ports and sprites. It is named Quasi-Engine and it eases the task of
writing 2D games, as we are now able to write such games declara-
tively. Quasi-Engine is also tightly coupled with the popular Box2D
physics library, and as such, making use of its simulation capabili-
ties is also provided, thus allowing the games to be more realistic.

Keywords:: Game, engine, 2D, declarative language

1 Introduction

Quasi-Engine is a framework that intends to be a complete toolset
to ease 2D game development, providing ready-to-use QML
(QtQuick, a declarative programming language, such as Prolog and
SQL) elements representing basic game entities needed by most
games. This framework is primarily built upon the upcoming major
version of Qt framework (Qt5) [Digia 2012], which will ship with
many improvements on the graphical and declarative modules, es-
pecially the new SceneGraph engine. Since the absolute majority
of Qt-based platforms run Qt4, we also maintain a port for this ver-
sion.

This project was born from our desire to implement a simple 2D
game using the QML language. Although its core components were
enough to put together most of our ideas, a significant effort would
be needed to develop more complex elements and concepts, things
that could be potentially reused by other similar games.

Since there were no public engines targeted to Qt/QML develop-
ers to date, we decided to roll out our own set of components to
aid development of common aspects of 2D games, and named it
Quasi-Engine. This paper focuses on the core framework and its
application in a real world use case. Among its current features,
there are:

• Physics support through the Box2D library.

• Static and animated layers, including parallax scrolling.

• Support to state-based sprite animations.

The project roadmap also includes support for background music,
audio effects, networking and cutscenes.

2 Related Work

There are some declarative programming languages which provide
game development support, such as Inform 7 and SuperGlue. Each
one has its own peculiarities and they are listed below:

• Inform [Graham Nelson 2006] is a design system for interac-
tive fiction based on natural language, and its newer version,
Inform 7, focuses on declarative programming. It’s used to
develop text based games, letting the player explore worlds,
stories, historic simulations and experimental digital art. In-
form 7 differs substantially from QML on its source code,
which reads like English sentences, as stated in the following
example:

1 "Hello World" by "I.F. Author"
2

3 The wor ld i s a room .
4

5 When p l a y beg ins , say "Hello, world."

• SuperGlue is a “textual live language”, based on reactive val-
ues known as signals, that are supported with declarative data-
flow connections and dynamic inheritance [McDirmid 2007;
McDirmid and Hsieh 2006]. The concept of this program-
ming language is to simplify component assembly by hiding
event handling details from glue code. A simple example is
shown below:

1 c l a s s GhostShape . Shape {
2 p o r t gs . Shape ;
3 gs = (P i e + R e c t a n g l e . s c a l e (h e i g h t = 0 . 4 9 5) .

t r a n s l a t e (y = 25) −
4 Eye . t r a n s l a t e (x = 10) − Eye . t r a n s l a t e (x = 30)) ;
5 t h i s . shape = gs . shape ;
6 c l a s s Eye . Shape ;
7 Eye . shape = P i e . s c a l e (width = 0 . 2 , h e i g h t = 0 . 2) .

t r a n s l a t e (y = 10) . shape ;
8 }

As shown above, there are just a few game engines/frameworks that
can be used in declarative game development. Unfortunately, these
libraries are also very specific on their usage, not being useful or
adequate for developing different kinds of game styles, limiting the
potential of their language.

For a general context, there are some notorious game engines, writ-
ten in many different programming languages, such as C, C++, C#,
Java, Objective C, Python and a plenty of others. We list here some
usual game engines:

• Blender [Blender Foundation 2012]

• CryEngine [Crytek 2012]

• GameMaker [YoYo Games 2012]

• id Tech [id Software 2012]

• RAGE [Rockstar Games 2012]

• Unity3D [Unity Technologies 2012]

• Unreal Engine [Epic Games 2012]

3 The Quasi Framework

The Quasi-Engine framework is built as a set of elements that han-
dle basic game items. These items are best described below:

3.1 Architecture Overview

As the QML engine loads Qt plugins, there is a QML plugin in-
terface that provides types and functionalities for the use in C++
(through Qt), which we used to write this framework.

The entire codebase is developed in the C++ programming lan-
guage (as image manipulation methods, audio handling routines
and the Box2D physics library access), so these defined functions
and types are exposed to QML, being wrapped on a plugin file that
can be dynamically loaded later into the game.

Quasi-Engine can be virtually ported to any platform that supports
the Qt application framework and its declarative module, QML.

The game loop (also known as the update-render loop), an essential
component of any game or game engine, has the following general
structure (shown in pseudocode)

1 f u n c t i o n gameLoop () {
2 u p d a t e ()
3 r e n d e r ()
4 }

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 33

The update call is responsible for updating the state of the game
entities, and the render call is responsible for rendering such game
entities, making use of their state information.

Quasi-Engine does not have a game loop with this classic structure,
however the same basic logics are followed to update and render its
entities. The Game element (more on Quasi elements in the next
subsection) contains properties to indicate how many times per sec-
ond the call to update must be performed, and it is responsible for
notifying the current Scene element that its entities must be updated.
The Scene element, on the other hand, execute the update call for
each of its active entities, which in turn update their own state.

Quasi does not manage the rendering process, delegating this task
to the Qt Framework; the engine worries only with the management
of its own entities.

3.2 Elements

Quasi-Engine provides the basic elements needed to represent a
game, and we are now going to describe them:

• the Game element represents a game in its entirety. Its role
is to inform the current scene that its elements should be up-
dated.

1 QuasiGame {
2 i d : game
3

4 width : 400
5 h e i g h t : 250
6

7 onUpdate : c o n s o l e . l o g ("update" , d e l t a)
8

9 Component . onCompleted : {
10 c o n s o l e . l o g ("fps" , game . f p s)
11 }
12 }

• the Entity element is Quasi-Engine’s basic entity. It has all
the basic properties a QML item does, such as position, ro-
tation, visibility and opacity, for instance, and may contain
another Entity element, as well as any other QML element. In
Quasi, every element that may be used in QML inherits from
the Entity element, and they also have a routine – updateScript
– which is called whenever an update is needed.

• a Scene is a logical subdivision of a game, and each of them
contains a group of Entity elements. For instance, each game
level could be a scene. Also, each of the configuration screens
could be a scene. When a game requests the scene to update
its elements, the update routine is called separately for each
of them.

1 QuasiGame {
2 i d : game
3

4 width : 400
5 h e i g h t : 250
6

7 currentScene : s c e n e
8

9 QuasiScene {
10 i d : s c e n e
11

12 e n t i t i e s : Quas iEnt i ty {
13 u p d a t e S c r i p t : {
14 c o n s o l e . l o g ("update")
15 }
16 }
17 }
18 }

• Viewport is a rectangular area on which is projected part of a
scene. This exhibited part may vary, creating the impression
of movement, and if one changes the scale of the projected
area, the impression of approximation is created.

• a Layer in Quasi is an area that contains the items in the sce-
nario which are to be displayed. The layers have a presenta-
tion order that determines which scenario elements superim-
pose the remaining ones. There are a few different layer types,
described below:

– a StaticLayer exhibits one or more layers with static
images. It is a kind of layer very useful in the creation of
platform games, requiring the elements to have different
presentation ordering.

1 QuasiLayers {
2 anchors . f i l l : p a r e n t
3 drawType : Quas i . PlaneDrawType
4

5 l a y e r s : [
6 Quas iS ta t i cLayer {
7 i d : l a y e r
8

9 source : "image.jpg"
10 order : Quas i . B a c k g r o u n d L a y e r O r d e r i n g 0 1
11 }
12]
13 }

– an AnimatedLayer has the same properties a Stati-
cLayer does, such as the level control, and the prop-
erty of displaying the movement of the layers’ im-
ages indefinitely. This effect can be used for creating
side-scrolling games, very common in touchscreen cell
phones lacking a physical keyboard.

1 QuasiLayers {
2 anchors . f i l l : p a r e n t
3 drawType : Quas i . Ti ledDrawType
4 t i l e W i d t h : 32
5 t i l e H e i g h t : 32
6

7 l a y e r s : [
8 QuasiAnimatedLayer {
9 source : "image.png"

10 order : Quas i . B a c k g r o u n d L a y e r O r d e r i n g 0 1
11

12 h o r i z o n t a l S t e p : 5
13 d i r e c t i o n : Quas i . B a c k w a r d D i r e c t i o n
14 type : Quas i . I n f i n i t e T y p e
15 }
16]
17 }

Parallax is the difference in the apparent positioning of
objects, according to the change in the observers’ posi-
tion. Quasi is able to produce this effect by using the
AnimatedLayer element.

1 QuasiLayers {
2 anchors . f i l l : p a r e n t
3 drawType : Q i a s i . Ti ledDrawType
4 t i l e W i d t h : 40
5 t i l e H e i g h t : 40
6

7 l a y e r s : [
8 QuasiAnimatedLayer {
9 source : "images/space.png"

10 f a c t o r : 0 . 3
11 order : Quas i . B a c k g r o u n d L a y e r O r d e r i n g 0 1
12

13 h o r i z o n t a l S t e p : 1
14 type : Quas i . Mi r ro redType
15 } ,
16 QuasiAnimatedLayer {
17 source : "images/planet.png"
18 f a c t o r : 0 . 5
19 order : Quas i . B a c k g r o u n d L a y e r O r d e r i n g 0 2
20

21 h o r i z o n t a l S t e p : 1
22 type : Quas i . I n f i n i t e T y p e
23 } ,
24 QuasiAnimatedLayer {
25 /∗ . . . ∗ /
26 }
27]
28 }

3.3 Physics

Applying the physics concepts and laws to games is done with the
intention of making the effects appear more real to the observer.
Quasi-Engine uses Box2D [Catto 2009], an open-source C++ en-
gine for simulating rigid bodies in 2D. Through Box2D, Quasi pro-
vides the following elements:

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 34

• in physics, a body is a set of masses and some other proper-
ties, such as position and rotation, for instance. In the Box2D
library, a Body is an element that represents a body, contain-
ing information such as a set of masses (Shapes and Fixtures,
explained below), position, current angle and it also provides
an interface for applying a force and rotation.

• a Fixture associates a Body to a Shape, and it contains use-
ful information for the simulation, such as density, and coefi-
cients of friction and restitution.

• a Shape is a geometric shape attached to a Body. They re-
spond to collisions and are used for calculating the mass of
the Body element.

1st vertex (0,0)

position (5,5)

2nd vertex (1,0)

3rd vertex (0,2)

Figure 1: Examples of shapes

• in Box2D, a Chain is a shape used to define linked line seg-
ments that may or may not form a polygon. They are useful,
for instance, to create the representation of the environment
terrain in a scene. In Quasi, the use of these elements is sim-
plified, reunited in a single element named QuasiBody.

• Box2D joints unite the elements and change their behavior in
the simulation. There are several joint types in Box2D, but
currently Quasi supports only the distance and mouse joints.

– QuasiDistanceJoint is a joint that unite two bodies in
determined points and keeps fixed this distance between
them.

– QuasiMouseJoint is a joint that links a body and a
point and is always in the same position as the mouse,
causing the linked body to try to follow the current cur-
sor position.

4 Sample Demos

As new features are implemented in Quasi, new examples and de-
mos are developed to show off these features. We list below some
examples and demos available in the framework.

• basketball: Figure 2 shows the use of a force applied to a ball,
simulating a simple basketball game.

Figure 2: Basketball game demo

• paratrooper: Figure 3 shows the use of a force too, applied to
a human being trying to land on the target surface, similar to
the classic Atari game Lunar Lander [Atari, Inc. 1979].

Figure 3: Paratrooper game demo

• parallax: Figure 4 shows off the use of multiple layers, per-
forming a parallax visual effect of a spaceship through the
space.

Figure 4: Parallax layers example

• viewport parallax: Figure 5 shows the use of two layers, form-
ing the parallax effect. This example uses the concept of a
viewport, where the developer sets a fixed rectangular area for
displaying the game scene. When moving to its borders (left
and right), the viewport automatically scrolls the layers, mov-
ing the scene until the character reaches the viewport limits.

Figure 5: Viewport parallax example

5 Conclusion

This paper presents the base elements of a game framework that
still is in heavy development, but already has some game elements
ready to use. The framework itself was developed using the C++
programming language on top of the popular user interface frame-
work Qt. This framework has a declarative module named QtQuick,

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 35

also known as QML, which is the programming language the final
user will develop in. Quasi also supports physics simulation, pro-
vided by the Box2D library, merged on its core C++ counterpart.

From the project roadmap, audio support (background music and
audio effects) is being currently addressed and should be part of the
first stable release of Quasi. It is worth mentioning Quasi-Engine
is open-source and publicly available at [INdT – Nokia Institute of
Technology 2012] for people to download and contribute to, if so
they wish.

References

ATARI, INC., 1979. Lunar Lander. http://www.atari.com/
lunarlander.

BLENDER FOUNDATION, 2012. Blender. http://blender.
org/.

CATTO, E., 2009. Box2D Physics Engine. https://code.
google.com/p/box2d.

CRYTEK, 2012. CryENGINE. http://mycryengine.com/.

DIGIA, 2012. The Qt Framework. http://qt.digia.com/.

EPIC GAMES, 2012. Unreal Engine. http://www.
unrealengine.com/.

GRAHAM NELSON, 2006. Inform 7. http://inform7.com/.

ID SOFTWARE, 2012. id Tech. http://www.idsoftware.
com/.

INDT – NOKIA INSTITUTE OF TECHNOLOGY, 2012. Quasi-
Engine on GitHub. https://github.com/INdT/
Quasi-Engine.

MCDIRMID, S., AND HSIEH, W. C. 2006. Superglue: component
programming with object-oriented signals. In Proceedings of the
20th European conference on Object-Oriented Programming,
Springer-Verlag, Berlin, Heidelberg, ECOOP’06, 206–229.

MCDIRMID, S. 2007. Living it up with a live programming lan-
guage. SIGPLAN Not. 42, 10 (Oct.), 623–638.

ROCKSTAR GAMES, 2012. RAGE. http://www.
rockstargames.com/.

UNITY TECHNOLOGIES, 2012. Unity 3D. www.unity3d.com.

YOYO GAMES, 2012. GameMaker. http://www.
yoyogames.com/gamemaker/studio.

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 36

