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Figure 1: System architecture. 

 

Abstract 
 

Computer controlled characters in games are expected 

to present realistic behaviors and adapt them depending 

on current situation. Modern games use basic AI 

techniques that fail to meet this expectation. 

 

This paper proposes an approach for a rapid and 

reliable adaptive game AI architecture based on 

reinforcement learning and Decision Making Systems 

composition. 
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1. Introduction 
 

Even though there have been enormous advances in 

computer graphics, animation, and audio for games, 

most of them contain very basic Artificial Intelligence 

(AI) techniques, if any [Ram et al. 2007]. It’s not an 

uncommon practice to increase challenge artificially by 

creating an imbalance between Non-Player Characters 

(NPC) and Player Characters (PC) rather than using a 

better game AI. The problem with this approach, based 

on the use of non-adaptive game AI, is that, once a 

weakness is discovered, nothing stops the human 

player from exploiting the discovery [Bakkes et al. 

2009]. NPCs in modern games are predictable. 

 

Adaptive game AI, capable of changing an NPC 

behavior based on the player behavior, can solve this 

problem. Unfortunately, this kind of AI, which usually 

makes use of machine learning techniques, often needs 

a huge amount of historical data and/or several training 

sessions to present a satisfying performance. In 

addition, some adaptive game AI can generate 

undesirable behaviors during the learning process. 

These behaviors can be considered efficient, when 

evaluated for some set of metrics but will look 

unnatural for a human spectator. 

 

These issues are aggravated in linear single player 

games where there’s little to none historical data 

available and the probability of playing against  a 

defeated important NPC again is, in most cases zero, 

making it impossible to effectively apply classical 

machine learning training techniques. 

 

This paper’s objective is to present an approach to 

create a game AI architecture capable of adapting its 

behavior in-line, in a fast and reliable way, according 

to the player’s inputs, improving the challenge level 

and reducing the predictability of NPCs.  

 

2. Related Work 
 

Computer controlled characters in games are expected 

to present realistic behaviors and adapt when faced 

with a disadvantageous situation. A lot of research has 

been made in recent years to fulfill this expectation. 

 

 Spronck et al. [2006] proposed a technique, named 

Dynamic Scripting, to dynamically adapt a rule base, 

in a rule-based system, using Reinforcement Learning. 

Adaptation runs between game sessions and is gradual. 

Another approach involving rule-based systems was 

presented by Crocomo et al. [2008] and makes use of 

evolutionary algorithms to generate new rule bases. As 

dynamic scripting, the adaptation runs between game 

sessions and is gradual. 

 

A rapid and reliable case-based approach to adapt 

game AI was proposed by Bakkes et al. [2009]. It 

relies in samples of gameplay experience and is 

expected to present good results in games that have 

access to the Internet to store and recover these 

samples. 
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 Tan and Cheng [2010] proposed an automated 

model-based approach built upon their Integrated MDP 

and POMDP Learning AgeNT (IMPLANT) 

architecture. This approach makes use of a player 

model based upon a weighted set of actions and mixes 

online and offline learning.  

 

 There are many other approaches for the problem, 

each one suited for some specific range of scenarios. 

The architecture proposed in this paper attempts to 

attack the problem of creating a rapid and reliable 

adaptive game AI from another angle, by combining 

simple specific Decision Making Systems (DMSs), 

implemented by using existing techniques. 

 

3. Proposed Architecture 
 

This section discusses the proposed architecture, 

presenting details on all of its components. 

 

3.1 System architecture 
 

System architecture, as presented in Figure 1, is 

composed by the following elements: 

 

 The digital World that contains both PCs and 

NPCs and is represented by a collection of 

data that represents the state of each of its 

elements; 

 

 The Player which interacts with the world 

through a PC; and 

 

 The Composite Decision Making System 

(CDMS) that is responsible for controlling a 

NPC based upon observations of the world’s 

state.  

 

3.2 Composite Decision Making System 

 

The CDMS, also shown in Figure 1, represents the core 

of this paper and is based on a simple idea. Instead of 

having a unique DMS capable of handling all kinds of 

player strategies, it has a collection of specific DMSs 

to choose from based on player profile. 

 
Figure 2: A profile 

 

Before continuing, it is necessary to explain the 

profile concept in the context of this paper. Figure 2 

exemplifies a typical profile. It is composed by a set of 

features that identify a specific player style and a set of 

weighted connections to all available DMSs in the 

CDMS. A greater weight means a better performance 

against a specific player style. “A percentage of player 

actions that were physical attacks of any kind” is a 

good example of a possible profile feature. 

 

Monitor: is responsible for watching the world and 

producing alerts for the Profile Manager. An alert is 

generated every time the Activation Condition (AC) is 

met or a game session ends. The AC is a logical 

expression that identifies a bad NPC performance. 

 

Current Profile: is the profile that best suits the 

player style and is defined by the Profile Manager. 

 

Current Decision Making System: is chosen 

based upon the highest weighted connection between 

the Current Profile and all the available DMSs. It will 

choose the best action to perform based on the world’s 

state and send it to the associated NPC. 

 

Profile Manager: is responsible for recovering or 

creating profiles that match the human player behavior. 

It also uses Reinforcement Learning to manage the 

relative weights of DMSs connected to a profile.  

 
Figure 3: Profile Manager flowchart 

 

In summary, Figure 3 shows that Profile Manager 

searches for a stored profile that matches the player 

style and updates the weights of its connections to a 

DMS, according to the results of the current game 

session. If there are no profiles that match the player 
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style a new one is created, based on the profile with the 

highest similarity, and then updated. 

 

Cosine similarity is used to measure similarity 

between sets of features. It was chosen because sets of 

features are usually long and sparse (have many 0 

values), and is denoted by 

                  
   

       
 

      
 
   

      
  

          
  

   

 

 
The resulting value lies between -1 and 1, where 1 

means identical and -1 means the exact opposite.  

 

Similarity threshold is a constant that indicates the 

minimum value of similarity needed to consider two 

sets of features as the same. 

 

Weighted connections between profiles and DMSs 

are updated using a performance update function. 

                             
                                   

                                     
  

 

A default profile has an empty set of features and is 

connected to all available DMSs with default weights. 

 

3.3 Applicability 
 

The proposed architecture can only be applied in cases 

where it is possible to define a player profile based 

upon a set of features extracted from the available in-

game data. 

 

3.4 Computational Cost 
 

The total computational cost of the CDMS is 
                         

Where f is the amount of features in the profile and d is 

the amount of DMS composing the CDMS. DMS 

computational costs tend to be far greater than O(f x d). 

So, in most situations, the total computational cost of 

the CDMS will be proportional do the cost of the DMS 

with the worst performance. 

 

4. Implementation 
 

This session presents some details on the game and the 

architecture implementation used on the experiment. 

 

To validate the proposed architecture a simple turn 

based game was implemented. Two agents, a PC and 

an NPC, with only one main attribute, Health, and a 

minimal set of secondary attributes, compose the 

game’s world. Health has an initial value of 1000 and 

to win it is necessary to reduce an agent’s Health to 0. 

 

In order to simplify the analysis process all DMS 

are Rule Based Systems. There are a total of five 

different DMSs. Two for the PC: both named PDMS1 

and PDMS2. And three for the NPC: named CDMS1, 

CDMS2, and CDMS3. 

 

 DMSs were designed to present the performance 

detailed on Table 1. 

 
Table 1: Performance of PC DMSs against NPC DMSs 

 CDMS1 CDMS2 CDMS3 

PDMS1 Strong Strong Very weak 

PDMS2 Weak Very weak Strong 

 

The function used to evaluate the performance of 

the CDMS is denoted by 
                                

Where ph1 is the PC’s Health, when the Current DMS 

was chosen; ph2 is the PC’s current Health; nh1 is the 

NPC’s Health, when the Current DMS was chosen; and 

nh2 is the NPC’s current Health. 

 

AC is denoted by 
                 

 

Performance Update Function is denoted by 

                            
           

                      
 

 

The profile is composed by the following set of 

features: movement, physical attacks, ranged attacks, 

defensive actions, debuffing actions, cleaning action, 

concentrate action, and energize action. Default profile 

connections weights are presented on Table 2. 

 
Table 2: Default profile weights 

 CDMS1 CDM2 CDMS3 

Weight 1000 999 998 

 

5. Experiment 
 

This session presents some details on the experiment 

used to test the implementation of the architecture. 

 

The experiment held four consecutive game 

sessions. The PC used PDMS1, PDSM2, PDMS1, and 

PDMS2 in this specific order.  

 

As results of the experiment it was expected that: 

 

 Two profiles, P1 and P2, were created, 

representing PDMS1 and PDMS2; and 

 

 The final weights of P1 and P2 resembled the 

programmed setup presented in Table 1. 

 

6. Results Analysis 

 

This session presents an analysis on the results of the 

experiment.  

 

First Game Session: When the AC was met on the 

13
th

 turn, there was no profile stored, so P1 was 

created. As there was no historical data, CDMS2 were 

used, but presented a bad performance. The only DMS 

with a good performance against P1 is CDMS3.  
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Second Game Session: When the AC was met on 

the 86
th

 turn, the Profile Manager searched for a profile 

that matched the player style, but found nothing. P2 

was then created, based on the values of P1. As the 

performance of CDMS3 against P1 was very strong, it 

took three alerts to devaluate the weight of its 

connection enough for CDMS1 to be used.  

 

Third Game Session: When the AC was met on 

the 142
th

 turn, the Profile Manager recognized P1 as a 

profile that matched the player style and CDMS3 was 

immediately chosen. 

 
Fourth Game Session: When the AC was met on 

the 209
th

 turn, the Profile Manager recognized P2 as a 

profile that matched the player style and CDMS1 was 

immediately chosen. 

 

Figure 4 summarizes the obtained results. 

 

 
Figure 4: Experiment results 

 

6.1 Generated Profiles 

 

Table 3 presents the final weights of the profiles 

generated during the experiment. 

 
Table 3: Profiles weights 

 CDMS1 CDMS2 CDMS3 

P1 978 991 1015 

P2 1016 999 972 

 

7. Discussion 
 

From the experiment’s results, it was possible to 

observe that the proposed architecture was able to meet 

all expectations.  

 

 Profiles P1 and P2 were correctly associated to 

PDMS1 and PDM2, and the automatically generated 

weights of both profiles, presented on Table 3, 

resemble the programmed setup presented on Table 1. 

The only difference being the connection between P2 

and CDMS2, what is understandable as it was not 

necessary to try this configuration as CDMS1 

presented a performance that was good enough. 

 

 The proposed architecture was able to adapt in a 

very short time, even with the bias introduced via the 

default profile, requiring one match to identify the 

most suited DMS. Besides that, it continued to prune 

the weights using reinforcement learning, making it 

possible for it to adapt even with suboptimal sets of 

features.  

 

The DMSs were responsible for deciding the 

actions to take and they were programmed to generate 

valid actions, so no undesirable behavior was 

generated. It must be noticed that the architecture will 

not prevent undesirable behavior if unreliable DMS is 

used in its composition. 

 

8. Conclusion 
 

This paper presented an approach for a game AI 

adaptive architecture based on reinforcement learning. 

The experiment’s results have shown that, in the given 

scenario, it could adapt in a rapid and reliable way, 

without the need of long training periods or huge 

amount of historical data.  

 

 This is still a work in progress. Though, it is still 

requiring further research, in order to cover other 

scenarios. An analysis of its performance against 

adaptive DMSs, which are better approximations to 

human players, is highly recommended.  

 

 Future works could focus on the automatic creation 

of new DMSs, for situations where none of the current 

DMSs can present an adequate challenge, when faced 

against a certain player style. 
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