
An Adaptive Game AI Architecture

Emanuel M. Carneiro Adilson M. Cunha

Instituto Tecnológico da Aeronáutica, Computer Science Department, Brazil

Figure 1: System architecture.

Abstract

Computer controlled characters in games are expected

to present realistic behaviors and adapt them depending

on current situation. Modern games use basic AI

techniques that fail to meet this expectation.

This paper proposes an approach for a rapid and

reliable adaptive game AI architecture based on

reinforcement learning and Decision Making Systems

composition.

Keywords: Game AI, adaptive behavior,

reinforcement learning.

Authors’ contact:
mineda@gmail.com

cunha@ita.br

1. Introduction

Even though there have been enormous advances in

computer graphics, animation, and audio for games,

most of them contain very basic Artificial Intelligence

(AI) techniques, if any [Ram et al. 2007]. It’s not an

uncommon practice to increase challenge artificially by

creating an imbalance between Non-Player Characters

(NPC) and Player Characters (PC) rather than using a

better game AI. The problem with this approach, based

on the use of non-adaptive game AI, is that, once a

weakness is discovered, nothing stops the human

player from exploiting the discovery [Bakkes et al.

2009]. NPCs in modern games are predictable.

Adaptive game AI, capable of changing an NPC

behavior based on the player behavior, can solve this

problem. Unfortunately, this kind of AI, which usually

makes use of machine learning techniques, often needs

a huge amount of historical data and/or several training

sessions to present a satisfying performance. In

addition, some adaptive game AI can generate

undesirable behaviors during the learning process.

These behaviors can be considered efficient, when

evaluated for some set of metrics but will look

unnatural for a human spectator.

These issues are aggravated in linear single player

games where there’s little to none historical data

available and the probability of playing against a

defeated important NPC again is, in most cases zero,

making it impossible to effectively apply classical

machine learning training techniques.

This paper’s objective is to present an approach to

create a game AI architecture capable of adapting its

behavior in-line, in a fast and reliable way, according

to the player’s inputs, improving the challenge level

and reducing the predictability of NPCs.

2. Related Work

Computer controlled characters in games are expected

to present realistic behaviors and adapt when faced

with a disadvantageous situation. A lot of research has

been made in recent years to fulfill this expectation.

 Spronck et al. [2006] proposed a technique, named

Dynamic Scripting, to dynamically adapt a rule base,

in a rule-based system, using Reinforcement Learning.

Adaptation runs between game sessions and is gradual.

Another approach involving rule-based systems was

presented by Crocomo et al. [2008] and makes use of

evolutionary algorithms to generate new rule bases. As

dynamic scripting, the adaptation runs between game

sessions and is gradual.

A rapid and reliable case-based approach to adapt

game AI was proposed by Bakkes et al. [2009]. It

relies in samples of gameplay experience and is

expected to present good results in games that have

access to the Internet to store and recover these

samples.

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 21

 Tan and Cheng [2010] proposed an automated

model-based approach built upon their Integrated MDP

and POMDP Learning AgeNT (IMPLANT)

architecture. This approach makes use of a player

model based upon a weighted set of actions and mixes

online and offline learning.

 There are many other approaches for the problem,

each one suited for some specific range of scenarios.

The architecture proposed in this paper attempts to

attack the problem of creating a rapid and reliable

adaptive game AI from another angle, by combining

simple specific Decision Making Systems (DMSs),

implemented by using existing techniques.

3. Proposed Architecture

This section discusses the proposed architecture,

presenting details on all of its components.

3.1 System architecture

System architecture, as presented in Figure 1, is

composed by the following elements:

 The digital World that contains both PCs and

NPCs and is represented by a collection of

data that represents the state of each of its

elements;

 The Player which interacts with the world

through a PC; and

 The Composite Decision Making System

(CDMS) that is responsible for controlling a

NPC based upon observations of the world’s

state.

3.2 Composite Decision Making System

The CDMS, also shown in Figure 1, represents the core

of this paper and is based on a simple idea. Instead of

having a unique DMS capable of handling all kinds of

player strategies, it has a collection of specific DMSs

to choose from based on player profile.

Figure 2: A profile

Before continuing, it is necessary to explain the

profile concept in the context of this paper. Figure 2

exemplifies a typical profile. It is composed by a set of

features that identify a specific player style and a set of

weighted connections to all available DMSs in the

CDMS. A greater weight means a better performance

against a specific player style. “A percentage of player

actions that were physical attacks of any kind” is a

good example of a possible profile feature.

Monitor: is responsible for watching the world and

producing alerts for the Profile Manager. An alert is

generated every time the Activation Condition (AC) is

met or a game session ends. The AC is a logical

expression that identifies a bad NPC performance.

Current Profile: is the profile that best suits the

player style and is defined by the Profile Manager.

Current Decision Making System: is chosen

based upon the highest weighted connection between

the Current Profile and all the available DMSs. It will

choose the best action to perform based on the world’s

state and send it to the associated NPC.

Profile Manager: is responsible for recovering or

creating profiles that match the human player behavior.

It also uses Reinforcement Learning to manage the

relative weights of DMSs connected to a profile.

Figure 3: Profile Manager flowchart

In summary, Figure 3 shows that Profile Manager

searches for a stored profile that matches the player

style and updates the weights of its connections to a

DMS, according to the results of the current game

session. If there are no profiles that match the player

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 22

style a new one is created, based on the profile with the

highest similarity, and then updated.

Cosine similarity is used to measure similarity

between sets of features. It was chosen because sets of

features are usually long and sparse (have many 0

values), and is denoted by

The resulting value lies between -1 and 1, where 1

means identical and -1 means the exact opposite.

Similarity threshold is a constant that indicates the

minimum value of similarity needed to consider two

sets of features as the same.

Weighted connections between profiles and DMSs

are updated using a performance update function.

A default profile has an empty set of features and is

connected to all available DMSs with default weights.

3.3 Applicability

The proposed architecture can only be applied in cases

where it is possible to define a player profile based

upon a set of features extracted from the available in-

game data.

3.4 Computational Cost

The total computational cost of the CDMS is

Where f is the amount of features in the profile and d is

the amount of DMS composing the CDMS. DMS

computational costs tend to be far greater than O(f x d).

So, in most situations, the total computational cost of

the CDMS will be proportional do the cost of the DMS

with the worst performance.

4. Implementation

This session presents some details on the game and the

architecture implementation used on the experiment.

To validate the proposed architecture a simple turn

based game was implemented. Two agents, a PC and

an NPC, with only one main attribute, Health, and a

minimal set of secondary attributes, compose the

game’s world. Health has an initial value of 1000 and

to win it is necessary to reduce an agent’s Health to 0.

In order to simplify the analysis process all DMS

are Rule Based Systems. There are a total of five

different DMSs. Two for the PC: both named PDMS1

and PDMS2. And three for the NPC: named CDMS1,

CDMS2, and CDMS3.

 DMSs were designed to present the performance

detailed on Table 1.

Table 1: Performance of PC DMSs against NPC DMSs

 CDMS1 CDMS2 CDMS3

PDMS1 Strong Strong Very weak

PDMS2 Weak Very weak Strong

The function used to evaluate the performance of

the CDMS is denoted by

Where ph1 is the PC’s Health, when the Current DMS

was chosen; ph2 is the PC’s current Health; nh1 is the

NPC’s Health, when the Current DMS was chosen; and

nh2 is the NPC’s current Health.

AC is denoted by

Performance Update Function is denoted by

The profile is composed by the following set of

features: movement, physical attacks, ranged attacks,

defensive actions, debuffing actions, cleaning action,

concentrate action, and energize action. Default profile

connections weights are presented on Table 2.

Table 2: Default profile weights

 CDMS1 CDM2 CDMS3

Weight 1000 999 998

5. Experiment

This session presents some details on the experiment

used to test the implementation of the architecture.

The experiment held four consecutive game

sessions. The PC used PDMS1, PDSM2, PDMS1, and

PDMS2 in this specific order.

As results of the experiment it was expected that:

 Two profiles, P1 and P2, were created,

representing PDMS1 and PDMS2; and

 The final weights of P1 and P2 resembled the

programmed setup presented in Table 1.

6. Results Analysis

This session presents an analysis on the results of the

experiment.

First Game Session: When the AC was met on the

13
th

 turn, there was no profile stored, so P1 was

created. As there was no historical data, CDMS2 were

used, but presented a bad performance. The only DMS

with a good performance against P1 is CDMS3.

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 23

Second Game Session: When the AC was met on

the 86
th

 turn, the Profile Manager searched for a profile

that matched the player style, but found nothing. P2

was then created, based on the values of P1. As the

performance of CDMS3 against P1 was very strong, it

took three alerts to devaluate the weight of its

connection enough for CDMS1 to be used.

Third Game Session: When the AC was met on

the 142
th

 turn, the Profile Manager recognized P1 as a

profile that matched the player style and CDMS3 was

immediately chosen.

Fourth Game Session: When the AC was met on

the 209
th

 turn, the Profile Manager recognized P2 as a

profile that matched the player style and CDMS1 was

immediately chosen.

Figure 4 summarizes the obtained results.

Figure 4: Experiment results

6.1 Generated Profiles

Table 3 presents the final weights of the profiles

generated during the experiment.

Table 3: Profiles weights

 CDMS1 CDMS2 CDMS3

P1 978 991 1015

P2 1016 999 972

7. Discussion

From the experiment’s results, it was possible to

observe that the proposed architecture was able to meet

all expectations.

 Profiles P1 and P2 were correctly associated to

PDMS1 and PDM2, and the automatically generated

weights of both profiles, presented on Table 3,

resemble the programmed setup presented on Table 1.

The only difference being the connection between P2

and CDMS2, what is understandable as it was not

necessary to try this configuration as CDMS1

presented a performance that was good enough.

 The proposed architecture was able to adapt in a

very short time, even with the bias introduced via the

default profile, requiring one match to identify the

most suited DMS. Besides that, it continued to prune

the weights using reinforcement learning, making it

possible for it to adapt even with suboptimal sets of

features.

The DMSs were responsible for deciding the

actions to take and they were programmed to generate

valid actions, so no undesirable behavior was

generated. It must be noticed that the architecture will

not prevent undesirable behavior if unreliable DMS is

used in its composition.

8. Conclusion

This paper presented an approach for a game AI

adaptive architecture based on reinforcement learning.

The experiment’s results have shown that, in the given

scenario, it could adapt in a rapid and reliable way,

without the need of long training periods or huge

amount of historical data.

 This is still a work in progress. Though, it is still

requiring further research, in order to cover other

scenarios. An analysis of its performance against

adaptive DMSs, which are better approximations to

human players, is highly recommended.

 Future works could focus on the automatic creation

of new DMSs, for situations where none of the current

DMSs can present an adequate challenge, when faced

against a certain player style.

Acknowledgements

The authors would like to thank all the people that

make this work possible, directly and indirectly

contributing to it.

References

BAKKES, S., SPRONCK, P., AND HERIK, J. VAN DEN, 2009.

Rapid and reliable adaptation of video game AI. IEEE

transactions on computational intelligence and AI in

games. IEEE Press, v. 1, p. 93-104.

CROCOMO, M. K., AND SIMÕES E. V., 2008. Um algoritmo

evolutivo para aprendizado online em jogos eletrônicos.

In: Proceedings of SBGames, Belo Horizonte, MG. SBC,

p. 159-168.

RAM, A., ONTAÑÓN, S., AND MEHTA, M., 2007. Artificial

intelligence for adaptive computer games. In:

Proceedings of the International Flair conference on

Artificial Intelligence, 2007, Key West, FL. AAAI Press.

SPRONCK, P., PONSEN, M., SPRINKHUIZEN-KUYPER, I, AND

POSTMA, E., 2006. Adaptive game AI with dynamic

scripting. Machine Learning. Kluwer Academic

Publishers, v. 63, p. 217-248.

TAN, C. T. AND CHENG, H., 2010. An automated model-based

adaptive architecture in modern games. In: Proceedings

of the Sixth AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment, 2007, Stanford,

CA. AAAI Press, p. 186-191.

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 24

