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Abstract

This paper studies an option for offloading some types of Al pro-
cessing to the Graphics Processing Unit (GPU), by proposing the
parallelization of the Batch Least Squares (BLS) method for tuning
consequent parameters and the gradient method for tuning input
fuzzy sets in a Takagi-Sugeno-Kang Fuzzy Inference System us-
ing the Compute Unified Device Architecture (CUDA). A method
is proposed to generate the required intermediary matrices using
heavy data parallelism. The learning consists of several iterations
of BLS for the output values and gradient tuning for the input fuzzy
sets. The explanation of the methods is followed by a performance
comparison with a typical CPU-only approach and evaluation of the
feasibility of using this method in real-time inside of a game.
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1 Introduction

1.1 Fuzzy Logic and Fuzzy Inference Systems

Fuzzy Inference Systems (FIS) are inference systems based on
Fuzzy Logic[Zadeh 1965]. They work like a "black box” with any
number of input and output variables that are, in general, numeric
(and real-valued). These variables are divided into sets defined by
functions (usually trapezoid, triangle or gaussian) existing within
the domain of the variable and that return a membership value be-
tween 0 and 1 for that fuzzy set. The inference process is the way
by which the values of the output variables are calculated depend-
ing on the values set for the input variables, very much like other
methods such as Artificial Neural Networks.

This work is based on the TSK[Takagy and Sugeno 1985; Sugeno
and Kang 1988] FIS model, where the consequent of a rule for an
output variable is a N-order polynomial function of the input val-
ues. Because of the mathematically flexible nature of this model, it
is often a good choice for automatic learning of intelligent systems
based on examples. The parameters that one would have to learn
to define a TSK system then correspond to the definition of the
input variables’ sets (or membership functions), the output polyno-
mial coefficients and the combination of fuzzy sets that form each
rule of the system. Gaussian functions are usually used for auto-
matic learning, due to their continuity and differentiantion proper-
ties, which are required for some parameter tuning methods such as
the gradient method[Ross 2010].

1.2 GPGPU and CUDA

Graphics Processing Units (GPUs) are inherently data-parallel pro-
cessors. Their architectures, originally created and evolved for
drawing graphics on the screen, revolve around repeating the same,
often simple, operation for a big amount of different data.

However, the erlier GPUs had very specific and low-programmable
hardware, which made the utilization of them for general purpose
computation a daunting task, with the overhead often neutralizing
the gains in parallelization. Even then, as computing power and
programmability of GPUs increased, some groups managed to de-
velop methods to use them for general-purpose parallel computa-
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tion. This new area of research was called General Purpose GPU
(GPGPU).

Eventually, CUDA was introduced by nVidia, simplifying greatly
the development of GPGPU programs. CUDA' is an extension
of the C/C++ language that enables developers to create general-
purpose code that runs on the GPU using a familiar language and
development environment. Afterwards, other similar frameworks
were also created for this purpose, such as OpenCL? and Direct-
Compute®.

2 Related Work and Objectives

Considering methods in the realm of Fuzzy Logic, [Anderson and
Coupland 2008] have adapted the classical linguistics-based Mam-
dani Fuzzy model for running on GPUs with CUDA, with promis-
ing results for large amounts of data.

A complete implementation of a parallel method for training of
TSK systems from data samples using CUDA was done by [Juang
et al. 2011]. In that paper, a structure called the GPU-FNN is pro-
posed, based on the structure and learning methods of the SON-
FIN[Juang and Lin 1998]. The results obtained were very encour-
aging for problems with high dimensional inputs, since the pro-
posed parallelization method explores concurrent processing in the
domain of inputs dimensions and rules, but not between the sam-
ples themselves. Hence, it is not a very good choice for problems
with a large number of samples and/or a small number of input di-
mensions (such as some that can be encountered in video games,
e.g. the prediction of player behavior based on historical data).

The objective of this paper is, then, to provide an alternative method
for automatic training of Fuzzy TSK systems that explores par-
allelism in the samples domain and achieves expressive speedups
even for small input dimensions and rule numbers. Of special in-
terest is the application of such methods for offloading parts of the
Al computation of a game to the GPU, allowing the utilization of
Al techniques that are traditionally regarded as too slow to be used
in real time.

3 Technical Foundations

3.1 TSK Fuzzy Systems

As mentioned briefly in section 1.1 and explained in detail in [Ross
2010], a TSK FIS is composed by input and output variables, and a
set of inference rules, where:

o Antecedents are the AND of tuples of the form variable IS
set;

e Consequents are of the form variable IS P(x1,%2,...,Tn),
where P(z) represents a n-order polynomial of the input vari-
ables.

The calculation of the output of a typical TSK FIS is done as fol-
lows:

e Each rule is evaluated and given an activation degree based
on the combination of membership values returned by each
(variable, set) pair defined in the antecedent of the rule. This
combination is analogous to an AND operation and is usually
done by multiplying the membership values together. Consid-
ering gaussian membership functions for the input variables,

Uhttp://www.nvidia.com/cuda
Zhttp://www.khronos.org/opencl/
3http://en.wikipedia.org/wiki/DirectCompute
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and according to [Ross 2010], the full expression for the acti-
vation degree of rule k is then

M z; — C;‘c 2
i (x) = Hemp —0.5 % <T) ) D

Jj=1

where M is the number of input variables and c? and wf are
the center and width of the gaussian membership function de-
fined for variable x; and the fuzzy set defined for that variable
in the antecedent of rule k.

o The final output for each variable is calculated as a weighted
average of the evaluation of the polynomial outputs of each
rule, where the weight given to each output value is the acti-
vation degree of that rule. This way, if Px(x) represents the
output of rule k, the final output for one variable of the fuzzy
system is

_ T (@) * Pa(w)
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We can then conclude that, ultimately, the output f(z) of a Fuzzy
TSK system as described here for an input vector x depends on the
values of ¢, w? and the coefficients of the polynomials P ().
The next section discusses methods to find those values by means
of unsupervised training based on a set of samples with known out-
puts.

f(x)

@

3.2 Tuning TSK Fuzzy Systems

Several methods have been proposed to tune the parameters of
Fuzzy TSK systems[Ross 2010; Passino and Yurkovich 1998]. Two
specific methods that are applicable to some or all of the parame-
ters that have to be learned are discussed in the following sections.
It is important to consider that the metric typically used as target
for optmization (and the one used in these methods) is the Mean
Squared Error (MSE), which is calculated as such:

SN SR (Wi 6) — w(i)?
N k)

3

where N is the number of samples used in training, L is the number
of output variables, 3 () is the desired value for the i — th sample
and the [ — th output variable, and y; (%) is the correspondent output
given by the trained system.

3.2.1 The Batch Least Squares Method for tuning of
TSK outputs

One of the classic ways to tune consequent parameters is by trans-
forming the problem into a linear overdetermined system of equa-
tions and solving it using the classical Least Squares approach[Ross
2010].

Let us consider that all output polynomials are of order 0, which
means that all of them correspond to just a constant value, and are
represented by py. If we consider ¢ to be a vector containing the
constant (in relation to p) values in equation 2 and 6 to be the vec-
tor of py, values, then equation 2 becomes f(z) = ¢ - 6. This is for
one sample datum only. Then, considering ® as the matrix formed
by joining the ¢ vectors for all samples, Y as the vector of training
output values for all samples, and that our objective is to optimize
for the bet fit of f(z) to Y, we have the final overdetermined (con-
sidering N > K) linear system of equations to be optimized:

P0=Y “

It is worth noting that this rationale can be extended for output poly-
nomials with degrees greater than 0. In this case, 6 (and therefore
¢) would be enlarged to encompass the extra coefficients. The extra
values in ¢ would then be equal to the 0-order ones, multiplied by
the according products of input variables as present in the polyno-
mials (i.e. x;, xf Tix; etc).
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3.2.2 The Gradient Method for tuning of TSK parame-
ters

The gradient method can be used to tune all parameters in a FIS,
and more information on it can be found in [Jang 1993; Ross 2010;
Juang et al. 2011]. In our case, we want to tune the values of c?, wf
and pj, for minimizing the MSE as defined in equation (3). We use
the equations defined in [Juang et al. 2011] for one step of tuning

for a single sample.

If we then want to do a single tuning step considering the MSE of
all the samples, it suffices (since the gradient is a linear operation)
to calculate the average of the error gradients for all samples and
use that average in the tuning equations just once. This strategy is
especially useful for concurrent environments, as will become clear
in section 4.

4 Method Description

The proposed and developed method uses the BLS method for tun-
ing consequents, the gradient method for tuning antecedents and
considers a TSK Fuzzy System with 0-order polynomials (but could
be easily extended for greater orders as described in section 3.2.1).
The starting configuration of the gaussian membership functions is
defined by dividing the input space uniformly in an arbitrary num-
ber of sets of equal width. This number of sets should be defined
empirically depending on the problem. Other, more refined, meth-
ods could be used for defining the starting configuration of the gaus-
sian parameters (such as ones based on clustering), as long as they
can work on all samples at once and are based only on the training
data (which makes the method described in [Juang et al. 2011] un-
suitable). The general method is basically the same as the original
ANFIS as described in [Jang 1993], considering that the samples
are all presented at once and the global gradient is used for tuning
of antecedents.

4.1 CPU Implementation

A reference CPU implementation was done with completely se-
quential code, without exploring any CPU-level parallelism with li-
braries such as OpenMP and MPI. The calculation of ¢ and the gra-
dient method tuning were created by hand, and for solving the Least
Squares problem the LAPACK library was used. Since the tests
were done in a Windows environment, the LAPACK libraries used
for compilation were pre-built Windows binaries provided by the
Innovative Computing Laboratory from University of Tennessee*.

4.2 GPU Implementation

All of the algorithms, except the initial definition of gaussian pa-
rameters (which has negligible time) were implemented concur-
rently in CUDA. Like the CPU implementation, the code for cal-
culating ® and adjusting the antecedents was written by hand. The
CULA” library was used for solving the Least Squares problem in
the GPU. The hand-crafted code was separated into 3 kernels, the
working of which will be detailed in the following sections. The
standard parallel programming technique of tree reduction is used
several times for finding the sum of all elements in an array. These
reductions are all done inside each block, using shared memory as
storage, which makes the operations easy to implement and very
fast. The implementation of tree reduction is largely the same as in
[Juang et al. 2011].

4.2.1 Starting up

Before starting the main iteration loop and running the first kernel,
the starting data (sample inputs and outputs and initial gaussian
parameters) is copied from host (CPU) memory to device (GPU)
memory. Then a main loop starts and what is described in the fol-
lowing sections is done for an arbitrary number of iterations desired
for the convergence of the system.

“http://icl.cs.utk.edu/lapack-for-windows/
Shttp://www.culatools.com/
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4.2.2 Calculating Phi

The partition used for this kernel was of one block for each sample
and one thread for each rule. Due to the tree reduction code needing
a power-of-two-sized array to work, the number of rules is rounded
up to the next power of two and the activation of the extra dummy
rules is set to 0. After running this kernel we have the matrix ¢ full
and ready in device memory. The working of this kernel is then as
follows:

e cach thread: Calculate the activation degree (u) for the cur-
rent rule and sample (as per equation (1)) and store it in shared
memory;

o all threads in a block: Calculate the sum of activations of this
sample for all rules by tree reduction on shared memory;

e cach thread: Normalize the rule’s activation degree by divid-
ing it by the sum of all activations in the block and store it in

4.2.3 Finding 0 with Least Squares

This consists of a simple call to the CULA library, passing the cal-
culated @ to find the corresponding §. Before the library call, a
copy of Y is done, because the result of the estimation is written in
the same array passed as the right-hand side of the linear system.

4.2.4 Calculating the error gradients

The calculation and application of the error gradients was divided
in two kernels. The first one calculates the error gradients for each
sample. The second is responsible for averaging them and applying
them to the parameters. This division was made because the block-
thread partition for each part of the computation is different.

The partition of the first kernel is the same as the one for calculating
®: one block per sample and one thread per rule. The same idea of
dummy rule-values was used to pad the tree reduction present. This
kernel is largely responsible for calculating the error gradients. The
working of this kernel is then as follows:

e cach thread: Calculate one element of ¢ - 6 for all outputs and
store it in shared memory;

e all threads in a block: Calculate the sum of all values found
above for each output by tree reduction on shared memory.
This is equal to the output of the fuzzy system for each sample
and output variable;

e one thread per block: Find the error for the current sample
by subtracting the expected output (in Y') from the calculated
output;

e cach thread: Calculate the error gradients of cf and w}“ for

this sample and rule, and for each input variable. Store them
in global memory.

4.2.5 Applying the error gradients

The bulk of the work in the last kernel is calculating the average
of each error gradient across all samples by a tree reduction oper-
ation inside each block. Thus, the partition for this kernel is one
block per rule, and one thread for a set of samples. Since we cannot
start as many threads inside a block as there might be samples, the
number of samples is divided by a fixed number of groups (32 in
this implementation) and a thread is created for each group. This
thread first sums, sequentially, the error gradients for all samples in
its group. A reduction is done afterwards to get the global sum for
the rule corresponding to that block. The first thread of the block
then calculates the final averages and applies them to tune cf and
w}“. Some implementation care must be taken to treat the last group
since it might have a size that’s different from the others. The work-
ing of this kernel is then as follows:

e cach thread: Calculate the sum of the error gradients for all
samples inside the corresponding group and store it in shared
memory;
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e all threads in a block: Find the sum of gradients from all
groups by tree reduction on shared memory. This is equal
to the sum of gradients for all samples;

e one thread per block: Calculate the final averages by dividing
the gradient sums by the number of samples;

e one thread per block: Apply the final gradient averages to tune
the values of c? and w;‘

After running this kernel, one iteration of tuning the fuzzy system
is complete. Since now the antecedents have changed, in the next
iteration ¢ will be different, and the answer to the Least Squares
problem will also (hopefully) be closer to the optimal value. This
should continue until one is satisfied with the result of the training.
At the end of each iteration, the state of the fuzzy system and all
the temporary matrices are available in device memory and may be
copied to host memory for checking and using.

5 Results

The developed method was tested by training a 0-order Fuzzy TSK
system with two inputs and 35 rules. The CPU and GPU versions
of the algorithm were executed in 3 machines, with 162, 322, 642,
1282 and 256 samples. Each training session lasted for 100 itera-
tions.

The source of the training data is a Mamdani FIS used to park a sim-
ulated car while driving in reverse with constant speed as described
in [Nguyen and Widrow 1990; Kosko 1992]. Since this system had
5 sets for one input variable and 7 sets for the other, we defined
that the same two inputs in the TSK system would also start with 5
and 7 gaussian membership functions. It is expected that the gradi-
ent method adjusts them to the best shape to represent the original
system.

Samples of the system were then taken by dividing the space of
the input variables in 16x16, 32x32, 64x64, 128x128 and 256x256
points and evaluating it at those points. This generated 5 sets of
data, containing 162, 322, 642, 1282 and 256° samples.

5.1 Hardware and software specification

The code for the tests was compiled on Windows 7 with the Visual
Studio compiler and CUDA Toolkit version 4.2. The compiler was
set to generate 32-bit code. The tests were ran on 3 different ma-
chines (to be referred to as Machine 1, Machine 2 and Machine 3).
All machines ran Windows 7 Professional 64-bit. Table 1 contains
the CPU, GPU and RAM specification of each machine.

[ Machine || CPU | RAM | GPU |
Machine 1 || 17 2600 @3.40GHz | 8GB | GeForce GTX 550 Ti
Machine 2 17 960 @3.20GHz | 16GB Tesla C2070
Machine 3 17 960 @3.20GHz | 16GB GeForce GTX 590

Table 1: Test machine configurations

5.2 Testing methodology and resulting times

The time spent on each operation (Calculating ®, least squares and
gradient method) on each iteration was recorded. The GPU oper-
ations were timed by using CUDA events. The CPU operations
were recorded using the QueryPerformanceCounter Windows API
call. The time taken to do the initial copying of samples (as well as
copying back the final learned parameters) and gaussian parameters
was not counted because it is negligible compared to 100 iterations
of the method. The time spent for duplicating Y at each iteration
was also very small, and is not listed in the tables, although it was
accounted for in the total time and speedup calculations.

Table 2 shows the breakdown of total times by each of the 3 main
parts of the algorithm.
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[ Machine [[[ Calc. Phi [ Least Squares | Gradient | Total ]
M. 1 CPU 15.930 42.154 8.132 66.374
’ GPU 1.165 8.801 3.579 13.550
Speedup I 13.67x 4.79x 2.27x 4.90x
M. 2 CPU 19.349 55.317 8.407 83.315
’ GPU 0.486 11.973 1.493 13.959
Speedup I 39.77x 4.62x 5.63x 5.97x
M. 3 CPU 19.238 55.054 8.374 82.907
’ GPU 0.410 11.782 1.143 13.341
Speedup I 4691x 4.67x 7.32x 6.21x

Table 2: Breakdown of execution times (in seconds) for each step
in all 3 test machines, for 256° samples

5.3 Interpretation of results

In Table 2, it clearly shows that the better general speedup for Ma-
chine 2 and Machine 3 comes from the slower CPUs (when com-
pared with Machine 1), rather than the different GPUs, since the
GPU times are all more or less equivalent. However, from Table 2
we can see that the speedups were very different between the GPUs
depending on what part of the computation was considered. The
Phi calculation and gradient adapting performed visibly better on
the Tesla C2070 and the GeForce GTX 590, whereas the opposite
happened with the Least Squares operation.

It’s also interesting to note that the proposed strategy managed to
achieve a mesurable speedup even with a small fuzzy system (only
2 inputs and 35 rules), by exploring parallelism among the sample
data set. This is in contrast to the GPU-FNN described in [Juang
et al. 2011], where a system with only 2 inputs performed worse
on the GPU than on the CPU due to parallelism being explored
primarily on the input dimensions. The GPU-FNN, on the other
hand, achieved bigger speedups with high-dimensional inputs.

Finally, the raw speedup values may be a little misleading since
no CPU-level parallelism was explored in the tests. However, in
typical video game scenarios, both CPU time and GPU time might
be at a premium depending on the particular situation. So, even if
a parallel CPU implementation could reduce the raw speedups and
put both CPU and GPU at the same performance ballpark, it is still
useful to be able to allocate both resources efficiently and choose
between them depending on the specific needs of the application.

6 Conclusions and future work

This paper proposed a way of training a Fuzzy Inference System of
the TSK type on the GPU. A method was described to offload the
training of consequents with Least Squares and antedecents with the
Gradient Method to the GPU. This method was tested with a small
system (2 inputs and 35 rules) and varying amounts of training sam-
ple data. Tests ran on 3 medium-to-high-end machines showed that
the training time on the GPU surpassed the CPU by a factor of
around 5-6x.

We can then conclude that the proposed method works as a way
to offload the training of Fuzzy Inference Systems to the GPU, and
can even reduce the time and energy requirements of running such a
training. Of special note is that expressive speedups were achieved
even with a small number of inputs and rules, as long as there is
a considerably large number of samples. This paves the way for
using Fuzzy Systems efficiently for learning complex patterns in a
broader set of situations.

6.1 Ramifications for game Al

One of the strongest motivations of this work was the idea of of-
floading parts of the Al computation of a game to the GPU, in or-
der to enable more types of Al in games, especially those involv-
ing real-time learning of player behavior. It is expected that these
results encourage game developers to give a second look at this
approach, which traditionally was frowned upon due to the heavy
computation time that was usually required.
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6.2 Future Work

It remains to be studied how the proposed method performs with
data sets of higher dimensionality and number of rules, and espe-
cially how it compares to the GPU-FNN[Juang et al. 2011], both in
terms of final MSE and performance on high-dimensional systems.

There are also some optimizations that remain to be experimented.
One possible optimization in the method proposed is to do the least
squares estimation only at each K*" step, since it is the costliest op-
eration, and also one with a small speedup. Some lower-level opti-
mizations include studying the use of constant and texture memory
and modifying the second gradient kernel to do a two-level reduc-
tion in order to exploit more parallelism.

Also, the method should be implemented in real-time inside a game
to evaluate how much of a speed impact it has, and if the technique
can be used to enhance the player’s sense of challenge imposed by
the Al. An especially interesting prospect is implementing a game
where a virtual opponent uses this system to learn the player be-
havior over time, and adapt to it by choosing his actions based on
predictions of future player behavior.
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