
A Heuristic to Selectively Ray Trace Light Effects in Real Time

Paulo M. F. Andrade Thales L. Sabino Esteban W. G. Clua Paulo Pagliosa

Media Lab – UFF Media Lab – UFF Media Lab – UFF UFMS

Abstract

Raster rendering is often associated to real time

rendering, while ray tracing is usually considered when

quality is more important than speed. Recent works

[Hertel and Hormann 2009; Lauterbach 2009; Sabino

et al. 2011] offer ray trace effects in raster based real

time renderings, in order to improve image quality,

where ray tracing strategies seems to provide better

results. Unfortunately, for many applications like 3D

games, simulation and virtual reality, not only the

image generation frame rate must be high, but it also

must be consistent, i.e., the frame rate must not drop

too much during the experience. In order to have a

solid frame rate performance, level and environment

designers carefully plan the scenario, in order to have a

fluid, real time experience. Differing from raster based

renderers, where the number of polygons to render is

the critical factor for performance, ray trace payload is

more affected by the number of rays that must be

generated in order to render the scene. Since the

number of rays can be influenced by multiple factors

like number and location of the lights and surface

characteristics, we propose a heuristic that use a

strategy to limit the number of rays generated in every

frame, while still improving the visual quality of a real

time raster rendering. The heuristic can choose the best

candidate objects to receive or generate ray trace

effects, without impact the overall performance of the

renderer.

Keywords: ray tracing, rasterization, OptiXTM, GPU,

hybrid rendering, real-time, rendering, deferred

shading

Authors’ contact:

paulo@andrade.com; tsabino@ic.uff.br;

esteban@ic.uff.br; pagliosa@facom.ufms.br

1. Introduction

In the search for photorealism in raster based real time

rendering, programmers created many clever tricks to

simulate global illumination effects, like cube maps for

reflections and shadow maps to simulate areas

occluded by objects. Different from raster based

rendering, ray tracing offer more accurate and complex

global illumination effects. Effects like complex

shadows, lens and mirror like effects, caustics and

ambient occlusion are common effects for most of ray

trace renderers. The reason is that ray trace mimics the

way light works in the real world. Even today, many

visual effects created by ray trace renderers cannot be

done by raster based renderers in real time.

With the recent advances in parallel computing,

researchers started to investigate the possibility of a

real time ray trace renderer using the massive power of

parallel computing. Most of these studies are motivated

by the observation that the basic ray trace algorithm is

easily parallelizable. One of the first experiments of

real time ray trace (RTRT) using parallel processing is

the OpenRT Project [Dietrich, A et al. 2003]. In 2004,

the project team succeeded in port the game Quake 3 to

OpenRT, and the game achieve 20 frames per second

on a cluster of 20 state of the art computers. Since then,

many other projects examine the possibilities of RTRT,

with different strategies and results [Seiler et al.

2008][Bikker [S.d.]]. Up to now, even the best RTRT

renderer can not compete in visual quality and speed

with a modern real time raster based renderer in any

given scenario.

Since the visual quality of a state of the art real time

raster based renderer is still far from possible for a pure

RTRT renderer, researchers started to investigate

hybrid solutions, where some effects are ray traced in a

predominantly raster based scene [Hertel and Hormann

2009; Lauterbach 2009; Sabino et al. 2011]. The main

problem with hybrid solutions is guaranteeing a steady

frame rate. With a raster only solution, the designer can

interactively test the environment and change elements

in order to improve the frame rate. The environment

designer can reduce the number of polygons in the

viewport, moving objects to other places, or by

simplifying objects in order to reduce the number of

polygons. In a hybrid raster and ray trace render, the

challenge to improve performance is bigger, since the

overall performance is not only affected by the number

of polygons to raster, but also, by the number of rays to

be traced at any given time.

In this paper, we propose a heuristic to dynamically

select objects to be ray traced in a hybrid render, in

order to deal with resource constraints. The heuristic

also prioritizes effects and elements that most

contribute to the visual experience of the user.

2. Related Work

Since a pure RTRT renderer, even using current

parallel architectures, can not compete in speed with

state of the art raster renderers, other approaches were

used to increase frame rate. Some approaches tried to

divide the workload between the CPU and the GPU,

like the approach proposed in [Chen and Liu 2007],

where a GPU accelerated rasterization with Z-buffer is

used to determine the first ray-triangle hit of eye rays

(primary rays). Secondary rays are generated using the

CPU in order to provide global illumination effects.

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 1

mailto:paulo@andrade.com
mailto:paulo@andrade.com
mailto:paulo@andrade.com
mailto:paulo@andrade.com
mailto:paulo@andrade.com
mailto:paulo@andrade.com
mailto:paulo@andrade.com
mailto:paulo@andrade.com
mailto:tsabino@ic.uff.br
mailto:tsabino@ic.uff.br
mailto:tsabino@ic.uff.br
mailto:tsabino@ic.uff.br
mailto:tsabino@ic.uff.br
mailto:tsabino@ic.uff.br
mailto:tsabino@ic.uff.br
mailto:tsabino@ic.uff.br
mailto:esteban@ic.uff.br
mailto:esteban@ic.uff.br
mailto:esteban@ic.uff.br
mailto:esteban@ic.uff.br
mailto:esteban@ic.uff.br
mailto:esteban@ic.uff.br
mailto:esteban@ic.uff.br
mailto:esteban@ic.uff.br
mailto:pagliosa@facom.ufms.br
mailto:pagliosa@facom.ufms.br
mailto:pagliosa@facom.ufms.br
mailto:pagliosa@facom.ufms.br
mailto:pagliosa@facom.ufms.br
mailto:pagliosa@facom.ufms.br
mailto:pagliosa@facom.ufms.br
mailto:pagliosa@facom.ufms.br

Approaches like that worked but could not compete in

quality with state of the art renderers.

Another strategy employed in hybrid render is use ray

tracing only for visual effects that can not be easily

done or are slower in a raster only renderer. Hertel and

Hormann [2009] uses a kD-tree accelerated ray tracer

to determine shadow-ray intersections, in order to

improve the quality of highly detailed shadows.

Lauterback [2009] also use ray tracing in to improve

the quality or hard and soft shadows using a similar

approach.

With the introduction of multiple render targets in both

DirectX 9 and OpenGL 2.0, developers started to use a

shading strategy denominated deferred shading

[Thibieroz and Engel 2003] to enhance visual quality

or real time rendering, by implementing a post-

production pass. With the possibility of render in

passes, researches started to utilize a pass to include

ray tracing visual effects in the rendering pipeline.

Wyman and Nichols [2009] use a ray tracing pass to

create superior caustic effects while Cabeleira [2010]

and Sabino et al. [2011] use ray tracing to include

accurate reflections and refractions.

None of this approaches deal with the performance

challenges that combining different render strategies

available for developers and designers.

3. Hybrid Rendering using Deferred
Shading

Most of today’s state of the art real time renderers use

deferred rendering (also called deferred shading). The

basic idea is to compute all the geometry visibility tests

before any light computation (shading) happens. By

separating the geometry rendering from the light

processing, this render steps allows shading process to

occur only in visible polygons, avoiding multiple light

computations for the same pixel, a problem that must

be treated in forward rendering approaches. The visible

geometry determination can be compared to the

primary ray phase of a ray tracer, where eye rays are

projected in the direction of the scene, crossing a view

plane defined by a grid of pixels. The rays collide with

the object and the collision result in information of the

geometry that will determine de color of the pixel.

During the first render pass, other information can also

be computed like z-depth, normals and texture

coordinates. This information is called G-Buffer data

and is stored in memory buffers called Multiple Render

Targets (MRTs), to be used in subsequent render

passes.

With the information corresponding to the primary ray

intersection and the corresponding geometry, rays for

shadows, direct and indirect light, refractions,

reflections, caustics and other effects can be generated

and added to the already generated data in the MRTs,

according to the way the final image must be

generated.

The deferred rendering approach in a hybrid rendering

allows to define which visual effects should be

generated with ray tracing and which effects should be

generated using other strategies.

In order to evaluate the heuristic, we use the hybrid

real time renderer developed by Sabino [2012].

Sabino’s renderer use NVidia OptiXTM [Ludvigsen

and Elster 2010; Parker et al. 2010] to deal with the ray

trace stage of the renderer. The real time render

pipeline has four stages: deferred rendering and

primary ray resolution, shadows, reflections and

refractions, and the final composition.

3.1 Deferred Rendering and Primary Ray
Resolution

In this stage, after all the data is stored in the GPU

memory, a deferred shading pass is calculated in order

to fill the G-Buffer. The G-Buffer has information of

the visible geometry for the other phases.

3.2 Shadows

With the information stored in the G-Buffer, OptiXTM

create shadow rays for every light source.

3.3 Reflections and Refractions

Still with the information stored in the G-Buffer,

OptiXTM compute reflections and refractions.

3.4 Composition

The composition stage is the final stage of the pipeline,

where all the images generated by the other steps are

combined in order to produce the final image.

4. A Heuristic for Ray Tracing in
Hybrid Rendering

Even for the simplest effects, ray tracing could be a

challenging effort and can seriously drain the

processing resources, if not used with caution. One of

the reasons of Its high cost is the recursive nature of

the ray tracing algorithm, in order to generate some

global illumination effects. For example, light rays

bouncing from surface to surface, generates indirect

illumination. The number of light rays bounces and the

sequential nature of the bounces can strongly influence

the render pipeline. A common way to control render

time in offline ray trace rendering is to establish a limit

in both the number of ray bounces and the number of

secondary rays generated by every bounce. Depending

on the surface characteristics, a ray collision can

produce more than one new ray.

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 2

In order to control de performance of the hybrid

renderer, a time constraint must be defined for the ray

trace stage of the rendering pipeline. With this time

constraint, the heuristic must choose which objects

should be traced in order to achieve the best visual

appearance.

 4.1 Object Selection

Considering only which objects should be involved in

the ray tracing phase, we can define the heuristic as:

“given X objects, select the Y most relevant objects

that can be traced given a time limit T.

The reason behind the idea of choosing a subset of

objects that best contribute to de visual experience

came from the real world perception that when images

change constantly, as when we drive a car or walk in

the street, the mind ignores many visual elements. This

is the reason we have orientation signs in the streets.

Signs call attention to inform about something

relevant. In a first person shooter game or a driving

simulator, the faster the experience is, the less is the

perception of detail in a scenario.

Considering the way the human vision works, it is

reasonable to assume that objects near the center of the

field of view are more important the objects far from it.

The same can be said for objects near the observer.

Another observation is that according to environment

conditions (weather, indoor, under water, for example),

some objects cannot be visually improved by ray

tracing effects. With this observation, the heuristic can

be expanded to “given X objects, select the Y objects

nearest from the center of the field of view and from

the observer, that better contribute to the visual

experience considering the ray trace effects to be

applied, and that can be used in the ray tracing pass

considering the time constraint T”.

4.2 The Heuristic

The proposed heuristic has four phases, two fixed

phases that happen before the real time rendering, and

two phases that happen for every frame.

The first phase, called pre-production phase, consist in

identify and select the objects and their relative effects

that must be used in the ray tracing pass, for a given

scenario. This information could be defined by the

designer or generated by an algorithm that analyzes

every object for their characteristics and relationship to

the other elements in the scene.

The second phase is the graph build phase, where a

selection graph is build in order to help determine the

best candidates to ray trace.

During the pre-production phase, every object receives

an importance factor (K). This factor defines how

important is this object in respect with the others given

some scenario conditions and characteristics. Also,

every object has an initial visibility cost (V), and the

corresponding estimated number of rays to be used to

generate each visual effect related to the object (Q).

(Q) could be a list of values for each object, with each

value corresponding to an estimated cost for every

effect, or can be the sum of costs involved to produce

all the visual effects.

Visibility (V) is defined by the average area (A) of the

2D projection of the object in the view plane multiplied

by the distance of the center of the 2D projection to the

distance of the view plane (P), divided by the distance

(D) of the object from the view plane in the 3D space.

The higher the object distance, less visible the object

is. The visibility equation is presented in equation 1.

The total cost (C) for a given object is presented in

equation 2.

(1)

(2)

The object center to view plane center (P) is a value

between [0,1], where 1 corresponds to the center of the

projection be in the center of the field of view and 0

means that the object is out of the field of view.

To select each object is also necessary to calculate the

relevance factor (R), where R is based on the factor

that the object was selected to be traced in the previous

frame (S). Is a binary variable, where 1 means that the

object was previously selected, and 0 means the it was

not. The importance of select previously selected

objects is also a fixed factor, according to the scenario

and is defined by the variable (I). Equation 3 is the

object relevance equation.

(3)

All the equations are calculated for each object, in

order to update the selection graph, in every frame.

Table 1 present all parameters discussed before and

inform if the parameter has their value constant or

variable during the render phase.

Table 1: Equation parameters

Par. Definition Cons Var.

K Object relevance among the others X

V Object visibility X

Q Estimated number of secondary

rays

X

C Processing cost X

A Projected area X

P Distance from the view plane

center

 X

D Distance from the observer X

R Relevancy X

S Previously selected X

I Previously selection relevance X

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 3

The third phase happens during the render phase, when

the GPU receives the selection graph. Every node in

the graph is represent an object to be traced and every

node point to the second node with cost (C) smaller

than the cost of the previous node, but larger than the

costs of the other nodes already in the graph. Every

node also points to N other nodes not selected to

render, where relevancy (R) is bigger than the

relevancy of the actual node. The pointers for other

nodes with higher relevancy are ordered by the

relevancy.

 When an object finishes rendering, the graph is

used to find other node where the cost (C) is smaller

than the time available for the ray tracing phase. When

the node with a suitable cost is found, all the other

nodes with cost higher are removed from the graph and

inserted in the other graph that is being built for the

next frame.

When the first object finishes rendering and there are

still time to trace other objects, the next object must be

selected. In order to determine the best node, the

selection graph is traveled until a node with cost (C)

smaller than the cost still available for the ray trace

phase is found. All the nodes with bigger costs are

moved to the new selection node, in construction to be

used for the next rendering frame. If a node is found,

the graph is still traversed in case this node points to

another one with higher relevance (R).

If there is no time to render a new object, all the nodes

left are moved for the new graph and all the variables

for calculated in order to create a new graph.

When the time left for the ray trace stage is not

sufficient to render a new object, the new graph node is

constructed for the next render phase.

5. Conclusion and Future Works

We have described a heuristic to select objects to be

ray traced in a hybrid rendering pipeline, where the

selected objects are the objects that most contribute to

the visual experience of the user, based on the

assumption that objects near the observed and near the

center of the field of view are more relevant than

others in different situations. We also offer a strategy

to dynamically maintain a graph with the best

candidates to be traced, based on some criteria.

As future works, new variations of the basic heuristic

will be created and compared to the original in

controlled tests that try to mimic common scenarios,

like game levels, in order to verify the quality of the

results towards the purpose of offering better graphics

without negatively affect the experience.

References

BIKKER, J., [S.D.]. Arauna Realtime Ray Tracing & Brigade

Real-Time Path Tracing [online]. http://igad.nhtv.nl/~bikker/,

[accessed 23 Apr 2006].

CABELEIRA, J., 2010. Combining Rasterization and Ray

Tracing Techniques to Approximate Global Illumination in

Real-Time. [online]. Direct. http://www.voltaico.net.

CHEN, C.-C. AND LIU, D. S.-M., 2007. Use of hardware Z-

buffered rasterization to accelerate ray tracing. In

Proceedings of the 2007 ACM symposium on Applied

computing SAC 07. . ACM.

DIETRICH, A, WALD, I., BENTHIN, C. AND AND P SLUSALLEK,

2003. The OpenRT Application PRogramming Interface -

Towards A Common API for Interactive Ray Tracing.

Proceeding of the 2003 OpenSG Symposium,

HERTEL, S. AND HORMANN, K., 2009. A hybrid GPU

rendering pipeline for alias-free hard shadows. Eurographics

2009 Areas Papers, n. April, p. 59–66.

LAUTERBACH, C., 2009. Fast Hard and Soft Shadow

Generation on Complex Models using Selective Ray Tracing.

Lloydia Cincinnati, n. January.

LUDVIGSEN, H. AND ELSTER, A. C., 2010. Real-Time Ray

Tracing Using Nvidia OptiX. Science, p. 1–4.

PARKER, S. G., BIGLER, J., DIETRICH, ANDREAS, ET AL., 2010.

OptiX : A General Purpose Ray Tracing Engine. ACM

Transactions on Graphics TOG, v. 29, n. 4, p. 1–13.

SABINO, T. L. R., 2012. Uma Arquitetura de Pipeline Híbrida

para Rasterização e Traçado de Raios em Tempo Real.

Master Thesis. Universidade Federal Fluminense.

SABINO, T. L. R., ANDRADE, P. M. F., CLUA, E. W. G. AND

PAGLIOSA, P. A., 2011. Efficient Use of In-Game Ray-

Tracing Techniques. SBC - Proceedings of SBGAMES,

SEILER, L., CARMEAN, D., SPRANGLE, E., ET AL., 2008.

Larrabee: a many-core x86 architecture for visual computing.

ACM Trans Graph, v. 27, n. 3, p. 1–15.

THIBIEROZ, N. AND ENGEL, W., 2003. Deferred Shading with

Multiple Render Targets. ShaderX2: Shader Programming

Tips and Tricks with DirectX 9.0.

WYMAN, C. AND NICHOLS, G., 2009. Adaptive caustic maps

using deferred shading. Eurographics 2009, v. 28, n. 2.

SBC - Proceedings of SBGames 2012 Computing Track – Short Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 4

