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Abstract 
 

Raster rendering is often associated to real time 

rendering, while ray tracing is usually considered when 

quality is more important than speed. Recent works 

[Hertel and Hormann 2009; Lauterbach 2009; Sabino 

et al. 2011] offer ray trace effects in raster based real 

time renderings, in order to improve image quality, 

where ray tracing strategies seems to provide better 

results. Unfortunately, for many applications like 3D 

games, simulation and virtual reality, not only the 

image generation frame rate must be high, but it also 

must be consistent, i.e., the frame rate must not drop 

too much during the experience. In order to have a 

solid frame rate performance, level and environment 

designers carefully plan the scenario, in order to have a 

fluid, real time experience. Differing from raster based 

renderers, where the number of polygons to render is 

the critical factor for performance, ray trace payload is 

more affected by the number of rays that must be 

generated in order to render the scene. Since the 

number of rays can be influenced by multiple factors 

like number and location of the lights and surface 

characteristics, we propose a heuristic that use a 

strategy to limit the number of rays generated in every 

frame, while still improving the visual quality of a real 

time raster rendering. The heuristic can choose the best 

candidate objects to receive or generate ray trace 

effects, without impact the overall performance of the 

renderer.      
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1. Introduction 
 

In the search for photorealism in raster based real time 

rendering, programmers created many clever tricks to 

simulate global illumination effects, like cube maps for 

reflections and shadow maps to simulate areas 

occluded by objects. Different from raster based 

rendering, ray tracing offer more accurate and complex 

global illumination effects. Effects like complex 

shadows, lens and mirror like effects, caustics and 

ambient occlusion are common effects for most of ray 

trace renderers. The reason is that ray trace mimics the 

way light works in the real world. Even today, many 

visual effects created by ray trace renderers cannot be 

done by raster based renderers in real time. 

 

With the recent advances in parallel computing, 

researchers started to investigate the possibility of a 

real time ray trace renderer using the massive power of 

parallel computing. Most of these studies are motivated 

by the observation that the basic ray trace algorithm is 

easily parallelizable. One of the first experiments of 

real time ray trace (RTRT) using parallel processing is 

the OpenRT Project [Dietrich, A et al. 2003]. In 2004, 

the project team succeeded in port the game Quake 3 to 

OpenRT, and the game achieve 20 frames per second 

on a cluster of 20 state of the art computers. Since then, 

many other projects examine the possibilities of RTRT, 

with different strategies and results [Seiler et al. 

2008][Bikker [S.d.]]. Up to now, even the best RTRT 

renderer can not compete in visual quality and speed 

with a modern real time raster based renderer in any 

given scenario. 

 

Since the visual quality of a state of the art real time 

raster based renderer is still far from possible for a pure 

RTRT renderer, researchers started to investigate 

hybrid solutions, where some effects are ray traced in a 

predominantly raster based scene [Hertel and Hormann 

2009; Lauterbach 2009; Sabino et al. 2011]. The main 

problem with hybrid solutions is guaranteeing a steady 

frame rate. With a raster only solution, the designer can 

interactively test the environment and change elements 

in order to improve the frame rate. The environment 

designer can reduce the number of polygons in the 

viewport, moving objects to other places, or by 

simplifying objects in order to reduce the number of 

polygons. In a hybrid raster and ray trace render, the 

challenge to improve performance is bigger, since the 

overall performance is not only affected by the number 

of polygons to raster, but also, by the number of rays to 

be traced at any given time. 

 

In this paper, we propose a heuristic to dynamically 

select objects to be ray traced in a hybrid render, in 

order to deal with resource constraints. The heuristic 

also prioritizes effects and elements that most 

contribute to the visual experience of the user.  

 

2. Related Work 
 

Since a pure RTRT renderer, even using current 

parallel architectures, can not compete in speed with 

state of the art raster renderers, other approaches were 

used to increase frame rate. Some approaches tried to 

divide the workload between the CPU and the GPU, 

like the approach proposed in [Chen and Liu 2007], 

where a GPU accelerated rasterization with Z-buffer is 

used to determine the first ray-triangle hit of eye rays 

(primary rays). Secondary rays are generated using the 

CPU in order to provide global illumination effects. 
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Approaches like that worked but could not compete in 

quality with state of the art renderers.  

 

Another strategy employed in hybrid render is use ray 

tracing only for visual effects that can not be easily 

done or are slower in a raster only renderer. Hertel and 

Hormann [2009] uses a kD-tree accelerated ray tracer 

to determine shadow-ray intersections,  in order to 

improve the quality of highly detailed shadows. 

Lauterback [2009] also use ray tracing in to improve 

the quality or hard and soft shadows using a similar 

approach.  

 

With the introduction of multiple render targets in both 

DirectX 9 and OpenGL 2.0, developers started to use a 

shading strategy denominated deferred shading 

[Thibieroz and Engel 2003] to enhance visual quality 

or real time rendering, by implementing a post-

production pass. With the possibility of render in 

passes, researches started to utilize a pass to include 

ray tracing visual effects in the rendering pipeline. 

Wyman and Nichols [2009] use a ray tracing pass to 

create superior caustic effects while Cabeleira [2010] 

and Sabino et al. [2011] use ray tracing to include 

accurate reflections and refractions. 

 

None of this approaches deal with the performance 

challenges that combining different render strategies 

available for developers and designers.    

 

3. Hybrid Rendering using Deferred 
Shading 
 

Most of today’s state of the art real time renderers use 

deferred rendering (also called deferred shading). The 

basic idea is to compute all the geometry visibility tests 

before any light computation (shading) happens. By 

separating the geometry rendering from the light 

processing, this render steps allows shading process to 

occur only in visible polygons, avoiding multiple light 

computations for the same pixel, a problem that must 

be treated in forward rendering approaches. The visible 

geometry determination can be compared to the 

primary ray phase of a ray tracer, where eye rays are 

projected in the direction of the scene, crossing a view 

plane defined by a grid of pixels. The rays collide with 

the object and the collision result in information of the 

geometry that will determine de color of the pixel. 

 

During the first render pass, other information can also 

be computed like z-depth, normals and texture 

coordinates. This information is called G-Buffer data 

and is stored in memory buffers called Multiple Render 

Targets (MRTs), to be used in subsequent render 

passes.  

 

With the information corresponding to the primary ray 

intersection and the corresponding geometry, rays for 

shadows, direct and indirect light, refractions, 

reflections, caustics and other effects can be generated 

and added to the already generated data in the MRTs, 

according to the way the final image must be 

generated. 

 

The deferred rendering approach in a hybrid rendering 

allows to define which visual effects should be 

generated with ray tracing and which effects should be 

generated using other strategies. 

 

In order to evaluate the heuristic, we use the hybrid 

real time renderer developed by Sabino [2012]. 

Sabino’s renderer use NVidia OptiXTM  [Ludvigsen 

and Elster 2010; Parker et al. 2010] to deal with the ray 

trace stage of the renderer. The real time render 

pipeline has four stages: deferred rendering and 

primary ray resolution, shadows, reflections and 

refractions, and the final composition. 

 

3.1 Deferred Rendering and Primary Ray 
Resolution 
 

In this stage, after all the data is stored in the GPU 

memory, a deferred shading pass is calculated in order 

to fill the G-Buffer. The G-Buffer has information of 

the visible geometry for the other phases. 

 

3.2 Shadows 
 
With the information stored in the G-Buffer, OptiXTM  

create shadow rays for every light source. 

 
3.3 Reflections and Refractions 
 

Still with the information stored in the G-Buffer, 

OptiXTM compute reflections and refractions. 

 

3.4 Composition 
 

The composition stage is the final stage of the pipeline, 

where all the images generated by the other steps are 

combined in order to produce the final image. 

 

4. A Heuristic for Ray Tracing in 
Hybrid Rendering 
 

Even for the simplest effects, ray tracing could be a 

challenging effort and can seriously drain the 

processing resources, if not used with caution. One of 

the reasons of Its high cost is the recursive nature of 

the ray tracing algorithm, in order to generate some 

global illumination effects. For example, light rays 

bouncing from surface to surface, generates indirect 

illumination. The number of light rays bounces and the 

sequential nature of the bounces can strongly influence 

the render pipeline. A common way to control render 

time in offline ray trace rendering is to establish a limit 

in both the number of ray bounces and the number of 

secondary rays generated by every bounce. Depending 

on the surface characteristics, a ray collision can 

produce more than one new ray. 
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In order to control de performance of the hybrid 

renderer, a time constraint must be defined for the ray 

trace stage of the rendering pipeline. With this time 

constraint, the heuristic must choose which objects 

should be traced in order to achieve the best visual 

appearance. 

 

 4.1 Object Selection 
 
Considering only which objects should be involved in 

the ray tracing phase, we can define the heuristic as: 

“given X objects, select the Y most relevant objects 

that can be traced given a time limit T. 

 

The reason behind the idea of choosing a subset of 

objects that best contribute to de visual experience 

came from the real world perception that when images 

change constantly, as when we drive a car or walk in 

the street, the mind ignores many visual elements. This 

is the reason we have orientation signs in the streets. 

Signs call attention to inform about something 

relevant. In a first person shooter game or a driving 

simulator, the faster the experience is, the less is the 

perception of detail in a scenario. 

 

Considering the way the human vision works, it is 

reasonable to assume that objects near the center of the 

field of view are more important the objects far from it. 

The same can be said for objects near the observer. 

Another observation is that according to environment 

conditions (weather, indoor, under water, for example), 

some objects cannot be visually improved by ray 

tracing effects. With this observation, the heuristic can 

be expanded to “given X objects, select the Y objects 

nearest from the center of the field of view and from 

the observer, that better contribute to the visual 

experience considering the ray trace effects to be 

applied, and that can be used in the ray tracing pass 

considering the time constraint T”. 

 
4.2 The Heuristic 
 

The proposed heuristic has four phases, two fixed 

phases that happen before the real time rendering, and 

two phases that happen for every frame. 

 

The first phase, called pre-production phase, consist in 

identify and select the objects and their relative effects 

that must be used in the ray tracing pass, for a given 

scenario. This information could be defined by the 

designer or generated by an algorithm that analyzes 

every object for their characteristics and relationship to 

the other elements in the scene. 

 

The second phase is the graph build phase, where a 

selection graph is build in order to help determine the 

best candidates to ray trace. 

 

During the pre-production phase, every object receives 

an importance factor (K). This factor defines how 

important is this object in respect with the others given 

some scenario conditions and characteristics. Also, 

every object has an initial visibility cost (V), and the 

corresponding estimated number of rays to be used to 

generate each visual effect related to the object (Q). 

(Q) could be a list of values for each object, with each 

value corresponding to an estimated cost for every 

effect, or can be the sum of costs involved to produce 

all the visual effects. 

 

Visibility (V) is defined by the average area (A) of the 

2D projection of the object in the view plane multiplied 

by the distance of the center of the 2D projection to the 

distance of the view plane (P), divided by the distance 

(D) of the object from the view plane in the 3D space. 

The higher the object distance, less visible the object 

is. The visibility equation is presented in equation 1. 

The total cost (C) for a given object is presented in 

equation 2. 

 

 

(1) 

 
 

(2) 

The object center to view plane center (P) is a value 

between [0,1], where 1 corresponds to the center of the 

projection be in the center of the field of view and 0 

means that the object is out of the field of view. 

 

To select each object is also necessary to calculate the 

relevance factor (R), where R is based on the factor 

that the object was selected to be traced in the previous 

frame (S). Is a binary variable, where 1 means that the 

object was previously selected, and 0 means the it was 

not. The importance of select previously selected 

objects is also a fixed factor, according to the scenario 

and is defined by the variable (I). Equation 3 is the 

object relevance equation. 

 

 
 

(3) 

All the equations are calculated for each object, in 

order to update the selection graph, in every frame. 

 

Table 1 present all parameters discussed before and 

inform if the parameter has their value constant or 

variable during the render phase. 

 

Table 1: Equation parameters 

Par. Definition Cons Var. 

K Object relevance among the others X  

V Object visibility  X 

Q Estimated number of secondary 

rays  

X  

C Processing cost  X 

A Projected area  X 

P Distance from the view plane 

center 

 X 

D Distance from the observer  X 

R Relevancy  X 

S Previously selected  X 

I Previously selection relevance X  
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The third phase happens during the render phase, when 

the GPU receives the selection graph. Every node in 

the graph is represent an object to be traced and every 

node point to the second node with cost (C) smaller 

than the cost of the previous node, but larger than the 

costs of the other nodes already in the graph. Every 

node also points to N other nodes not selected to 

render, where relevancy (R) is bigger than the 

relevancy of the actual node. The pointers for other 

nodes with higher relevancy are ordered by the 

relevancy. 

 When an object finishes rendering, the graph is 

used to find other node where the cost (C) is smaller 

than the time available for the ray tracing phase. When 

the node with a suitable cost is found, all the other 

nodes with cost higher are removed from the graph and 

inserted in the other graph that is being built for the 

next frame. 

 

When the first object finishes rendering and there are 

still time to trace other objects, the next object must be 

selected. In order to determine the best node, the 

selection graph is traveled until a node with cost (C) 

smaller than the cost still available for the ray trace 

phase is found. All the nodes with bigger costs are 

moved to the new selection node, in construction to be 

used for the next rendering frame. If a node is found, 

the graph is still traversed in case this node points to 

another one with higher relevance (R).  

 

If there is no time to render a new object, all the nodes 

left are moved for the new graph and all the variables 

for calculated in order to create a new graph. 

 

When the time left for the ray trace stage is not 

sufficient to render a new object, the new graph node is 

constructed for the next render phase. 

 
5. Conclusion and Future Works 
 

We have described a heuristic to select objects to be 

ray traced in a hybrid rendering pipeline, where the 

selected objects are the objects that most contribute to 

the visual experience of the user, based on the 

assumption that objects near the observed and near the 

center of the field of view are more relevant than 

others in different situations. We also offer a strategy 

to dynamically maintain a graph with the best 

candidates to be traced, based on some criteria. 

 

As future works, new variations of the basic heuristic 

will be created and compared to the original in 

controlled tests that try to mimic common scenarios, 

like game levels, in order to verify the quality of the 

results towards the purpose of offering better graphics 

without negatively affect the experience.    
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