
Provenance in Games 

Troy C. Kohwalter  Esteban W. G. Clua  Leonardo G. P. Murta 

Instituto de Computação, Universidade Federal Fluminense (UFF) 

Niterói, RJ, Brazil 

 

Abstract 

Serious games have been used to aid the understanding 

of concepts that are taught in theoretical classes. 

However, mistakes made by players may result in 

failure to complete the game objectives. These 

mistakes, which are usually difficult to spot or 

reproduce in subsequent trials, directly jeopardize the 

learning capabilities of the serious games and are 

usually avoided by the established gameplay. In order 

to solve this issue, this paper introduces a new concept: 

provenance in games, which is used to analyze 

collected data and provide a feedback to the player 

allowing him to understand and analyze the effects of 

the decisions he made. To do so, we present a 

framework that records all useful gameplay data and 

provides this data to further analysis. We also 

instantiated this framework in a Software Engineering 

game as a proof of concept, which allows the player to 

identify his mistakes and learn through them.  

Keywords: serious games, education, game analysis, 

provenance, action flow. 

Authors’ contact: 

{tkohwalter, esteban, leomurta}@ic.uff.br 

1  Introduction 

Games  have been used for aiding students to learn and 

understand concepts taught in classrooms [Navarro 

2002; Baker et al. 2003; Dantas et al. 2004; Figueiredo 

et al. 2010]. However, traditional serious games are 

limited in terms of analysis, and do not allow the 

player to deeply comprehend decisions made 

throughout the game. In many cases, this analysis is 

fundamental for detecting symptoms of problems that 

occurred due to wrong decision-making. The player 

would be required to play the game again and make 

different decisions to intuitively figure out which ones 

were not adequate to the situation. However, 

depending on the dynamics and the complexity of the 

game, reproducing the same state can be unviable, 

making it difficult to replay it and try new solutions. 

 Neural studies about the learning capability of 

human brain [Chialvo and Bak 1999; Clark 1950] state 

that the process of learning by correcting past mistakes 

can be very efficient. This process increases the ability 

to adapt to new situations due to the rule of changing 

synaptic strengths, which ensures that synaptic 

changes occur only at neurons involved in wrong 

outputs. Nevertheless, in order to correct mistakes, it is 

fundamental to know which are the mistakes.  

 A method to analyze the game flow using a flow 

graph, which maps actions, was informally proposed 

by WARREN [2011]. More formal approaches were 

also proposed by [Consalvo and Dutton 2006], in 

which the analysis is done by metrics collected during 

the game session, creating a gameplay log to identify 

events caused by player choices. Another method, 

called Playtracer [Andersen et al. 2010], offers a way 

to visually analyze play steps, providing detailed visual 

representation of the actions taken by the player 

through the game. Besides WARREN [2011] proposal, 

which is superficially described in a blog, the other two 

methods are developer-oriented, meaning they aim to 

improve the quality of the game by providing feedback 

to the development team. Due to that, we could not 

find any concrete solution to provide feedback to the 

player in the context of serious games. 

 The goal of this paper is to introduce the use of 

provenance to improve the learning process in the 

context of serious games. Provenance refers to the 

documented history of an object's life cycle and is 

generally used in the context of art or digital data 

[PREMIS Working Group 2005]. Our proposal is 

composed of a framework, which collects the 

necessary information from the game session while it 

is being played for post-game analysis using 

provenance to aid the understanding of decisions made 

during the game. This collected data, in a future work, 

will be processed to create an oriented graph, which 

maps the actions flow made during the game session 

and the generated outcomes. This graph is then visible 

to the player, allowing him to analyze and identify 

critical nodes that influenced the game outcome. Doing 

so, it allows him to understand how the outcome was 

obtained and the decisions that influenced it. This also 

aid in the identification of mistakes, allowing the 

player to reflect upon them for future interactions. 

 Our framework was instantiated in the SDM game 

[Kohwalter et al. 2011] as a proof of concept. The 

SDM game focuses on introducing Software 

Engineering concepts and skills to undergraduate 

students. The new version of SDM, which includes 

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 162



provenance support, allows students to analyze their 

actions and clearly identify steps that lead to successful 

or unsuccessful outcomes. This scenario is especially 

representative because there are multiples influences 

that may lead to success or failure in a software 

project.   

 This paper is organized as follows: Section 2 

provides some background on the Open Provenance 

Model, explaining some of key definitions that are 

used by the proposed method in order to create the 

action graph. Section 3 presents the proposed 

framework to integrate provenance into games, 

explaining how the structure is organized and giving 

some examples to the game-provenance mapping. 

Section 4 presents a proof of concept usage of the 

proposed framework on the SDM game, pointing to the 

changes made in order to adapt it to support 

provenance. Finally, Section 6 presents the conclusions 

of this work and points out some future work. 

2 Provenance 

Provenance is well understood in the context of art or 

digital libraries, where it respectively refers to the 

documented history of an art object, or the 

documentation of processes in a digital object's life 

cycle. In 2006, at the International Provenance and 

Annotation Workshop, the participants were interested 

in the issues of data provenance, documentation, 

derivation and annotation. As a result, the Open 

Provenance Model (OPM) [Moreau et al. 2011] was 

created from the Provenance Challenge that was held 

in that workshop. 

 The Open Provenance Model is a proposed model 

of provenance that was designed to meet the following 

requirements [Moreau et al. 2011]: 

1. Allow provenance information to be 

exchanged between systems; 

2. Allow developers to build and share tools to 

operate on such provenance model; 

3. Define provenance in a precise, technology-

agnostic manner; 

4. Support digital representation of provenance; 

5. Allow multiple levels of description to 

coexist; 

6. Define a core set of rules that identify the 

valid inferences that can be made on 

provenance representation. 

 In Open Provenance Model, it is assumed that 

provenance of objects is represented by an annotated 

causality graph, which is a directed acyclic graph 

enriched with annotations capturing further 

information pertaining to execution. According to 

MOREAU et al. [2011], a provenance graph is a record 

of a past or current execution, and not a description of 

something that could happen in the future.  

 The causality graph is composed of nodes that can 

represent Artifacts, Processes and Agents. Artifacts are 

an immutable piece of state that can represent a 

physical object or a digital representation in a 

computer system. Processes are actions or a sequence 

of actions performed or caused by artifacts and results 

in new artifacts. Agents are contextual entities acting as 

a catalyst of a process that can enable, facilitate, 

control or affect its execution. The edges of the graph 

belong to one of the categories described in Figure 1, 

representing a causal dependency between its source, 

denoting the effect, and its destination that denotes the 

cause. Below are some important definitions in the 

Open Provenance Model according to MOREAU et al. 

[2011]. 

Causal Relationship: Represented by an arc and 

denotes the presence of a causal dependency between 

the source (effect) and the destination (cause). 

Artifact Used by a Process:  A [used] edge from 

process to an artifact is a causal relationship intended 

to indicate that the process required the availability of 

the artifact to be able to complete its execution. When 

several artifacts are connected to a same process by 

multiple [used] edges, all of them were required for the 

process to complete. 

Artifacts Generated by Processes: A [was generated 

by] edge from an artifact to a process is a causal 

relationship intended to mean that the process was 

required to initiate its execution in order to generate the 

artifact. When several artifacts are connected to the 

same process by multiple [was generated by] edges, 

the process must begin for all of them to be generated. 

 

Figure 1: Edges and Usage of Timestamps in OPM. 

Source: [Moreau et al. 2011]. 

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 163



Process Triggered by Process: An edge [was 

triggered by] from a process P2 to a process P1 is a 

causal dependency that indicates that the start of 

process P1 was required for P2 to be able to complete. 

Artifact Derived from Artifact: An edge [was 

derived from] from artifact A2 to artifact A1 is a causal 

relationship that indicates that artifact A1 should have 

been generated for A2 to be generated.  The piece of 

state associated with A2 is dependent on the presence 

of A1 or on the piece of state associated with A1. 

Process Controlled by Agent: An edge [was 

controlled by] from a process P to an agent Ag is a 

causal dependency that indicates that agent Ag 

controlled the start and end of process P. 

Role: Designates an artifact or agent's function in a 

process. 

 In Figure 1, the edge [used] say that a process used 

an artifact, while the [was generated by] edge an 

artifact was generated by a process. The letter "R" 

represents the roles under which these artifacts were 

used since a process may have used several artifacts. 

Likewise, many artifacts may have been generated by a 

process, and each would have a specific role. Roles are 

only meaningful in the context of the process where 

they are defined, and they are not defined by the OPM 

itself, but by the application domains. Roles are used 

on OPM just to distinguish the involvement of artifacts 

in processes.  

 The edge [was controlled by] expresses that a 

process was caused by an agent, essentially acting as a 

catalyst or controller. Since a process may have been 

controlled by several agents, their roles are also 

identified as controllers. This type of dependency 

represents a control relationship and not a data 

derivation. The edge [derived from] assert that artifact 

A2 was derived from another artifact A1, giving an 

oriented dataflow view of the provenance. In contrast 

to the edge [was derived from], an edge [was triggered 

by] allows a process to have an oriented view of past 

executions.  

 Moreover, the Open Provenance Model allows 

causality graphs to be used with time information. In 

this model, time is not used for deriving causality, but 

to validate causality claims, since if the same time 

clock is used to measure the time for both the effect 

and cause, then the time of an effect should be greater 

than the time of its cause. 

 In addition, time may be associated to 

instantaneous occurrences in a process. There are four 

types of this occurrences, being denoted as creation  

and use for artifacts and starting and ending for 

processes.. Given that time may be observed by 

someone, its accuracy is limited by the clock and the 

notion of time. This way, the model allows for an 

interval of accuracy to support the granularity used to 

represent time. With this, it is possible to state that an 

artifact was used no earlier than time t1 and no later 

than time t2, as an example. This rationale is analogous 

for processes.   

 Figure 1 indicates how time information can be 

expressed in the model. For [used] and [was generated 

by] edges, one timestamp can be used to express when 

the event happened. For [was controlled by] edge two 

timestamps marks when the process started and 

terminated. For [was derived from] and [was triggered 

by] edges, one timestamp to indicate when the artifact 

was used. Despite using timestamp, the time of 

occurrence itself is not enough to imply causality. The 

fact that process P1 happened before P2 is not enough 

information to infer that P1 caused P2 to happen. 

 Finally, the Open Provenance Model has defined 

the notion of a graph based on a set of syntactic rules 

and topological constraints. The provenance graph 

captures causal dependencies that can be summarized 

by means of transitive closure. Because of this, a set of 

completion rules and inferences can be used in the 

graph. 

 For completion rules, there is the artifact 

elimination, also known as forward transformation. 

Figure 2 shows such transformation. The edge [was 

triggered by] can be obtained from the existence of 

[used] and [was generated by] edges. Also in the same 

figure, there is another completion rule, called artifact 

introduction, which establishes that the [was triggered 

by] edge is hiding the existence of an artifact used by 

P2 and generated by P1.  The completion rules allow 

the establishment of the existence of some artifacts but 

it does not make explicit their identities. This is the 

consequence of using [was triggered by], which is a 

composition of [used] and [was generated by]. On the 

other hand, Figure 3 presents a completion rule 

regarding process introduction. The edge [was derived 

from] hides the presence of an intermediary process. 

 

 

Figure 2: Artifact introduction and elimination. Source: 

[Moreau et al. 2011]. 

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 164



However, the converse rule does not work without 

some internal knowledge of P, which is fundamental to 

ascertain if there is an actual dependency between A1 

and A2. 

 When users want to find out the causes of an 

artifact or a process, their interest is in indirect causes 

that involve multiple transitions. For this purpose, a set 

of new relationships was created. 

Multi-step "wasDerivedFrom": An artifact a1 was 

derived from A2 (possibly using multiple steps), written 

as a1* a2, if a1 was derived from a2 or from an 

artifact that was itself derived from a2 (possibly using 

multiple steps). In other words, it is the transitive 

closure of the edge [was derived from]. It expresses 

that artifact a2 had an influence on artifact a1. 

Secondary Multi-Step Edges: 

Process p used artifact a (possibly using multiple 

steps): written p * a, if p used an artifact a or an 

artifact that derived a (possibly using multiple steps). 

Artifact a was generated by process p (possibly 

using multiple steps): written a * p, if a or an 

artifact that derived a (possibly using multiple steps) 

that was generated by p. 

Process p1 was triggered by process p2 (possibly 

using multiple steps): written p1 * p2, if p1 used an 

artifact that was generated or was derived from an 

artifact (possibly using multiple steps) that was itself 

generated by p2. 

 Multi-step edges can be inferred from single step 

edges by eliminating artifacts that occur in chains of 

dependencies. Analyzing Figure 4, it is possible to 

infer that process p2 was triggered by p1, omitting the 

fact that p2 used a3, which was derived from a2 that in 

turn was derived from a1, which was generated by p1. 

Other inferences are also illustrated in Figure 4. 

3 Provenance in Games 

In this work we propose the adoption of provenance in 

the context of games. For this, it is necessary to map 

each node of a provenance graph to elements that can 

be represented in the game. As was mentioned earlier, 

the Open Provenance Model has three types of nodes: 

Artifacts, Process and Agents. In order to map them, it 

is necessary to find similarities in a game context. 

 Starting with Artifacts, their provenance definition 

states that they are "an immutable piece of state that 

can represent a physical object […]". Its definition 

already gives a clue on which role they can represent in 

the game context: objects. An object can be anything 

used in the game, for example in the case of an RPG, 

Artifacts can represent weapons, potions, legendary 

artifacts, magical objects, etc. It can represent anything 

meaningful to the development of the game history. 

 On the other hand, agents "are contextual entities 

acting as a catalyst of a process that can enable, 

facilitate, control or affect its execution". In a game 

context, agents can be mapped as people represented in 

the game, non-playable characters (NPCs), monsters, 

and players. 

 Lastly, Processes according to its definition are 

"actions or a sequence of actions performed or caused 

by artifacts […]". So, in a game context, Processes can 

be viewed as actions or events made by living or 

intelligent entities that are present in the game. Note 

that it was made a difference between living and 

intelligent. This difference is important to mention 

because, for example, in an RPG environment a sword 

can be expressed as an agent because this sword has an 

intelligence on its own. Despite being an object 

(sword), it can think and by an extent act, therefore it 

cannot be considered only as an object. It can also be 

as complex as being both an object and an agent at the 

same time. 

 Now, with all three types of nodes mapped into the 

game context, it is also necessary to map their causal 

relations to create the provenance graph. The Open 

Provenance Model defines a few causal relations which 

 

Figure 3: Process introduction. Source: [Moreau et al. 2011]. 

 

Figure 4: Inference. Source: [Moreau et al. 2011]. 

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 165



can be used similarly to their original context, but can 

be extended to be more suitable to the game context if 

necessary. Also, the Open Provenance Model can deal 

well with the aspect of time, which can be heavily 

explored in games, especially on games focused on 

storytelling, recording when each event happened and 

using this information to generate other events.  

 To generate actions and control events, each NPC 

in the game will require a decision tree in order to 

control his actions, providing an array of behavior 

possibilities. Event triggers can also be controlled by 

decisions tree. The next subsection describe which 

information are stored in actions, events, objects, and 

agents. We also describe how the impact decisions tree 

can be achieved by actions, and how this information 

can be processed in order allow further provenance 

analysis. 

3.1 Data model 

Actions can be represented by a series of attributes that 

describe it and the context it was involved, allowing 

the creation of a provenance graph. As illustrated by 

Figure 5, every action needs some information: a 

reason for its existence, why the action was performed, 

what triggered it, and who performed the action. In 

addition, the time of its occurrence can be important 

depending of the reason of using provenance. The main 

reason of using provenance, as discussed in this paper, 

is to produce a graph containing details that can be 

tracked to determine why something occurred the way 

it did. Therefore, with this assumption, the time of the 

action, the person who did it, what the action produced, 

and what it affect are recorded for further analysis.  

 Events also work in a similar way as action, with 

the difference in who triggered them, since events are 

not necessary tied to persons. For objects, its name, 

type, location, importance and the events that are 

generated by it can be stored to aid in the construction 

of the graph. Lastly, agents can have their names, 

attributes, goals, and current location recorded. Figure 

5 illustrates this model. 

3.2 Decision tree 

For the purpose of controlling actions, each important 

NPC requires a decision tree that will be consulted for 

determining which action must be executed, similarly 

to a state diagram modeling. However, using decisions 

tree allows a greater variety of possible actions to be 

executed to reach the same goal, with different ways to 

reach it, which is only limited by its size and 

complexity of the tree. 

 Decision trees [Moret 1982] are a visual tool used 

to model decisions and their consequences, including 

probabilities of occurrence of events, resource costs, 

and usefulness of a particular outcome. This model can 

be considered as a deterministic algorithm to decide 

which variable to test based on the variables already 

tested and the results of its evaluation. Decision trees 

are represented by oriented tree format graphs 

composed of three distinct node types: decision; 

uncertainty; and terminal.  

 The usage of decisions trees brings a variety of 

actions and creates a diversity of possible outcomes in 

games, which can easily be traced to the reasons 

behind the outcomes by following the decision tree 

graph for each action. This information derived from 

decisions tree can be used for provenance in a novel 

manner. 

3.3 Provenance Model 

In order to store all the necessary data to be used later 

for provenance reasons, it is required a storage 

structure. Depending on the information structure, it is 

possible to use the structure itself for inference in 

provenance, simplifying some unnecessary 

information.  

 Considering the generation of actions, which are 

executed by an entity, the action information can be 

stored in a list. Each entity will then have a list of 

actions that contains all executed actions. This allows 

inferring who executed each action by simply looking 

at whose list it belongs to, without the need to 

explicitly say who executed the action. For event 

analysis it is possible to use an analogous approach. In 

the case there was an external influence that resulted in 

the triggering of an action, then the generated action is 

linked to the influence, which also has links to the 

actions that generated the influence. Since actions 

belong to lists that are linked to entities, then it is 

possible to infer who influenced the outcome of the 

action by following the links. 
 

Figure 5: Data model diagram. Gray classes represents 

provenance classes. 

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 166



 Entities present in a scene, or place, can be 

represented in a similar way as actions. Each scene has 

a list of entities that belong to it. To represent a world, 

a list of scenes is created, which in turn contains list of 

entities that are in the scene. Each entity in turn has a 

list of performed actions, which have links to 

influences. Using this structure, it is possible to 

simplify some inferences in the provenance model, 

such as to show only relevant actions, which has 

external influences, to evaluate the outcome of a game 

session. An example of such structure is shown at 

Figure 6, where the world has a list of scenes, each 

scene a list of all entities, and lastly each entity has a 

list of performed actions. 

3.4 Provenance Analysis 

The purpose of collecting information during a game 

session is to be able to use provenance techniques to 

analyze and infer the reasons of the outcome. In the 

previous sections, we introduced a framework to store 

such information. However, not all stored information 

is relevant for the analysis. The provenance graph 

contains replication of actions that did not provoke any 

significant change. These elements act as noise and can 

be omitted during provenance analysis by using 

completion and inference rules. 

 With the aim of finding actions that had an impact 

in the story, the actions that did not cause any dramatic 

change are omitted using multi-step inference rules. As 

an example, we may have a player in combat with an 

enemy and only after a few rounds it falls under the 

player's attacks. With the proposed framework, every 

round creates a node to represent the action taken by 

the player, which is attacking the enemy. This causes 

replication of data that is unnecessary for analysis, so it 

is possible to reduce all these individual attack nodes to 

simply one node.  

 However, that is not always true. The player could 

have made other actions against the enemy, which are 

also considered a form of attack, such as casting a 

spell, or a special attack maneuver, or even healing 

himself in order to survive. These actions are not 

duplicated, but can still be encapsulated for a 

superficial analysis, and if necessary can be expanded 

for a detailed analysis. Note that all collected 

information is preserved and the only change made is 

on how it is displayed. Since provenance is an analysis 

from the present to the past, the outcome of the battle 

is already known and can be used to decide which 

actions were relevant. If the player was victorious with 

minor challenge, did not suffer severe wounds, or 

barely used any resources at his disposal, then the 

entire combat can be simplified to just one node 

representing that the player attacked the enemy and 

was victorious. However, if the combat was 

challenging or the player lost, it is interesting to show 

all action nodes for analysis so the player can deeply 

understand the combat and decide what and when 

something went wrong. The ways to determine which 

groups of actions can be encapsulated to only one 

node, omitting all events in that group, is a future work 

of this research. However, such decisions are also 

dependable of the context. 

4 Evaluation 

The proposed framework was instantiated in a 

Software Engineering educational game named 

Software Development Manager (SDM) [Kohwalter et 

al. 2011]. The goal of SDM is to allow undergraduate 

students to understand the existing cause-effect 

relationships in software development. As so, the 

adoption of provenance becomes an important 

instrument to better support knowledge acquisition, 

allowing the possibility of tracking mistakes made 

during a game session. 

 In SDM, which was developed using the game 

engine Unity3D [Higgins 2010], the player has a team 

of employees that are used to develop software 

according to contracts made with customers. The 

gameplay and game mechanics are modeled presenting 

possibilities to the player to decide strategies for 

development and define the roles for each staff 

member. As in any contract, the software have 

requirements that must be followed during 

development. From a gameplay point of view, these 

requirements help to balance the mechanics and rules. 

When the software is completed and delivered to the 

customer, there is a quality assessment of the software 

and a project completion payment accordingly to the 

product quality. 

 Since SDM focuses in people management, the 

main elements of the game are the employees, which 

represent the player’s labor force. Employees can 

perform different roles (manager, analyst, designer, 

programmer, etc.), which valorizes attributes used to 

calculate the employee’s performance. Another 

element present in the game is specialization, used to 

 

Figure 6: Example of structure 

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 167



define the employee working competence.  With the 

specialization system, it is possible for employees to 

undergo training to learn new sets of skills. Also the 

concepts of working hours, morale, and stamina are 

used to modify the employee’s productivity. Figure 8 

show a simplified version of SDM’s class diagram 

focusing on the employee, showing his human 

attributes, types of specializations, the possibility of 

training to acquire specializations, and that the 

employee is affect by other employees that belong to 

the staff team. It also illustrates the project, its 

characteristics and requirement. 

4.1 Adapting SDM for the proposed framework 

Some changes were made in the SDM game to 

introduce decision trees, allowing a variety of tasks and 

their respective actions, and a way to record all actions 

made by the player's employees for future usage on 

provenance. With these changes, it is possible to create 

an oriented graph representing the flow of actions 

performed by each employee during the development 

of the software. The purpose of this graph is to use 

provenance techniques, presented earlier in this paper, 

allowing the player to view all the actions made during 

the playing session. With this information, the player 

can analyze the flow of the game and understand why 

the game session ended the way it did.  

 The Analyst has three different tasks to perform: 

Elicitation and validation; Requirements specification; 

and the creation of acceptance test cases.  Another 

change was the way the analyst role works. Now, with 

the separated tasks of elicitation and specification, it is 

necessary to discover the system requirements by the 

process of elicitation and then create the model via 

specification. With these changes, the analyst role has 

four possible tasks, each one with its own actions: 

Elicitation and Validation, Specification, Quality, and a 

balanced task, which performs both elicitation and 

specification. These analysts tasks are illustrated in 

Figure 8. 

 For the Architect role, new tasks were introduced, 

which are responsible for creating integration and 

 

Figure 8: SDM's simplified class diagram. Adapted 

from [Kohwalter et al. 2011]. 

Root

Elicitation and 
Validation

Discovery w/ Prototype

Discovery w/ Reviews

Specification

Above Moderate
Especification

Documentation

Bad Especification

Quality Test Cases

Balanced

Elicitation

Discovery w/ Prototype

Discovery w/ reviews

Especification

Above Moderate
Especification

Documentation

Bad Especification

Figure 7: Analyst Decision Tree Example. Orange boxes represent end nodes (tasks). Red boxes are value evaluation. 

Green lines represent probabilistic paths and blue lines are decision paths. 

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 168



system test cases, generating prototypes to be used by 

the analyst, and his task of aiding programmers by 

working the software architecture.  

 The manager role was revised and changed as 

follows: He has the task of managing the staff and 

decides which role each employee should perform; he 

also decides the development focus, which can be 

Analysis, Development, Quality, and Balanced; finally, 

he decides the staff working hours and manage the 

hiring of new employees. 

 The roles of Programmer and Tester had suffered 

changed that affect each other and it is not the tester's 

responsibility anymore to fix bugs. The tester only 

finds and reports bugs so the programmer can fix them. 

Because of that, the programmer's tasks are as follow: 

Software Repair; Software Development; Code 

Refactoring. Moreover, the tester only task is to report 

bugs found by the execution of test cases.  

 With the new programmer's task of refactoring, a 

new aspect was introduced in the software 

development, which is the quality of the code. This 

quality influences the probability of removing and 

introducing bugs in the software. Also, the quality of 

the code is directly affect by how the programmer is 

working, that now has three different ways: Ad hoc; 

Design-Code; and Test-Driven. Only the first one 

affects quality, done in a negative way. To increase the 

code quality it is necessary to do refactoring of parts in 

the software already implemented. 

 The Draw-Code mode of programming is the 

default one and equivalent to the one in the previous 

version of the game. Test-driven allows the 

programmer to develop the software with minimal 

chances of introducing new bugs because the 

programmer is taking his time to create unitary test 

cases, check the code for bugs and repair. 

 With these changes in roles, other changes were 

made in the structure of the game to accommodate 

them. The first change was related to test cases and 

software bugs. Because of different test cases available 

and performed by different roles, it was necessary to 

expand the way bugs are represented in the game. As 

such, there are now four categories of bugs: 

acceptance, system, integration, and unitary. 

 Figure 9 illustrates the changes made in each role 

and allows the player to configure the tasks of each 

employee. The decisions trees for each role use all 

options presented in that screen. Due to the 

overwhelming decisions allowed for the player to 

configure his staff, setting roles and tasks for each 

employee, the staff manager can unburden the player 

by deciding the staff configuration in case the player 

does not want to micromanage the game, giving some 

of the responsibility to the staff manager. Doing so, the 

manager will distribute roles and tasks for each 

employee depending on the development progress, 

which can be determined by the manager or the player, 

depending on the degree of autonomy given to the 

manager.  

 Another change made in the game is to allow an 

employee to perform up to two roles simultaneously, 

having a primary and secondary role. This change was 

based on the fact that in provenance, when performed 

an action, the role of the agent can be relevant, 

distinguishing involvement of artifacts and agents in 

processes. When an employee has both roles filled, the 

player or the staff manager decides the rates for each 

role. In other words, it specifies how many hours of his 

time that employee dedicates for each role. All rules 

for the primary role apply to the secondary role, and 

the productivity of the primary and secondary roles are 

multiplied by their rate factor. The staff manager also 

can use this feature for assigning roles.  

With the revised roles and their respective tasks, 

decision trees were made to allow for a task selection 

and create diversity on the game flow. Each decision 

tree corresponds to a role, obeying their respective 

tasks. However, the way these tasks are performed may 

vary depending on the situation. As such, the decision 

process is influenced by internal reasons, generated by 

the employee himself, and external reasons, decisions 

made by the player or staff manager. Figure 8 illustrates 

an example of such decision tree, belonging to the 

analyst role and Figure 9 illustrates the external 

reasons. 

 The introduction of decision trees allows the 

variety of actions performed by each role. These 

 

Figure 9: Task Configuration window 

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 169



actions, which are the result of a path from root to leaf 

in the decision tree, are stored for future provenance 

analysis, along with the path taken as well as the 

actions that influenced it. When an action that 

generates influence is executed, is stored the type of 

action it influences and a pointer to it. This stored 

information is used every time a new action is executed 

while the influence persists, identifying external 

influences. Other tasks can also produce actions for 

storage, such as hiring and firing an employee, 

training, player choices and decisions. 

4.2 Information Structure 

The information structure used on SDM is similar to 

the one explained in section 3.3. As such, each project 

is a scene contains a list of all entities that participated 

in it. These entities are employees that worked in the 

project and the player. Each employee has a list of 

actions made and each action contains its details, 

including links to other actions in case of external 

influences. Figure 10 illustrates the action nodes 

generated during the game. These actions have details 

about who performed it, when it was performed, which 

task generated it, if there were any external influences, 

and a description of the decision tree path taken to 

generate the action.  

 As said, all actions are grouped in the owner list, 

meaning that each employee has a list of actions. The 

player also has a list of all actions performed.  Figure 

11 illustrates the information organization for a project, 

showing all the employees involved in it and the 

details of the project.  

 Each employee slot in the picture is a list of all 

employees that belonged to that slot and in the right 

hand side of each slot is the action list, showing the last 

action performed. By selecting the action, it shows its 

details, as depicted in Figure 10, and transverses the 

list by the Previous and Next buttons. It is analogous 

for the employee list. 

4.3 Provenance Analysis in SDM 

With the adaptations in SDM, it is now possible to use 

the collected data for provenance analysis. However, 

due to limitation on Unity3D, the data should be 

exported for an external visualization and analysis tool, 

which will remove unnecessary information, duplicate 

actions or similar ones by inference rules. For the 

purpose of the game, the only interesting actions are 

the ones that influence or are influenced by other 

actions, such as player and manager decisions or tasks 

that generate interference on other roles like 

architecture task from an architect. 

 Action that does not generate influence or does not 

influence other actions are not relevant for the analysis, 

due to the fact the action did not change the state of 

development, negatively or positively. Nevertheless, it 

is important not to forget that even if they are not 

relevant for the analysis, they may have been relevant 

for the development of the software in the game. 

Without such actions, the game would stagnate and 

would not progress. The problem is not these actions, 

but the decisions made for the execution of these 

actions. 

 After cleaning the data, the information is more 

adequate for analysis and provenance inferences. This 

way, the player is able to trace actions that had an 

impact during development and study the adequacy of 

his decisions and the course of actions that lead from 

these decisions. Identifying these actions is essential 

for understanding why something happened the way it 

did. This refined action graph can be displayed for the 

player by external tools designed for graph display, 

aiding visually the analysis. 

 Understanding the reasons of the outcome, the 

player is able to learn from his decisions and analyze 

 

Figure 10: Action details 

 

Figure 11: Information Organization 

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 170



more efficient ways to develop future projects. In 

addition, it allows the perception of mistakes made that 

should be avoided in the future. 

5 Conclusion 

This paper proposed a new framework for provenance 

in games, allowing post game analysis to discover 

divergence points that contributed to the end result of 

the gaming session. This framework can be used on 

serious games to improve understanding by analyzing 

game flow and identifying actions that influenced the 

outcome, aiding the player to understand why it 

happened the way it did. While many concepts of 

provenance were directly used, for this work we also 

proposed new elements and adaptions for a video-game 

software. 

 This paper also showed a game in which our 

proposed framework was instantiated, collecting the 

necessary information for post analysis using 

provenance. However, due to the complexity of data 

extraction, the usage of provenance is planned as future 

work. We will export all collected data, generate a 

graph, and apply provenance analysis techniques over 

it. We also intend to run experiments to evaluate the 

aspects of learnability proposed by our framework. 

Acknowledgements 

We would like to thank CNPq, FAPERJ and CAPES 

for the financial support. 

References 

Andersen, E. et al., 2010. Gameplay analysis 

through state projection. In: ACM Press, 

pp.1–8. 

Baker, A., Navarro, E. and van der Hoek, A., 

2003. Problems and Programmers: An 

Educational Software Engineering Card 

Game. In: ICSE, pp.614–621. 

Chialvo, D.R. and Bak, P., 1999. Learning from 

mistakes. Neuroscience, v. 90(4), 

pp.1137–1148. 

Clark, G., 1950. The organization of behavior: A 

neuropsychological theory. The Journal 

of Comparative Neurology, v. 93(3), 

pp.459–460. 

Consalvo, M. and Dutton, N., 2006. Game 

analysis: Developing a methodological 

toolkit for the qualitative study of 

games. In: Game Studies, v. 6. 

Dantas, A., Barros, M. and Werner, C., 2004. 

Treinamento Experimental com Jogos de 

Simulação para Gerentes de Projeto de 

Software. In: SBES. 

Figueiredo, K. et al., 2010. Jogo de Estratégia de 

Gerência de Configuração. In: III Fórum 

de Educação em Engenharia de 

Software. 

Higgins, T., 2010. Unity - 3D Game Engine. 

Available at: http://unity3d.com/ 

[Accessed May 5, 2011]. 

Kohwalter, T., Clua, E. and Murta, L., 2011. 

SDM – An Educational Game for 

Software Engineering. In Salvador: In: 

X SBGames. 

Moreau, L. et al., 2011. The Open Provenance 

Model core specification (v1.1). In: 

Future Generation Computer Systems, 

27(6), pp.743–756. 

Moret, B., 1982. Decision Trees and Diagrams. 

In: ACM Computing Surveys (CSUR), 

14(4), pp.593–623. 

Navarro, E., 2002. SimSE: A Software 

Engineering Simulation Environment for 

Software Process Education. In: ICS. 

PREMIS Working Group, 2005. Data Dictionary 

for Preservation Metadata, Preservation 

Metadata: Implementation Strategies 

(PREMIS). Available at: 

http://www.oclc.org/research/projects/ 

pmwg/premis-final.pdf. 

Warren, C., 2011. Game Analysis Using 

Resource-Infrastructure-Action Flow. 

Ficial. Available at: 

http://ficial.wordpress.com/2011/10/23/g

ame-analysis-using-resource-

infrastructure-action-flow/ [Accessed 

June 3, 2012]. 

 

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 171




