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Figure 1: Three scenes rendered by our hybrid deferred shading/ray tracing method. It is worth noting: the colored shadows in the left
image; the refraction effects in the middle one, which reveal colors of the curtains background; and, in the right image, the reflection of the
environment map over the metallic monkey surface.

Abstract

Rendering in real time applications is usually based in rasterization
techniques, as they are highly dependent on interactive frame rates.
Ray tracing, a far superior method for rendering photorealistic im-
ages, has little participation in this media, mainly because it comes
with a greater computational cost. The advent of massively parallel
processors in the form of GPUs, however, has been changing this
scenario since parallelized ray tracing has been showing itself an in-
creasingly viable alternative. Taking advantage of this trend, many
works present parallelization methods for the classical ray tracing
algorithm, as other ones introduce new ways of combining the two
approaches in order to take the better of each one without breaking
any of the restraints associated with real time applications.

Although the application of these hybrid rasterizing/ray tracing
techniques have reduced the time needed to render the final im-
age and thus, made new scenes viable in real time systems, they are
still limited to the complexity of the 3D scene. The need to render
a high number of complex objects could drop the performance of
the application and reach an impracticable frame rate for real time
parameters. While many works investigate new forms of acceler-
ating this process, increasing the number of scenes that able to be
rendered in time, we present a more robust proposal, capable of
maintaining a reasonable frame rate under any circumstances. It is
done by analyzing the scene and rendering it in the best way pos-
sible, detailing the most important objects and respecting the time
budget for the remaining ones. We also present a heuristic approach
that select a subset of the scene to be ray traced, avoiding objects
that might not have significant contribution to the real time experi-
ence. This selection is a step forward in the field as it is capable of
maintaining the real time requirement of some applications, whilst
bringing the best possible experience to the viewer.
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1 Introduction

In computer graphics field, it is a common belief that raster tech-
niques are better suitable for real-time rendering while ray tracing
is a superior technique to create photorealistic static images, due
to the ray tracing processing cost. Thus, even though the improve-
ment that comes with it in the final image quality is welcome in any
scenario, when it comes to interactive applications, the rasterization
approach is a far more viable option.

Recently, the aforementioned high computational cost of the ray
tracing algorithms has been bypassed by the use of parallel tech-
niques. The most modern graphics processing units (GPUs), which
have been used as general-purpose massive parallel multiprocessors
[NVIDIA 2007; kir ], can be highly compatible with real-time ray
tracing implementations, since this is a parallel problem by con-
cept [Bigler et al. 2006]. Although this motivates a lot of works in
the area, we still find the use of ray tracing techniques in real time
scopes restrict to very specific scenarios [Aila and Laine 2009; Bak
2010; Hachisuka 2009; Heirich and Arvo 1998].

Many works have being developed investigating the use of hybrid
renderers, aiming to combine the advantages of both approaches in
order to obtain a final image with a better quality but still capable
of being processed in the time budget required by the interactive
character of the application [Beck et al. 2005; Sabino et al. 2012].

Real-time renderers have its success based in the generation of
at least fifteen frames per second, so that the application can run
smoothly. That is a completely different proposal from offline ren-
derers, which aims for the most photorealistic result leaving the
time restraints as a secondary factor. So, naturally, rasterization
dominates real-time rendering, a method that convert vector infor-
mation correspondent to a three-dimensional space into the raster
space. It can be done very quickly as the graphics pipeline, the core
of modern GPUs design, has been vastly optimized for the process.

Offline renderers accurately simulate the way light interact with sur-
faces. Obviously, the simulation of every beam of light in a 3D
space is impractical, so that, other approaches were developed to
approximate the way light spread through the scene. An example of
that is the Backward Ray Tracing, where the rays are launched from
the camera (or the viewer) to the different objects of the scene, in-
stead of the other way around. Depending on the characteristics of
the surfaces hit by the rays, secondary rays may be recursively gen-
erated. This second flow of rays can be used to model new light ef-
fects to the scene such as shadows, reflection, refraction, and many
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others. Although these recursive rays are responsible for the new
photorealistic features of the final image, they come with the high
complexity and time consumption disadvantages [Whitted 1980],
since each pixel can generate not one, but an infinity of rays. The
problem becomes even harder when, for each one of them, comes
the need to compute the intersection points with the scene objects.

The concept of a hybrid renderer combining the advantages of a
raster pipeline and ray tracing techniques is not new. Beck et
al [Beck et al. 2005] proposed a CPU-GPU combined framework
based in real-time ray tracing. Besides him, Bikker [Bikker 2007]
developed the Brigade, with a similar concept, dividing the render
talks between the available processing units, either GPU or CPU
cores. Finally, Sabino et al [Sabino and Clua 2012] were able to de-
velop a hybrid pipeline framework in which this work is based on.
In this approach, we choose not to split the workflow between the
CPU and GPU in order to get a simple and straightforward speedup.
Our method uses both raster and ray tracing techniques to obtain the
final image, rendering a full rasterized image, computed in GPU,
and applying the secondary effects from the ray tracing approach.
In this way, the bottleneck effect created by the often communica-
tion between the CPU and GPU graphic memories is eliminated.

In this method, the performance of the ray tracing pass is optimized,
as we can use the deferred shading [Deering et al. 1988] technique
to compute the collision between the 3D scene objects and the first
ray batch coming from the camera. The following rays, however,
are traced in the conventional way, which result the photorealistic
effect we are aiming for. Thus, depending on how many objects
there are in the scene and the complexity of calculating the exact
color of their surfaces, the renderer may not be able to achieve a
frame rate compatible with the application.

The objective of this work is to investigate ways of adapting the
advantages of this hybrid renderer in a much more robust system,
less sensitive to the complexity of the data input. This system has
to render the final scene within the pre-established time constraints,
capable to maintain the highest level of quality as much as possible.
In this work, our main strategy is to establish the most significant
scene aspects to the viewer experience, in other words, stipulate the
portion of the scene that causes the most visual impact and render
it with an appropriate level of detail, leaving the rest of the scene to
be rendered within the time budget to maintain an acceptable frame
rate.

This paper is organized as following. In Section 2, we introduce
other approaches of hybrid renderers that inspired or contributed
with our technique development. After that, in Section 3, we detail
the architecture of the framework used in our application. In Sec-
tion 4, we comment our method to evaluate the final scene in a form
of a new heuristic, and the way it can improve the framework into
a more robust system. Section5 discusses implementation aspects.
In Section 6, we present some results data, and, finally, in Section
7, we present final remarks.

2 Related Work

Beck [Beck et al. 2005] proposes a ray tracing framework for Real-
time applications that divides the traditional stages of a conven-
tional ray tracing algorithm in independent tasks scheduled between
the available GPU or CPU processing cores. These tasks can be un-
derstood as three simple passes from a classical GPU pipeline: the
first one consists in generating a shadow map; the second, an algo-
rithm to identify the geometry of a 3D object; and the last one, a
blur filter application pass. In the geometry identification pass, the
triangle indices are written in a frame buffer coded as a RGB map,
and the result of the shadow map from the first pass is blurred in
the alpha channel. Then, the last pass includes a shading technique,
Phong shading for example, putting all the results so far together.

Chen [che ] presented a hybrid ray tracer as well, utilizing both
CPU and GPU. In his method, at first, a rasterization pass using Z-
buffer is executed in order to identify which triangles are visible in
the moment the first light rays are shot from the camera and collide
to the scene. After that, the CPU, retrieving the intersection points
already computed, is able to shoot the secondary rays to achieve the
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photorealistic effects expected from the ray tracing. Chen’s work
also proposes to move the shading operations to the GPU, so that
the bottleneck effect from the constant data transfers between the
memories can be reduced.

NVIDIA OptiX [Parker et al. 2010] is a general purpose ray tracing
engine capable of not only exploiting the NVIDIA graphic proces-
sor units, but also other general purpose processors. It architecture
offers the possibility of programming a C/C++ and CUDA based
language script in each ray, giving a lot of flexibility to the engine
as the user can control how the rays are going to be generated and
launched. It also provides an easy-to-use well defined structure for
storing the input scenarios, which can be accelerated by using nu-
merous data structures. The results acquired from our last experi-
ences with OptiX were very promising, driving the adoption of the
engine in our current work.

Making use of OptiX engine, Sabino et al [Sabino et al. 2012] pre-
sented a hybrid pipeline model for ray tracing in real-time applica-
tions applying the Deferred Rendering technique at first in order to
rasterize the whole scene, eliminating the need to ray trace all the
elements of the scene without any major lightning effect. Thus, the
ray tracer module would only be responsible to add the photoreal-
istic aspect of the scene, i.e., shading, reflection, refraction, among
others, and only after the main drawing. Besides that, as well as
Chen’s contribution, they were able to resolve the first series of col-
lisions between objects and the rays shot from the camera in the
raster process, optimizing the second stage of the algorithm. Fi-
nally, the proposed model has been chosen as a framework for this
work development given the possibilities it showed up for improve-
ment in the interactive rendering area. The objective of this work is
to develop these previous techniques, making a more robust system
sensitive to a whole new range of possible scenarios, and even able
to adapt to them, delivering the best possible final image.

3 The Hybrid Ray Tracing Architecture
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Figure 2: The architecture of our pipeline.

As introduced in the previous sections, many works propose the use
of hybrid ray tracing techniques, sharing the computational load to
generate the image between CPU and GPU cores in order to reach
de maximum performance in both sides of the spectrum. Using
modern graphic processing units and multiple render target tech-
niques in the form of the deferred shading, we are able to take ad-
vantage of the traditional rasterization pipeline as the first stage of
the ray tracing process, accelerating the synthesis of the final image
by reducing the amount of processing needed to achieve the desired
photorealistic result. This work has been developed based on this
hybrid pipeline model, which had recently presented promising re-
sults in the field.

Although the deferred shading and the ray tracing stages are cov-
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Figure 3: The six stages generated by the geometry pass: (a) position, (b) normal, (c) z-depth, (d) diffuse or albedo color, (e) specular color,
(f) optical properties. (g) is the final rasterized image after the lightning stage.

ered in the next two subsections, in this work we will not discuss the
initialization phase in details. This phase is basically the first step
of our pipeline architecture, responsible for loading the scene from
its file, as well as the materials, meshes for the models, textures
and light sources. It is also responsible for setting up the camera,
the data structures related to the Deferred Shader, the OptiX engine
and finally the application rendering loop. Addition information is
provided in [Sabino and Clua 2012].

3.1 The Deferred Shading

In the traditional GPU rendering pipeline, the Z-Buffering tech-
nique is very usual, managing the depth of the scene objects in order
to eliminate the overlap between them. Although it have an ex-
tensive use, this technique can be inefficient: as Z-buffer normally
compute the shading in the moment of a fragment generation, and
a single pixel often generates more than one fragment, for each one
of them that are not visible, this computing is wasted. It’s stated
that ordering the scene objects can reduce this issue, but the use of
the deferred shading is able to fully eliminate it.

The concept of Deferred Shading was first introduced by Deering
[Deering et al. 1988], even if the term have been adopted after that,
when the technique became extensively used in real-time rendering
applications, mainly video-games.

The technique introduces a key concept: to compute all the shad-
ing of a pixel and store the results in an intermediary frame buffer
(named G-buffer), instead of writing the immediate result directly
in the color buffer. The advantage this method comes by execut-
ing all the visibility tests before applying any shading effect on the
fragments. The idea is not new, but became viable with the capacity
of the GPUs to write in multiple render targets at once.

As mentioned above, deferred shading takes advantage of a struc-
ture called G-buffer [Saito and Takahashi 1990] responsible to store
the geometric data from the scene, using a so called geometry pass.
The values saved into G-buffer in this framework are the follow-
ing for each render target: position, normal, z-depth, albedo and
specular color. This information is used in the lighting stage of the
deferred shading in order to create the first layer of rendering (see
Figure 2). Although this information is enough to the first render of
the scene, as well as enough to determine the origin and direction
of shadow rays in the ray tracing pass, it lacks the data needed to
compose the reflection and refraction rays. So, one of the contri-
bution of Sabino et al works, also adopted for us was the extension
of the G-buffer with an extra render that stores optical properties of
a pixel, specifically: reflection and refraction indices; opacity and
shininess, in the form of the specular power.

It is important to say that deferred shading does have its drawbacks.
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As easily perceived, the video memory requirements and fill rate
costs for the G-buffers are significant. Besides that, the technique
presents some substantial limitations in aliasing and transparency.
Even though, these disadvantages cannot be completely ignored,
they can be minimized or bypassed applying on the next step of
the proposed pipeline, the Post Processing phase, with antialiasing
image-based techniques such Shishkovtov edge-detection method
[Shishkovtov 2005] and, more recently, Morphological Antialias-
ing [Reshetov 2009] for better image quality.

3.2 The Ray Tracing lllumination Effects

In the ray tracing stage, the secondary rays — the ones generated
from the intersection point between the camera-shot rays and the
objects of the scene — are responsible for creating the global illu-
mination effects lacking from the rasterization so far.

After the primary rays are launched of the camera, shadow rays
are generated from the collision points with the objects to the light
sources. To verify if a certain point is shadowed, the algorithm
check if that specific ray coming out of it reaches a light source
colliding with any other object in the scene on its path. At this point,
we have a fully rasterized scene which shadows are being generated
by the ray tracing technique, adding a more polished and realistic
effect than real time shadow map raster implementations. Tracing
shadow rays adds a significant computational cost to this process,
but as this is done in GPU, it is preferable to increase the amount of
computation than use additional memory for shadow mapping, for
example.

With that done, the algorithm execute as some of the conventional
ray tracers. Other secondary rays are shot from the collision points,
obtained through the rasterization step, each one in its correspond-
ing direction in order to produce the global illumination effects like
reflections and refractions.

Basically, at this time, our pipeline can be roughly summarized in
four different image stages: initially, the GPU rasterization of the
scene with the primary rays resolution (Fig. 4a) with the edge-
detection antialiasing algorithm applied; then, the shadow pass,
where shadows rays are generated based on the information ex-
tracted from the G-buffer (Fig. 4b); after that, the reflection and
refraction synthesis (Fig. 4c); and finally, the final composing of
the scene. The result of this process is stored in an image layer that
is blended to the rasterized image to add the proper effects expected
from the ray tracing (Fig. 4d).
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Figure 4: In (a) the result of the deferred shading phase. In (b),
the shadow rays generated by the ray tracing module. Image (c)
shows the reflection and refraction computed by other secondary
rays, while image (d) shows the final composition of the scene.

3.3 Composing the Final Scene

In order to compose the final image to be displayed, a blending
operation need to be done, adding the ray tracing generated layer
to the rasterized image. At this point, the frame buffer stores both
processes’ result and the simplest way to generate the final image is
to superimpose the ray traced image on to the rasterized one. The
weights to this blend are relative to the amount of ray tracer effects
desired on the final image.

With the filled frame buffer and the desired settings to the blend,
the operation can be easily accomplished with a shader program.
Applying the shader represents an additional light weight pass in
the rendering pipeline, since we only need to render a screen-size
(in worst case) quadrilateral primitive.

In the first version of the framework, this stage came down to in
a simple and direct way in overlaying the ray traced image on to
the rasterized one, as both images presented the same dimensions
and their pixels were one by one equivalent. The next section intro-
duces a technique which aims to limit the ray tracing module do-
main, in order to fit the time restrictions in a better fashion. Thus,
the blending operation have shown some more complex computa-
tion requirement, having the need to compose two different images
into one, matching the appropriate illumination effects to their exact
place in the final image.

4 A Heuristic Approach to Ray Trace over
a Rasterized Image

In order to improve the performance of the hybrid ray tracer for
real-time applications, we propose a heuristic to dynamically select
a portion of the scene containing the most relevant objects to trace
at that time. The main objective of the heuristic is to provide the
best possible visual experience to the observer still maintaining the
expected frame rate.

4.1 Improving the Visual Impact

Selecting a set of specific objects in a three dimensional scene is
not often a trivial task. Usually, the application aims to render in
more detail the most distinctive objects that are more relevant to the
visual impact of the final image. This strategy is generally justified
by the physical inability of the observer to focus attention in the
whole scenario at once. Thus, given a scenario where the applica-
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tion is not able to render every element at full capacity, the direct
solution is to select only some of the elements to be rendered with
full quality, leaving the rest of them with a pre set minimum quality
within the time constraints.

The idea of tracing rays in just a specific set of objects is originated
analyzing the human being behavior in real world situations. In this
case, we are often exposed to an image that constantly varies, for
example when we are running or driving, so that the human brain
subconsciously ignores a lot of elements merely projecting to us
some of its main characteristics. Although this technique presents
suitable results to some circumstances, it can be quite disadvanta-
geous in situations where it is capable to select a specific object
to be ray traced rather than an adjacent one. Doing so, it draws
attention to that section of the rendered image, exposing the often
very noticeable differences between the objects, some favored by
the heuristics selection and some not, right next to them. In that
way, the photorealism achieved though the application of the ray
tracing algorithm in some objects of the scene, instead of enhanc-
ing the observer immersion factor, has the opposite effect. This can
be a crucial issue in some applications, like electronic games, where
immersion is a key aspect.

Besides that, in real world, the observer’s focus region is not limited
by the edge that divides a specific object from the rest of the scene.
The attention to the detail of the objects decays smoothly as the
distance from the focal point to the rest of the scene increases. In
this work, in order to maintain the system running within the time
constraints common to interactive applications, we have created a
simple heuristic which can be roughly summarized as “trace rays
in the area around the observer’s focus of attention until the time
budget to render this frame runs out”. Figure 5 shows an example
of an image that could not be rendered in full detail within the time
destined to that frame.

Figure 5: A image that could not be fully ray traced in the time
budget. The focus of attention area is delimited on the figure.

At this stage, our main objective is no longer to maximize the qual-
ity of the generated image. Instead, it comes to be to maximize
the final visual experience of the observer, without violating the
time constraints associated to real-time aspect of the application.
In order to simulate the observer’s focus area, we used the cursor
position on the screen at that moment to approximate the region
where the viewer is probably looking at. Even though in some ap-
plications the attention of the observer and the cursor position are
dissociated, there are a large amount of situations where this ap-
proximation is somewhat valid. From the position of the cursor in
screen-space coordinates, a ray-traced image is generated based on
that three dimensional section of that environment. After that, in
the composition of the final image, the system has to assure that the
appropriate illumination effects from that region of the space are
blended in its equivalent 2D section of the screen. At first, the size
of the attention focus area of the system must be optimized in an
empirical way, based on the time budget to render each frame and it
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may be increased until some glitching in the execution is detected,
i.e., the application is not able to run smoothly.

This have been done altering the shader program responsible for the
composition of the final image, feeding it not only with the previ-
ous input data, but also the cursor screen-space coordinates ate each
frame of the application, so that we could perform a bias operation.
This operation permits us to do the appropriate fitting of the ray-
traced lightning effects on the exact equivalent section of the raster-
ized one. As both images may no longer be equivalent in terms of
size, some arrangements must have been taken care of: at first, we
have to map the ray-traced layer on to a screen-aligned quad, and
only after that perform the blending; the OptiX context size, that
can be understood as the amount of rays to be traced pixel to pixel,
is also no longer equivalent to the dimensions of the screen; the
program responsible to generate these rays from the camera have to
consider the cursor parameters in order to calculate the new posi-
tion from where they will be shot; the render buffer which will store
the output data from the ray tracing pass; and finally, the OpenGL-
context equivalent texture that will act as the before screen sized
layer to be composed to the rasterized image.

4.2 The Adaptive Character of the System

During the development of this work, we aimed not only to propose
anew way of facing the problems from real-time rendering with the
best possible quality, but also investigate ways of making our sys-
tem more robust, sensitive to environmental changes. In addition to
being a fair response to the issues raised in the previous subsection,
the heuristic approach proposed in this paper allow us to apply an
adaptive character to the system.

As mentioned before, the size of the region of the scene to be ray
traced must fit the time budget to render that frame, so that the se-
quence of frame by frame rendering can run smoothly. At first, the
parameters of the ray tracing rendering area must be settled in an
empirical way, so that the system can estimate a reasonable size for
most situations within that scenario. So, respecting the proposed
heuristic, we have a specific region of the environment being ren-
dered at full potent ion, depending on both cursor position which
center the observer focus of attention; and the complexity of the
scene itself, since rendering a much complex set of objects would
last longer and then result in a smaller ray-traced area. Therefore,
the system is capable of render a larger window in full detail where
there are fewer complex objects, and a smaller one otherwise. In
order to assure the fluidity of the system, we must take into consid-
eration the worst case scenario, which would lead the system into
a waste of time budget in many frequent medium-case situations,
where the cursor goes over some simpler regions of the scene.

Considering this scenario, the adaptive character of the system
comes directly. Within the time constraints related to the desired
frame per second rate, the system can compute the minimum size
of the ray tracing rendering window, and from that, increase its size
on situations in which the engine is not overloaded with complex
objects, requiring elaborate illumination effects. Taking advantage
of the fact that the current focal point, i.e., the center of the ray-
traced area, is relatively close to the previous one in the last frame,
it is not difficult to estimate the area that could be rendered within
the available time budget. Having the previous frame data, includ-
ing the attention focus position, time budget, time elapsed in the ray
tracing pass, this operation can be done without adding any major
load to the system.

Note that the process goes both ways: as it can increase the level of
detail of the scene in a specific region, it also adapts to situations
where the attention comes to a more complex render area, generat-
ing and shooting a lesser amount of rays from the camera and thus,
creating a smaller high detail window. The opposed processes al-
ternate through the execution, as the observer focus on simpler or
more complex areas of the scene.

In its current status, this adaptive property of the system can be
faced as a prototype, as it still presents a considerable room for
improvement as commented in a more detailed fashion in the last
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section of this article. Nevertheless, the results obtained in experi-
mentation of this technique motivate us for further investigation.

5 Implementation Aspects

In this section, some implementation details are discussed. As
aforementioned, this work has been developed based on the hy-
brid raster ray-tracing pipeline framework proposed by [Sabino and
Clua 2012] and every modification in its architecture and opera-
tional behavior were made concerning efficiency and robustness.

Our system is implemented using C++ as the main language. The
Open Asset Import Library [ASSIMP | was used in order to read
common scene file formats. The Free Image Project [FREEIMAGE
] was used for read texture images. We use GLSL as the shading
language to handle the primary rays and for rendering purposes.

Due to its practicability in terms of freedom on building the ray
tracing pipeline and hiding GPU hardware details when writing ray
tracing shaders, the NVIDIA OptiX engine was adopted in our work
to trace and shade secondary rays. Besides the advantages of being
a generic ray tracer engine, its bond to OpenGL for reading and
writing graphic resources is straightforward.

Mainstream GPUs has a limited amount of memory when compared
to current main memory sizes. It is usually a relevant aspect to take
into account, as while standard personal computers have access to
12 GB of RAM, a commercial GPU usually have around 1 or 2 GB
of memory. Thus, a crucial factor for the development of this work
was the intelligent use of these limited resources, mainly for ren-
dering large scenes with a great number of materials and textures.
Our first concern was about texture management, so that the sys-
tem was built assuring that all the objects and materials related data
would be available both in GLSL and OptiX contexts. This can be
done by loading all the textures only once and keeping track of their
references.

We also use vertex buffer objects (VBOs) for data transferring be-
tween CPU and GPU cores. This is the best option to render large
amounts of data, since they are already loaded in the GPU mem-
ory. In order to access them, we need the VBOs available in two
contexts. The first one is the OpenGL rendering context, and the
second is related to ray tracing related programs inside OptiX en-
gine. The consistency of the data is necessary because when tracing
the secondary rays, the engine needs the whole scene geometry in-
formation in order to calculate the further illumination effects. Us-
ing vertex buffer objects not only brings the advantage of being a
fast option for data transfer, but also avoids the same information
to be duplicated in the application. As OpenGL and OptiX are in
different contexts, creating a VBO inside the OpenGL and regis-
tering it to use in OptiX eliminate this problem, making every data
modification in one context automatic to the other one.

As mentioned before, the workflow of the system can be understood
in three main steps: the initialization, where the scene, the Op-
tiX and the application main loop are set up; the deferred shading,
where the first layer of the scene is rendered based on the informa-
tion of the G-buffer; and finally ray tracing and image composition,
where the secondary lightning effects are added to the scene. After
that, if the system is not able to fulfill the real-time related con-
straints, some adaptive model can be executed to assure a lag-free
performance.

In the deferred shading, the geometry stage implements a perspec-
tive projection camera, which is responsible to feed the G-buffer
with all the information used in the next stages. All the follow-
ing stages operate in image-space with an orthographic projection
camera using screen resolution dimensions. The lightning stage the
contents of the G-Buffer as input, together with the scene’s light
sources information and accumulates lightning into a full resolu-
tion pixel buffer.

The ray tracing phase is controlled by the shader programs in the
OptiX engine. At this time, the OptiX context has been already
instantiated, with the proper parameters, regarding the number of
rays to be generated as well as how they will be casted. The shader
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programs involved in this process were created using an OptiX spe-
cific shading language, based on C++ and CUDA. They are several
and each responsible for a different purpose. The ray generation
program is the main program of the selective ray tracing stage,
being the responsible for generated an application-given number
of rays, and respecting the heuristic approach proposed for us, for
casting them around the right section of the image calculating the
bias from the origin based on the cursor coordinates. The other
shader programs execute depending on the trajectory of the primary
rays: the any hit program is responsible for the lightning attenua-
tion; the closest hit, for tracing the secondary rays from the collision
point with the objects; the shadow ray generation program which
traces shadow rays from the first collision, are some examples. The
bounding box program, the exception program and the other auxil-
iary shaders used to complete the ray tracing pipeline are discussed
in detail in [Sabino and Clua 2012].

The output of the OptiX engine is stored in a render buffer, accessi-
ble from the OpenGL context. In the image composition stage, the
OpenGL saves the information on a texture, rendered in a screen-
aligned quad. After that, a GLSL shader program calculates the
proper area of the scene for the blending, using the same parame-
ters given to the OptiX context. Finally, the blending operation is
performed, generating the final image.

6 Results

In this section, we present some data acquired by experimentation
of the system we have described in this work. The tests are per-
formed in a desktop equipped with an AMD Phenom II X4 965
3.4GHz, 16GB of RAM and a NVIDIA GeForce GTX570.

Table 1 exhibits the performance of our hybrid ray tracing pipeline
in five different scenes. In this table, DS is the acronym for deferred
shader, representing the frame per second rate when rendering the
first pass alone. The RT column, stands for ray tracing, where are
given the FPS value for a pure ray tracing approach. The last col-
umn refers to the values obtained using our hybrid ray-tracing pro-
posal.

Table 1: Performance Results

Performance in FPS

Scene Vertices  Triangles DS RT HRT
Sponza (Fig. 6) 145173 262.187 449 15 29
Sponza Animated (Fig. 7)  184.178  266.923 388 8 18
Showcase (Fig. la) 112.603  224.440 428 25 43
Armadillo (Fig. 1b) 193.737  380.655 319 40 54
Dining Room (Fig. 8) 386.541 224954 481 13 32

After these tests, the frame per second rate to all the scenes was
fixed in 15 in order to analyze the behavior of the system in stressing
conditions. In the first scenario, the system was able to fully render
about 51.7% of the total screen at once. The second scene reached
over 83% of full rendering area, as the third and fourth ones, being
more complex scenarios, presented respectively 34.8% and 27.8%
on average. Finally, the area that could be ray traced as the attention
focus in the last scene was 47% of the total screen.

These results reflects a metric used in this paper to illustrate the
behavior of our heuristic approach in the proposed framework. That
being said, one must perceive these values are approximations and
can change since they relate to the portion of the scene sent to the
ray tracing module at each different frame.

7 Conclusion and Future Work

In this work, we introduced the current context of real time ray trac-
ing application and hybrid rendering systems. While most of these
works focus on the workload division and the graphic pipeline task
scheduling between the CPU and GPU cores, we continued investi-
gating a proposal of dividing that graphic pipeline in a more intelli-
gent fashion: accelerating the first batch of ray tracing through the
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Figure 7: Sponza animated scene.

Figure 8: Dining room scene.

use of the deferred shading, a hardware-implemented rasterization
technique.

We were able to identify some of the most common hybrid system
limitations, mainly according to highly complex input scenarios,
and suggested a new approach to them in order to create a more ro-
bust system instead of a simply faster one. In this fashion, we would
end up with a functional system to every possible instance, even if it
would not be able to maintain its full render quality in extreme situ-
ations. We analyzed scenarios that were not been comprehended by
the most commonly applied heuristics in hybrid systems, and after
that, proposed a new yet natural approach, based on more suitable
point of view. We have investigated the final visual impact of our
proposal based on the observer experience and found some promis-
ing results.

Finally, this work proposes an adaptive approach to extend the static
results of the previous framework into a more robust system, sensi-
tive to the input data and able to respond to it, increasing the photo-
realism at the observer main focus of attention area within the dis-
posable time budget for that frame. Likewise, in an opposite way,
where the system struggles to fit into a smooth interactive scenario,
it is able to decrease the amount of ray tracing computation in order
to overcome these situations.

As future work, we intend to implement a new ray tracing-based
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layer in the final image composition, in this time with a lower gran-
ularity, so that it can work as a mid-way interface between both
sides of the spectrum: the fast rasterized and low detail image; and
photorealistic higher-cost ray-traced one, often limited to a specific
area by the time constraints. Doing so, we believe that the final
result can achieve an even more pleasant high-quality visual expe-
rience to the observer, as this new layer would soften the transition
between the other two. Besides that, we encourage the implemen-
tation of a raster based shadow generation technique, because as
the current system treat the problem in the ray-tracing pass, in sit-
uations where the time constraint limit this pass domain to only a
certain section of the final image, the remaining of it stays without
shadow support. Even though, we achieved some computational
gain in the early stages of the system development, the absence of
shadows in some parts of the scene can be a relevant issue when the
system cannot complete its full ray tracing pass.

Another interesting research branch from this work is to investigate
the different ways that the focus of attention can be estimated. We
stated that in general, focusing the attention around the cursor can
be a good approximation, but many other approaches may compre-
hend situations where this first approach lacks accuracy. The inte-
gration of an intelligent eye tracking system can completely elimi-
nate this issue, as well as consolidate the whole system.

As we can see, the use of hybrid renderers opens a whole new sort
of possibilities, in addition to present a very satisfactory final result,
not only in photorealistic terms, but also in real-time computation
paradigm. The main objective of this work was to investigate the
area, going further than simple parallel optimization and scheduling
techniques, facing the problem through a new approach and open-
ing a new set of possibilities of research in the area.
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