
An architecture for real time fluid simulation using multiple GPUs
José Ricardo da S. Junior

Mark Joselli
Marcelo Zamith

Marcos Lage
Esteban Clua
Media Lab

Universidade Federal Fluminense

Eduardo Soluri
Nullpointer Tecnologia

Figure 1: Real time fluid simulation

Abstract

Natural phenomena simulation, such as water and smoke, is a very
important topic in order to increase real time scene realism in video-
games and general real time simulations. However, this kind of
simulation requires numerically solving the Navier-Stokes equa-
tions, which is a computationally expensive task. Additionally, to
deal more immersing simulation, interaction between the flow and
the objects in the scene are needed, which increases even more the
computational work. The advent of GPU computing has enabled
the development of many strategies for accelerating these simula-
tions. In this paper we propose an scalable architecture for multi-
ples GPUs for fluid simulation, allowing complex fluid behavior for
real time applications like games. Also, the techniques explained in
this paper could be adapted for others real-time simulations such as
physics simulations.

Keywords:: CUDA, GPU Computing, Fluid Simulation, SPH,
Multi GPU, rigid body

Author’s Contact:

{jricardo,mjoselli,mzamith,mlage,esteban}@ic.uff.br
esoluri@nullpointer.com.br

1 Introduction

Realism in video-games is not only a matter of perfect graphics,
but also includes the search for real behaviors and physics. While
many improvements had been done for dynamic rigid bodies ele-
ments, there are still many lacks to be fulfilled in fluids simulation
research. This is an important topic for the game industry, since
real aerodynamics effects or liquids behaviors are present in almost
any title that simulates real environments.

In order to achieve a real immersion, interaction between fluid and
rigid bodies placed in the simulated environment must be consid-
ered. However, the collision between different objects with the fluid
and the approximation of the physical forces coming from these in-
teractions require time consuming computations. Most times those
effects are neglected for video-games, since the physics simulation
is only one of many tasks that must be handled by the engine.

The first real time fluid simulations were performed in CPU [Kass
and Miller 1990]. Most of these works did not consider the inter-

action between fluid and scene objects in order to achieve interac-
tive frame rates. Later, with the processing power provided by the
GPUs, other phenomena could be coupled to real time fluid simula-
tions. The reader can find methods that consider two-way interac-
tions between fluid and its surrounding objects in the woks [Kipfer
and Westermann 2006; Kurose and Takahashi 2009].

With the accessibility of modern GPUs by a wide range of peo-
ple and its processing capability in relation to CPU, this device is
being used for solving an enormous set of intensive tasks, such as
rigid body [Joselli et al. 2009b], gravitational N-body [Bédorf et al.
2012], crowd simulation [Joselli et al. 2009a] and molecular simu-
lations [Páll et al. 2011], to name a few.

Nowadays, many GPU Computing systems are starting to have
multiple GPU devices to solve problems [Kim et al. 2011]. In
order to distribute the workload across multiple GPUs, the devel-
oper must manage the data exchange between the main memory
and these devices, guaranteeing consistency between the multiple
copies of data, making the development for these architectures more
difcult for the developer.

In this paper we present an architecture for fluid simulation us-
ing multiples GPUs, being it in the same machine or in different
nodes across a network, allowing more realistic fluid simulation in
a virtual scene. Additionally, this architecture is automatically scal-
able with the number of GPUs available during the simulation. In
this work, the fluid simulation in performed through the Smoothed
Particle Hydrodynamics (SPH) method, a meshfree particle La-
grangian approach. As far as the authors of this work knows, this is
the first real time fluid simulation to use this type of architecture.

The remainder of this paper is organized as follows. After referring
to related fluid simulation works, in Section 2, we describe the fluid
governing equations in Section 3 and how we deal computationally
with it in Section 4. Next, in Section 5, we present the developed
acceleration data structure and in Section 6 our approach to deal
with more than one GPU. The results are shown in section 7. Fi-
nally, in section 8 we present the conclusions of the paper.

2 Related Work

The first physical simulation using an Eulerian grid-based ap-
proach was originally proposed by Foster and Metaxas [Foster and
Metaxas 1996; Foster and Metaxas 1997]. They proposed to solve
the full 3D Navier-Stokes equations in order to recreate visual prop-
erties of dynamic fluids. In [Stam 1999], Stam simulated dynamic

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 93

gases using a semi-Lagrangian integration scheme that achieves un-
conditional stability using artificial viscosity and rotational damp-
ing. Foster and Fedkiw [Foster and Fedkiw 2001] extended the
technique to liquids using both a level-set method and particles in-
side the liquid. Enright et al. [Enright et al. 2002] added particles
outside the fluid for free surface tracking.

In order to allow two-way rigid body interaction, Takahashi et al.
[Takahashi et al. 2002] presented a simple method to couple fluids
and buoyant rigid bodies using regular grids and a combination be-
tween the volume of the fluid and Cubic Interpolated Propagation
methods. Génevaux et al. [Arash et al. 2003] used marker particles
for free surface representation and to perform interaction with de-
formable rigid bodies. In [Cohen et al. 2010], the authors used a
moving grid to simulate fluid, which allowed to compute the fluids
properties anywhere in space.

After the introduction of particle systems by Reeves [Reeves 1983],
simulation of natural phenomena using meshless methods started
to be proposed. Fluid simulations using the Smoothed Particle Hy-
drodynamics (SPH) method were proposed by Desbrun and Gas-
cuel [Desbrun and paule Gascuel 1996] to reproduce deformable
objects. This approach was latter extended in [Stora et al. 1999], al-
lowing lava simulation through viscosity and temperature coupling.

Müller et al. [Müller et al. 2003] used the SPH method to per-
form fluid simulation in real time. Latter, the authors extend their
work in [Müller et al. 2004] by including fluid interaction with rigid
bodies to simulate virtual surgery using a Gaussian Quadrature to
distribute ghost particles on rigid bodies surfaces, which are respon-
sible for generating repulsive forces.

Kipfer and Westermann [Kipfer and Westermann 2006] used SPH
to simulate fluid flows over deformable terrains. These simula-
tions were performed in GPU using a shader based approach, with-
out considering collision with rigid bodies. Kurose and Takahashi
[Kurose and Takahashi 2009] proposed an approach to simulate flu-
ids and rigid bodies with two-way interaction between them using
SPH in GPU. The rigid bodies were represented by polygons and
they solved a Linear Complementary Problem (LCP) to compute
the collision forces between fluid and solids.

Nowadays, many workstations, servers and desktop computers are
equipped with multiple GPU devices. The data transfer between
the GPUs are normally realized by the host memory [Nukada et al.
2012]. Nowadays, with the direct computing directives of CUDA,
the access of memory between the GPUs are made directly, without
passing by the host. This fact increases the overall performance of
such architecture. But still in this case, the data transfer speed is
limited due to the contentions in PCI-Express interfaces.

In order to allows a faster simulation, some kinds of problems are
being solved using more than one GPU architecture. Among some
works, we can cite [Nukada et al. 2012], which solves a Fast Fourier
Transform in 3D using multiples GPUs. Additionally, [Cevahir
et al. 2009] computes a fast conjugate gradient in more than one
GPU. Using more than one device to solve a problem requires a well
established process in order to share and processing data among
these GPUs.

The management of a multiple GPU architecture can be hard. There
has been some works that deals exclusive with this management
[Zamith et al. 2011; Huynh et al. 2012].

3 SPH Approach

In order to perform fluid simulations, we need to solve the system
of differential equations:

ρ
(
∂v

∂t
+ v.∇v

)
= −∇p + ρg + µ∇2v, (1)

and
∂ρ

∂t
+∇.(ρv) = 0, (2)

which are known as Navier-Stokes equations for Newtonian incom-
pressible flows. In these equations, ρ represents the fluid’s density,

v the velocity field, p the pressure field, g the resultant of external
forces and µ the fluid’s viscosity.

Equation (1) is known as equation of motion and states that changes
in the linear momentum must be equal to the sum of all forces acting
in the system. The convective term v.∇v represents the rate of
change of the velocity field in a fluid element while it moves from
one position to another. The convective term is null in Lagrangian
methods since the particles used on the fluid discretization follows
the flow.

Equation (2) is known as continuity or mass conservation equation
and states that in the absence of sinks and sources the amount of
mass in the system must be constant. For particle based methods
this equation is unnecessary since each particle carries a constant
quantity of mass [Müller et al. 2003].

In this paper, the Navier-Stokes equations are solved using the SPH
method that was introduced by Lucy [Lucy 1977] and Gingold
and Monaghan [Gingold and Monaghan 1977] to perform simula-
tions of astrophysical problems. The SPH is a meshless Lagrangian
method that evaluates (anywhere in space) the field quantities de-
fined only at discrete set of particles using a compact support, radial
and symmetrical smoothing kernel [Monaghan 1992].

The evaluation of a continuous scalar field A(x) is achieved by
calculating a weighted summation of contributions for all particles
i ∈ [1...N], with position xi, mass mi and additional attributes Ai

using

A(x) =
∑
j

mj
Aj

ρj
W (r, h), (3)

where ρi is the density of particle i, r = x − xj and W (r, h) is
the smoothing kernel. To compute the density ρi of a particle i, we
rewrite equation (3) as follows:

ρi = ρ(xi) =
∑
j

mjW (r, h). (4)

The kernel function W (r, h) must have compact support, i.e.∫
W (r, h)dr = 1 andW (r, h) = 0 for |r| > h. According to [Liu

and Liu 2003], the value of h must be chosen in order to maintain
the number of neighbors inside a particle support approximately 5,
21 and 27 in one, two and three dimensions, respectively.

The gradient and Laplacian of a smoothed attribute function A(x)
is the gradient and Laplacian of the kernel function:

5A(x) =
∑
j

mj
Aj

ρj
5W (r, h), (5)

52A(x) =
∑
j

mj
Aj

ρj
52 W (r, h). (6)

In SPH, the pressure field is computed using an equation of state
that is a modification from the ideal gas law, as suggested by Des-
brun [Desbrun and paule Gascuel 1996]

pi = k(ρi − ρ0), (7)

where k is the stiffness constant of the fluid and ρ0 is its rest density.
Finally, the acceleration of particle i is computed as the sum of
pressure, viscosity and external forces, being the last one the sum
of rigid body interaction and gravitational forces.

In this work, as advised by [Müller et al. 2003], three smoothing
kernels are used. For the density, the smoothing function used is

W (r, h) =
315

64πh9

{
(h2 − r2)3 0 ≤ r ≤ h
0 otherwise (8)

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 94

where r represents the vector r magnitude.

Using this function for pressure force calculation tends to a group-
ing particles behavior [Müller et al. 2003]. In order to avoid this
problem, this work uses the smoothing function

W pressure(r, h) =
15

πh6

{
(h − r)3 0 ≤ r ≤ h
0 otherwise. (9)

Finally, the smoothing function used for viscosity calculation is

W viscosity(r, h) =
15

2πh3

{
−r3

2h3 + r2

h2 + h
2r
− 1 0 ≤ r ≤ h

0 otherwise.
(10)

as equation 8 leads to small instabilities.

4 Fluid computation

Fluid simulation using the SPH approach requires the execution of
some ordered tasks as presented in Figure 2. In this section, we
describe the most important aspects of some tasks, absent the parti-
cle’s structuring, which is not an intrinsic task for fluid processing
and will be explained later.

Fluid	 Simula*on	

Par*cle’s	
Structuring	

Density	
Processing	

Internal	 Forces	
Processing	

External	 Forces	
Processing	

Integra*on	

Figure 2: Necessary stages for performing fluid simulation.

4.1 Forces calculation

During fluid and rigid body simulation, external forces coming
from collision as well as the ones caused by gravity are computed.
Also, two-way coupling between rigid body and fluid are only com-
puted for the rigid body’s particles that had collided in the broad
phase step, allowing the fluid to continue its own processing when
no collision occurs.

These forces are calculated using the discrete elements method
(DEM), which is used for simulating granular materials [Mishra
2003] like sands. The repulsive force fij , acting on particle i
through interaction with particle j is computed using a spring force
fi,s

fi,s = −k(trad − |rij |)
rij
|rij |

, (11)

and a damping force fi,d

fi,d = ηvij , (12)

where k is the spring coefficient, η is the damping coefficient, rij ,
vij and trad represents the relative distance, relative velocity and i
and j each particle radius sum, respectively.

4.2 Boundary conditions

Boundary conditions are performed in this paper using repulsive
forces, which are added to particles, in order to push them away
from the boundary. Although this problem can be solved by oth-
ers methods, such as simply do a naive reflection of the particles’s
velocity, this solution presents a more stability simulation.

Müller et al [Müller et al. 2003] just implements collision with
the particles position directly. In this case, when particles collides
with a boundary, they are simply pushed away from the object and
the velocity component that is perpendicular to the boundary is re-
flected.

On the other hand, Harada et al. [Harada et al. 2007] just implement
collision by affecting the pressure and density of particles. This
way, the pressure correction will essentially push away particles
from the boundary surface.

The repulsion force used in this paper, is described by Amada
[Amada 2006] and is solved by Equation 13

frepulsive
i =

{
Ksd− ((vi · n)Kd) d > ε

0 otherwise
(13)

where d is the particle distance to boundary, ε is the collision accu-
racy, vi is the velocity of particle i, n is the surface normal of the
wall, Kstiff is a stiffness parameter and Kdamp is a dampening
parameter. As it is possible to see, this force acts as a spring, as the
more a particle penetrates a boundary, more it is pushed away from
the boundary, as is possible to see in Figure 3.

Figure 3: Particles next to the boundary are pushed away through
a repulsive force.

4.3 Integration

After forces are computed for each particle, it is necessary to inte-
grate them to compute the acceleration, velocity and, finally the po-
sition. Integration in this paper uses the explicit Eulerian approach.
In this case, the internal and external forces previously computed
are integrated for each particle, and its velocity and position varia-
tion is calculated.

5 Acceleration structure

Fluid is represented using a collection of particles that interact with
each other using the SPH model. This interaction needs to be per-
formed frequently for fluid simulation, as each particle needs to find
its neighborhood particles for calculating variables such as pressure
and density, according to the SPH method.

This operation has complexity of O(n2) for a collection of n parti-
cles using a brute force method, being an expensive operation, even
for a small set of them. To avoid this time complexity, this pa-
per employs an acceleration structure based on hash tables [Harris
2005] for locating nearby particles, which also allows the usage of

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 95

an unbounded world. This acceleration structure requires a prede-
fined number of slots, called buckets. Each of these buckets has
two variables, indicating the starting and ending offset in the array
containing the index for a particle, as shown in Figure 4 for an eight
bucket hash grid. A bucket that does not have any particle is set with
a special flag, to avoid its wrong computation during simulation.

Figure 4: Process of generating an acceleration data structure
based on a hash table.

Before the hash table processing, a preliminary operation produces
a hash key for each particle by using the absolute position of the par-
ticle through the use of the algorithm proposed by Teschner et al.
[Teschner et al. 2003]. This algorithm receives p1, p2 and p3, which
are the greatest prime number used to minimize hash key conflicts
(chosen in our tests as 73856093, 19349663 and 83492791, respec-
tively). It also receives the parameter cell size, that represents the
imaginary grid’s cell size.

We introduced a new parameter in the proposed algorithm in or-
der to avoid an observed problem. Following the original algorithm
the same hash key is produced for particles located at symmetri-
cal positions in the world, causing unnecessary data processing. In
our proposal a new parameter named world limits is included in the
hash key generation formula. It represents the world’s bounding
box, calculated at each time step. The algorithm with our modifica-
tions is presented in Algorithm 1.

Algorithm 1: Algorithm for hash key genenation.
Input: float3 pos, float3 cell size, int num buckets, float3

world limits
Output: unsigned int hash code
int x← (int) ((pos.x + world limits.x) / cell size.x);
int y← (int) ((pos.y + world limits.y) / cell size.y);
int z← (int) ((pos.z + world limits.z) / cell size.z);
hash code← ((x * p1) xor (y * p2) xor (z * p3)) mod
num buckets;

Following, after each particle’s hash key calculation, it is necessary
to sort these particles based on its calculated hash key. This opera-
tion is done in GPU by using the radix sort algorithm [Huang et al.
2009], presented in CUDPP library 1. This way, using a imaginary
cell size equals the kernel radius Kr , only 27 buckets are processed
during fluid’s particle processing (three grid cells in each dimen-
sion).

6 Multiples GPUs architecture

According to SPH model, it is required for each particle in a cell to
know its neighbor in order to process pressure and forces [Müller

1Available at http://gpgpu.org/developer/cudpp

et al. 2003]. This fact leads to a dependency between them, as
presented in Figure 5.

Figure 5: Particles’ data dependency located in different cells.

The first strategy to allows more than one GPU to process fluid’s
particles is to split up the domain among the available GPUs, being
particles located in the border processed differently from the ones
located inside the grid. In this case, particles that are not in the edge
of the grid can be processed normally, as all its dependency data is
available on the same GPU. On the other hand, particles that are
located in the edge cannot be processed, as half of its dependency
data are located on another GPU’s memory. Figure 6 shows this
technique for 2 GPUs in a host. For the cases where GPUs are dis-
tributed over nodes in a network, this data can be transferred using
NVidia GPU Compute Direct with CUDA language [Corporation
2012], which enables peer GPU to GPU memory communication
over a network. For local GPUs, this data can be shared using Per
to Per (P2P) communication, which enables a single view of the
whole GPU’s memory in the host.

Figure 6: Simulation domain distributed over 2 GPUs. Particles
located at yellow cells need to be transferred between them before
its computation, while particles at blue cells can be processed in-
dependently.

Processing fluid’s particles using a set of GPUs located at indepen-
dent nodes in a network is done by a collection of ordered tasks,
according to Algorithm 2. Some of the tasks that needs to be per-
formed require more computational effort than others, as presented
in Figure 7, which shows the distribution of time over all tasks that
need to be performed for fluid simulation. In order to avoid the
complexity of the code for minor performance, in a first attempt,
only fluid’s tasks that requires more computational effort are dis-
tributed among various GPUs.

As can be seen in Figure 2, the first task that needs to be done is
called particle’s structuring. Mainly this task calculates a hash
code for each particle in order to group them in the same cell. This
task is performed by only one GPU, as concurrency data writing is
needed. It is important to state that this task is not an intrinsic part
of fluid processing, used here only to avoid de O(n2) complexity.
Additionally, beside this task, all subsequent computations are done
in parallel by available GPUs.

For all subsequent tasks, processing particles requires data access to

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 96

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

16000	 32000	 48000	
Par$cles	

Tasks	 Time	 Distribu$on	

Integra4on	

Forces	

Density	

Structuring	

Figure 7: Time distribution for fluid’s tasks.

Algorithm 2: Algorithm describing the high level steps during fluid
simulation for various GPUs.
Input: particles, num gpus
particle structuring(GPU master);
synchronize();
amount particles per gpu = particles / num gpus;
for availabe GPU do

share-data(edge-position-particles);
calculate-density(inner-particles);

end
synchronize();
for availabe GPU do

calculate-density(edge-particles);
calculate-forces(inner-particles);
integrate(inner-particles);
share-data(edge-density-particles);

end
synchronize();
for availabe GPU do

calculate-forces(edge-particles);
integrate(edge-particles);
share-data(all-particles-positions);

end
synchronize();

all neighborhood particles inside the kernel radius, such as position,
velocity and density. To allow data sharing, they are done by a
collection of synchronized steps, according to Figure 8.

In the first step, after particles have been grouped, the main GPU,
which stores all the particles in the simulation, starts to divide,
equally, all of them among the available GPUs and starts sending
their respectives data for processing. As long as all GPUs receives
its data, immediately it starts a kernel to perform the calculation of
all the particle’s properties, such as force and velocity, as explained
in Section 4. During this calculation, it is important to notice that
only particles that are not in the grid’s edge can be processed, as
data in the grid’s edge are not yet available. In parallel, each GPU
in the node starts sending particles located at its edge to it’s neigh-
borhood GPU. This information is made available for each GPU by
the master GPU, the ones who manages all tasks performed by each
GPU.

After the end of the previous step, each GPU is responsible to check
if all required information is available. In this case, after finishing

the previous step, each GPU starts the second step. In this second
step, particles located in the edges are processed, using the same
tasks that were performed in the particles in the previous step.

Finally, in the integration task, new velocities and position are cal-
culated for all particles and sent back to master GPU. It is important
to notice that, absent for the integration task, all the other one do not
need to synchronize, allowing the GPU to stay busy all the time.

In the first version, our approach are able to deal with GPUs lo-
cated on the same machine, using the P2P communication among
the GPUs. Even with this restriction, our architecture leads to a bet-
ter speedup, as communication with CPU memory is avoided. For
future versions, we will allows fluid simulation to be performed
over various GPUs located in different hosts over the network.

7 Results

This section presents the results obtained from our multiple GPU ar-
chitecture for fluid simulation. For these tests, a PC equipped with
an Intel Core i7 using 32 GB of RAM and two NVidia GeForce 580
GTX with 1 GB DDRAM was employed. Simulations tests with
different configuration were performed. Fluid rendering is done in
screen space through applying a bilateral filter in sphere’s normals.

First, Table 1 shows the simulation of fluid made using both a single
GPU and our multi GPU architecture and its graph in Figure 9.
The column labeled FPS represents the frames per second which
measure the time necessary to update and render the simulation,
while the time represents the milliseconds spend for rendering a
frame. Speedup is measured by the relation of columnX1 over Y 2.

Table 1: Results of fluid simulation using both a single GPU and
our multi GPU architecture.

Single GPU Multi GPU
Particles FPS1 Time FPS2 Time Speedup
32,000 260 3.84 310 3.22 1.19
64,000 151 6.62 205 4.87 1.35
96,000 105 9.52 180 5.55 1.71

128,000 80 12.50 130 7.69 1.62
256,000 41 24.39 55 18.18 1.34
512,000 15 55.66 23 43.47 1.53

1,024,000 5 200.00 9 4 1.8

According to the presented result, it is possible to see that using
more than one GPU has increased the overall performance of the

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 97

Par$cle	
Structuring	 	

Synchronize

Inner	 Par$cle	
Density	

Processing	

Share	 Grid	
Edge	 Posi$on	

Synchronize

Synchronize

Share	 Grid	
Edge	 Density	

Edge	 Par$cle	
Density	

Processing	

Inner	 Par$cle	
Force	

Processing	

Inner	 Par$cle	
Integra$on	

Share	 Final	
Posi$on	

Edge	 Par$cle	
Force	

Processing	

Edge	 Par$cle	
Integra$on	

For	 each	 GPU	 	
in	 the	 Grid	

For	 each	 GPU	 	
in	 the	 Grid	

For	 each	 GPU	 	
in	 the	 Grid	

Figure 8: Fluid tasks distribution over our multi GPU architecture.

fluid simulation. In this case, growing the number of available
GPUs decreases the time to perform this simulation, allowing more
particles to be used in order to grow up the realism of the simu-
lated fluid. Figure 10 a simulation screen is shown using a total of
512,000 particles.

8 Conclusions and future works

Our proposed simulation using a multi GPU architecture reached a
speedup of almost twice the implementations of the most recent full
GPU based approaches, allowing the simulation of more complex
fluid’s behavior in real time games and other kinds of simulation.
The main acceleration factor comes from the fact that many com-
plex and time consuming tasks can be split up among a collection
of GPUs during the simulation processing. Additionally, it is im-
portant to notice that the same approach can be applied for a set of
correlated problems, such as biological molecules simulation.

According to the results presented, the proposed architecture is be-
ing extended in order to enable the use Dynamic Parallelism of the
newest Kepler GPUs architecture, which allows dispatch of CUDA
kernel inside the kernel being processed. This way, we can avoid
spend time processing empty cells during the simulation.

Additionally, due to the capacity of GPUs, an architecture that

sends data for processing according to each device capability would
be very beneficial for the whole simulation. This way, less fluid’s
particles are sent for GPUs with less capability, avoiding possible
bottlenecks.

Rendering techniques allowing implicit surface reconstruction and
shading are also being studied in order to allows its fully usage in
the game industry.

Acknowledgements

The author thank all the Computation Institute at Federal Flumi-
nense University for their support. Financial support from CAPES
is acknowledged.

References

AMADA, T. 2006. Real-time particle-based fluid simulation with
rigid-body interaction. Charles River Media, Singapore.

ARASH, O. E., GNEVAUX, O., HABIBI, A., AND MICHEL DIS-
CHLER, J. 2003. Simulating fluid-solid interaction. In in Graph-
ics Interface, 31–38.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 98

0	

50	

100	

150	

200	

250	

300	

350	

32000	 64000	 96000	 128000	 256000	 512000	 1024000	

Fr
am

es
	 p
er
	 S
ec
on

d	
(F
PS
)	

Par1cles	

Architecture	 Comparison	

Single	 GPU	

Muliple	 GPUs	

Figure 9: Fluid simulation comparison using single and multi GPU architecture.

BÉDORF, J., GABUROV, E., AND PORTEGIES ZWART, S. 2012. A
sparse octree gravitational n-body code that runs entirely on the
gpu processor. J. Comput. Phys. 231, 7 (Apr.), 2825–2839.

CEVAHIR, A., NUKADA, A., AND MATSUOKA, S. 2009. Fast
conjugate gradients with multiple gpus. In Proceedings of the
9th International Conference on Computational Science: Part I,
Springer-Verlag, Berlin, Heidelberg, ICCS ’09, 893–903.

COHEN, J. M., TARIQ, S., AND GREEN, S. 2010. Interac-
tive fluid-particle simulation using translating eulerian grids. In
I3D ’10: Proceedings of the 2010 ACM SIGGRAPH symposium
on Interactive 3D Graphics and Games, ACM, New York, NY,
USA, 15–22.

CORPORATION, N. 2012. Nvidia cuda programming guide.

DESBRUN, M., AND PAULE GASCUEL, M. 1996. Smoothed par-
ticles: A new paradigm for animating highly deformable bod-
ies. In In Computer Animation and Simulation 96 (Proceedings
of EG Workshop on Animation and Simulation, Springer-Verlag,
61–76.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Ani-
mation and rendering of complex water surfaces. ACM Trans.
Graph. 21, 3, 736–744.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. In SIGGRAPH ’01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques, ACM,
New York, NY, USA, 23–30.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of
liquids. Graph. Models Image Process. 58, 5, 471–483.

FOSTER, N., AND METAXAS, D. 1997. Modeling the motion of a
hot, turbulent gas. In SIGGRAPH ’97: Proceedings of the 24th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 181–188.

GINGOLD, R. A., AND MONAGHAN, J. J. 1977. Smoothed par-
ticle hydrodynamics - theory and application to non-spherical
stars. In Royal Astronomical Society, Monthly Notices, vol. 181,
375–389.

HARADA, T., KOSHIZUKA, S., AND KAWAGUCHI, Y. 2007.
Smoothed particle hydrodynamics on GPUs. In Computer
Graphics International, 63–70.

HARRIS, M. 2005. Fast fluid dynamics simulation on the gpu. In
ACM SIGGRAPH 2005 Courses, ACM, New York, NY, USA,
SIGGRAPH ’05.

HUANG, B., GAO, J., AND LI, X. 2009. An empirically opti-
mized radix sort for gpu. Parallel and Distributed Processing
with Applications, International Symposium on 0, 234–241.

HUYNH, H. P., HAGIESCU, A., WONG, W.-F., AND GOH, R.
S. M. 2012. Scalable framework for mapping streaming ap-
plications onto multi-gpu systems. In Proceedings of the 17th
ACM SIGPLAN symposium on Principles and Practice of Paral-
lel Programming, ACM, New York, NY, USA, PPoPP ’12, 1–10.

JOSELLI, M., PASSOS, E. B., ZAMITH, M., CLUA, E., MON-
TENEGRO, A., AND FEIJO, B. 2009. A neighborhood grid data
structure for massive 3d crowd simulation on gpu. Games and
Digital Entertainment, Brazilian Symposium on 0, 121–131.

JOSELLI, M., ZAMITH, M., CLUA, E., MONTENEGRO, A.,
LEAL-TOLEDO, R., CONCI, A., PAGLIOSA, P., VALENTE, L.,
AND FEIJÓ, B. 2009. An adaptative game loop architecture with
automatic distribution of tasks between cpu and gpu. Comput.
Entertain. 7, 4, 1–15.

KASS, M., AND MILLER, G. 1990. Rapid, stable fluid dynamics
for computer graphics. In SIGGRAPH ’90: Proceedings of the
17th annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, 49–57.

KIM, J., KIM, H., LEE, J. H., AND LEE, J. 2011. Achieving a
single compute device image in opencl for multiple gpus. In Pro-
ceedings of the 16th ACM symposium on Principles and practice
of parallel programming, ACM, New York, NY, USA, PPoPP
’11, 277–288.

KIPFER, P., AND WESTERMANN, R. 2006. Realistic and interac-
tive simulation of rivers. In GI ’06: Proceedings of Graphics In-
terface 2006, Canadian Information Processing Society, Toronto,
Ont., Canada, Canada, 41–48.

KUROSE, S., AND TAKAHASHI, S. 2009. Constraint-based simu-
lation of interactions between fluids and unconstrained rigid bod-
ies. In Proceedings of Spring Conference on Computer Graph-
ics, 197–204.

LIU, G. R., AND LIU, M. B. 2003. Smoothed Particle Hydrody-
namics: A Meshfree Particle Method; electronic version. World
Scientific, Singapore.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 99

Figure 10: Fluid simulation performed with 512,000 particles us-
ing our multi GPU architecture.

LUCY, L. B. 1977. A numerical approach to the testing of the
fission hypothesis. In Astronomical Journal, vol. 82, 1013–1024.

MISHRA, B. K. 2003. A review of computer simulation of tum-
bling mills by dem part i - contact mechanics. In International
Journal of Mineral Processing, Vol. 71(1-4), 73–93.

MONAGHAN, J. J. 1992. Smoothed particle hydrodynamics. In
Annual review of astronomy and astrophysics. Vol. 30, 543–574.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In SCA ’03:
Proceedings of the 2003 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 154–159.

MÜLLER, M., SCHIRM, S., TESCHNER, M., HEIDELBERGER,
B., AND GROSS, M. 2004. Interaction of fluids with deformable
solids. Comput. Animat. Virtual Worlds 15, 3-4, 159–171.

NUKADA, A., MARUYAMA, Y., AND MATSUOKA, S. 2012. High
performance 3-d fft using multiple cuda gpus. In Proceedings
of the 5th Annual Workshop on General Purpose Processing
with Graphics Processing Units, ACM, New York, NY, USA,
GPGPU-5, 57–63.

PÁLL, S., HESS, B., AND LINDAHL, E. 2011. Poster: 3d tixels:
a highly efficient algorithm for gpu/cpu-acceleration of molec-
ular dynamics on heterogeneous parallel architectures. In Pro-
ceedings of the 2011 companion on High Performance Comput-
ing Networking, Storage and Analysis Companion, ACM, New
York, NY, USA, SC ’11 Companion, 71–72.

REEVES, W. T. 1983. Particle systems—a technique for modeling
a class of fuzzy objects. ACM Trans. Graph. 2, 2, 91–108.

STAM, J. 1999. Stable fluids. In SIGGRAPH ’99: Proceedings
of the 26th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 121–128.

STORA, D., AGLIATI, P.-O., CANI, M.-P., NEYRET, F., AND
GASCUEL, J.-D. 1999. Animating lava flows. In Proceed-
ings of the 1999 conference on Graphics interface ’99, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 203–210.

TAKAHASHI, T., UEKI, H., KUNIMATSU, A., AND FUJII, H.
2002. The simulation of fluid-rigid body interaction. In SIG-
GRAPH ’02: ACM SIGGRAPH 2002 conference abstracts and
applications, ACM, New York, NY, USA, 266–266.

TESCHNER, M., HEIDELBERGER, B., MUELLER, M., POMER-
ANETS, D., AND GROSS, M. 2003. Optimized spatial hashing
for collision detection of deformable objects. In In Proceedings
of VMV’03, 47–54.

ZAMITH, M., VALENTE, L., JOSELLI, M., CLUA, E., TOLEDO,
R., MONTENEGRO, A., AND FEIJ, B. 2011. Digital games
based on cloud computing. In SBGames 2011 - X Simpsio
Brasileiro de Jogos para Computador e Entretenimento Digital.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 100

