
A Flocking Boids Simulation and Optimization Structure for Mobile
Multicore Architectures

Mark Joselli
UFF

IC, Medialab

Erick Baptista Passos
IFPI

LIMS

Jose Ricardo Silva Junior
UFF

IC, Medialab

Marcelo Zamith
UFF

IC, Medialab

Esteban Clua
UFF

IC, Medialab

Eduardo Soluri
Nullpointer Tecnologias

http://www.nullpointer.com.br

Abstract

During the past few years, mobile phones and other mobile de-
vices have gone from simple phone and messaging devices to high
end smartphones with serious computing capabilities. Nowadays,
most of these devices are equipped with multicore processors like
dual- core CPUs and GPUs, which are designed for both low power
consumption and high performance computation. Moreover, most
devices still lack libraries for generic multicore computing usage,
such as CUDA or OpenCL. However, computing certain specific
kind of tasks in these mobile GPUs, and other available multicores
processors, may be faster and much more efficient than their sin-
gle threaded CPU counterparts. In this work, we present a novel
approach for flocking boids simulation based on the Android ren-
derscript API. We describe and implement a custom neighborhood
grid, and present results with a simple game based on this platform.

Keywords:: Mobile, Mobile Multicore Computing, Flocking
Boids, RenderScript, Android, Crowd Simulation

Author’s Contact:

mjoselli@ic.uff.br
erickpassos@ifpi.edu.br
jricardo@ic.uff.br
mzamith@ic.uff.br
esteban@ic.uff.br
esoluri@nullpointer.com.br

1 Introduction

In a typical natural environments it is common to find a huge num-
ber of animals, plants and small dynamic particles [Ricardo da
Silva Junior et al. 2012]. This is also the case in other densely
populated systems, such as sport arenas, communities of ants, bees
and other insects, or even streams of blood cells in our circulatory
system. Computer simulations of these systems usually present
a very limited number of independent entities, mostly with very
predictable behavior. There are several approaches that aim to in-
clude more realistic behavioral models for crowd simulation such
[Reynolds 1987; Musse and Thalmann 1997; Shao and Terzopoulos
2005; Rodrigues et al. 2010; Pelechano et al. 2007; Treuille et al.
2006]. All these models are based on the flocking boids approach
[Reynolds 1987], which also fundaments this work. While high
end games traditionally use crowd environments, due its high end
hardware resources, mobile games avoid them.

Algorithms for flocking simulation are driven by the need to avoid
the O(n2) complexity of the proximity queries between entities.
Several approaches have been proposed to cope with this issue
[Reynolds 2000; Chiara et al. 2004; Courty and Musse 2005] but
none of them has reached an ideal level of scalability. As far as
we know, no work until the present date has proposed a real time
simulation of more than just a few hundreds of complex entities
interacting with each other on a mobile device.

Crowd simulation are now appearing frequently on computer
games, like Gran Theft Auto IV [North 2008], and digital films,
like trilogy of The Lord of the Rings [Aitken et al. 2004]. Typical
examples of the use of crowd simulation are the simulation of the

behavior of herbs of animals [Reynolds 1987], people walking on
the street [van den Berg et al. 2008], soldiers fighting in a battle [Jin
et al. 2007] and spectators watching a performance [nVidia 2008].
This work also presents a simple game prototype, using the boids
emergent behavior.

Digital games are defined as real-time multimedia applications that
have time constraints to run their tasks [Joselli et al. 2010]. If the
game is not able to execute its processing under some time thresh-
old, it will fail [Joselli and Clua 2009a]. Mobile games are also
real-time multimedia application that runs on mobile phones that
have time constraints and many others characteristics [Joselli et al.
2012a], when compared to PC or console games, like: hardware
(processing power and screen size); user input, (buttons, voice,
touch screen and accelerometers); and a big diversity of operat-
ing systems, like Android, iPhone OS, Symbian and Windows Mo-
bile[Joselli and Clua 2009b].

Mobile devices are a growing market [Koivisto 2006]. Devices
powered with Android have 60% of the sale market share in the
first quarter of this year in the USA, according with [CNET 2012].
Also the use of the internet on such devices are gaining importance,
since its has been doubling even year [GlobalStats 2012]. These are
important motivations for game developers and designer to create
blockbusters and high end games.

Google introduced in the Honeycomb version of Android the Ren-
derscript API (application programming interface) [Android 2012].
Renderscript is an API for achieving better performance on Android
phones and tablets. Using this API, applications can use the same
code to run on different hardware architectures like different CPUs
(Central Processing Unity), ARM (Advanced RISC Machine) v5,
ARM v7, and X86, GPUs (Graphic Processing Unit) and DSPs
(Digital Signal Processors). The API decides which processor will
run the code on the device at runtime, choosing the best proces-
sor for the available code. This work presents a novel modeling of
flocking boids data structures suitable for this new architecture and
compares it to the traditional brute force algorithm. As far as the
authors knows, this is the first flocking boid simulation that uses
this kind of approach.

Most of the research on flocking boids simulations tries to avoid
the high complexity of proximity queries by applying some form
of spatial subdivision to the environment and classifying entities
among the cells based on their position. Since the Renderscript
is very new and have some scatter constraints, there are lack of
spatial subdivisions techniques implemented in this technology, so
most works uses the brute force algorithm, which has a O(n2) com-
plexity. In this paper, instead of using a similar approach, we pro-
pose a novel simulation architecture that maintains entities into an-
other kind of proximity based data structure, which we call neigh-
borhood grid. In this data structure, each cell now fits only one
entity and does not directly represent a discrete spatial subdivi-
sion. The neighborhood grid is an approximate representation of
the system of neighborhoods on the environment, which maps the
N-dimensional environment to a discrete map (lattice) with N di-
mensions, so that entities that are close in a neighborhood sense,
appear close to each other in the map. Another approach is to think
of it as a multi-dimensional compression of the environment that
still keeps the original position information of all entities.

The entities are simulated and sorted as Cellular Automata with Ex-

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 83

tended Moore Neighborhood [Sarkar 2000] over the neighborhood
grid, which is an ideal case for the memory model of multicores
architectures. We argue and show that this approximate simulation
technique brings a new bound to crowd simulation performance,
maintaining the believability for entertainment contexts. The high
performance and scalability are achieved by a very low parallel
complexity of the model. To keep the neighborhood grid aligned
this work shows a implementation of a partial sorting mechanism,
a parallel bubble sort, implemented with the renderscript.

To illustrate and evaluate our proposal, we implement a traditional
emergent behavior model of flocking boids [Reynolds 1987] that
has a minimum speedup of 2.14 over the tradition brute force
method, with similar visual experience. The architecture can be fur-
ther extended to any other simulation model that rely on dynamic
autonomous entities and neighborhood information. Also a game
prototype, based on the boids rules are developed and presented.

Summarizing, this work is an extension of the work [Joselli et al.
2009; Passos et al. 2010], with the following enhancements, which
are the main contributions of these paper:

• Modeling of the flocking boids architecture on a mobile de-
vice;

• Adaptation of the architecture and data structures for Render-
script API;

• Implementation of a game based on the boids rules.

The paper is organized as follows: Section 2 discusses the mobile
GPUs and the renderscript API. Section 3 presents the related work
on crowd simulation and on mobile multicore processors. Sections
4 explain the neighborhood grid, the architecture used, the data
structures and the simulation steps. Section 5 describes the par-
ticular behavior model used to validate the proposed architecture,
and the game used on tests. Section 6 brings the experimental re-
sults and analysis of the implemented simulation model. Finally,
section 7 concludes the paper with a discussion on future work.

2 Mobile Multicore Processing

Multicore architecture are, nowadays, present in home PCs and mo-
bile phone, available in the multicore CPUs and GPUs. GPUs are
powerful processors originally dedicated to graphics computation
[Joselli et al. 2012b]. GPUs for PCs composed by hundreds of par-
allel processors, achieving much better performance then modern
CPUs in several applications scenarios [Feinbube et al. 2011]. Ke-
pler K10,for instance, can sustain a measured 4.5 TFLOPS/s against
60 GFLOPS/s of its contemporary CPU processors [Aila et al.
2012]. The GPU can be used on the PC as a generic processor to
process data and deal with computationally intensive tasks, through
development of elaborate architectures such as CUDA (Compute
Unified Device Architecture) [nVidia 2009] and OpenCL[Group
2009] . These architectures facilitates the use of the GPU comput-
ing for generic processing, and can be seen applied in many differ-
ent scenarios, like: geologic [Kadlec et al. 2009], medical [Muyan-
Ozcelik et al. 2008] and computer vision [TunaCode 2010].

On mobile devices, the GPU is much less capable and powerful
[Akenine-Moller and Strom 2008], and is typically integrated into
the mobile processor system-on-a-chip (SoC), which also consists
of one or several CPUs, DSP (digital system processor), and other
available mobile-specific accelerators. This embedded GPU does
not have a memory specific for it, having to share the system bus,
with the others processors for accessing the memory. Consequently
the memory bandwidth is also much lower when compared to the
desktops GPUs [Cheng and Wang 2011].

Currently, mobile GPUs emphasis more on lower power consump-
tion [Therdsteerasukdi et al. 2012] than performance. Some of
these currently available Gpus devices are the Qualcomm’s Adreno
200 GPU, the TI’s PowerVR SGX 530/535 GPU and the nVidia
Tegra2 GPU.

Normally, most works that uses mobile for parallel processing,
deals with the use of the GPU for generic processing with the

OpenGL ES [Munshi et al. 2008] programable shaders, the ver-
tex and fragment shader, as the programming interface [Kim et al.
2007]. The disadvantage of some approaches is the traditional
shader languages limitations (such as scatter memory operations,
i.e. indexed write array operations), and offering others features
that are not even implemented on those languages (such as inte-
ger data operands like bit-wise logical operations AND, OR, XOR,
NOT and bit-shifts) [Owens et al. 2007]. Some of these disadvan-
tages are also present in the rendersript API, like the limitation of
scatter memory operations.

2.1 The Renderscript API

Renderscript is a new software development kit and API for An-
droid firstly introduced by Google in the Honeycomb version of
Android. Renderscript is an API for high-performance graphics
processing on Android phones and tablets. It is used for fast 3D
rendering and computing processing, having similar paradigm as
GPU computing libraries and frameworks [Huang et al. 2011]. The
main goal of Renderscript API is to bring a lower level, higher per-
formance API to Android developers, in order to achieve better per-
formance in visual animations and simulations [Guihot 2012].

Renderscript code is compiled on the device at runtime, so the de-
veloper do not need to recompile the application for different pro-
cessor types, making more easy its usage [Ostrander 2012]. Its lan-
guage is an extension of the C99 language that is translated to an
intermediate code at compile time, and then to machine code at run-
time. The API scale the generated code to the amount of processing
cores available on the device. The decision of choosing which pro-
cessor will run the code is made on the device at runtime, being
completely transparent for the developer. Normally simple scripts
will be able to run on the available GPUs, while more complex
scripts will run on the CPU. The CPU is also a fallback, so that if
none other available suitable device, it will run the code.

All the tasks implemented in Renderscript are automatic portable
for parallel processing on the available processors of the device,
like the CPU, GPU and even DSP. Renderscript is specially use-
ful for apps that do image processing, mathematical modeling, or
any operations that require lots of mathematical computation, sim-
ilar to GPU computing paradigm. The main use of renderscript is
to gain performance in critical code where the traditional Android
framework and OpenGL ES APIs are not fast enough.

The Renderscript is composed of two APIS: a computing API (re-
sponsible for processing the computation), and a rendering API (re-
sponsible for the tenderization of the scene, working together with
OpenGl Es 2.0). The Renderscript code is called from a Android
Activity inside the virtual machine. If the code can execute on a
GPU or on a multi-core CPU, it may be assigned to run on that.
The script runs asynchronously and sends its results back into the
Virtual Machine.

3 Related Work

There are not much works on the literature that deals with the use
of the mobile on multicore processors. Most of the works deals
with image processing, using the GPU for generic processing. In
the works [Singhal et al. 2010a] , [Singhal et al. 2011] and [Singhal
et al. 2010b] some image processing algorithms where designed
and implemented on handheld device using OpenGL ES 2.0. In
[Lopez et al. 2011] a mobile-GPU implementation of Local Bi-
nary Pattern feature extraction is presented, showing a better perfor-
mance and power consumption when used the CPU together with
the GPU.

Also using OpenGL 2.0 for image processing [Cheng and Wang
2011] shows a face recognition algorithm, with a 4.25x speedup
and a 3.88x reduction on the total energy consumption. [Jeong et al.
2009] presents an implementation of GPU-based window system on
top of EGL and OpenVG. Also the openCV [Pulli et al. 2012] is a
library for computer vision, includes some new and experimental
features for the mobile devices. These works are particularly im-
portant since they show that the use of the mobile GPU is faster and

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 84

have low power consumption, and our work also uses the Gpu for
its processing.

Nah et al. [Nah et al. 2010] shows OpenGL ES-based CPU-GPU
hybrid ray tracer for mobile devices, using Kd-trees. In [M. et al.
2009], a system for building document mosaic images from se-
lected video frames on mobile phones using the GPU for acceler-
ating its processing is presented. Also a image deformation imple-
mentation with a misc of ARM-Linux and OpenGL ES for mobile
device is presented in [Hu et al. 2011].

There are also some works [Barboza et al. 2010; Zamith et al. 2011;
OnLive 2012] that uses cloud-computing for distribution of the pro-
cessing over the cloud for mobile real time simulation and games.
These approaches tend to rely on the network for these distribution,
which can be very unreliable and slow using the mobile phones car-
rier.

There are no works on the literature that deals with the use of ren-
derscript, like this one does. But the Android SDK [Android 2012]
makes available a series of sample codes, for building simple ani-
mations based on particle systems, like a fountain and a brute force
physics simulation that can render and process up to 900 interacting
particles.

The first known agent-based simulation for groups of interacting
animals is the work proposed by Craig Reynolds [Reynolds 1987],
in which he presented a distributed behavioral model to perform this
task. His model is similar to a particle system where each individual
is independently simulated and acts accordantly to its observation
of the environment, including physical rules such as gravity, and
influences of other individuals perceived in the surroundings. The
main drawback of the proposed approach is the O(n2) complexity
of the traversal algorithm needed to perform the proximity tests for
each pair of individuals. This was such an issue at the time that
the simulation had to be run as an offline batch process, even for a
limited number of individuals. In order to cope with this limitation,
the author suggested the use of spatial hashing. This work also
introduced the term boid (abbreviation for birdoid) that has been
used to designate generic simulated flocking creatures ever since.

Musse and Thalmman [Musse and Thalmann 1997] propose a
more complex modeling of human motion based on internal goal-
oriented parameters and the group interactions that emerge from
the simulation, taking into account sociological aspects of human
relations. Others include psychological effects [Pelechano et al.
2007], social forces [Cordeiro et al. 2005] or even knowledge and
learning aspects [Funge et al. 1999]. Shao and Terzopoulos [Shao
and Terzopoulos 2005] extend the latter including path planning
and visibility for pedestrians. It is important to mention that these
proposals are mainly focused on the correctness aspects of behavior
modeling. The data structures and algorithms used by these works
are not suitable for real-time simulation of very large crowds, which
is one of the goals of this work.

Reynolds further enhanced his behavioral model to include more
complex rules and to achieve the desired interactive performance
by the use of spatial hashing [Reynolds 2000; Reynolds 1999].
This implementation could simulate up to 280 boids at 60 fps in
a Playstation 2 hardware. Also the work by Silva et al. [Silva et al.
2008] implement a similar work, but it focus on the optimization of
the algorithm by doing occlusion based on the vision of the boids.
By using the spatial hash to classify the boids into a grid, the prox-
imity query algorithm could be performed against a reduced num-
ber of pairs. For each boid, only those inside the same grid cell and
at adjacent ones, depending on its position, were considered. This
strategy leads to a sequential complexity that is closer to O(n).
This complexity, however, is highly dependent on the maximum
density of each grid cell, which can be very high if the simulated
environment is large and dense. We remark that the complexity of
our neighborhood grid is not affected by the size of the environment
or the distribution of the boids over it.

Quinn et al. [Quinn et al. 2003] used distributed multiprocessors
to simulate evacuation scenarios up to 10,000 individuals at 45 fps
on a cluster connected by a gigabit switch. More recently, a simi-
lar spatial hashing data-structure was used by Reynolds [Reynolds

2006] to render up to 15,000 boids in Playstation 3 hardware at in-
teractive framerates, but with a reduced simulation frame rate of
around 10 fps. Due to the distributed memory of both architec-
tures, it is necessary to copy compact versions of the buckets/cells
of boids to the individual parallel processors before the simulation
step could run, copying them back at the end of it to perform the
rendering, which leads to a potential performance bottleneck for
larger sets of boids. This issue is evidenced in [Steed and Abou-
Haidar 2003], where the authors span the crowd simulation over
several network servers and conclude that moving individuals be-
tween servers is an expensive operation.

In the works [Passos et al. 2008; Joselli et al. 2009; Passos et al.
2010], which this work extends, is implemented a crowd simula-
tion system on a desktop GPU, using CUDA, where each boid is
modeled as a cellular automaton [Sarkar 2000]. This work could
achieve the simulation and renderization of up to 1 millions boids
at interactive frame rates. The present paper extends that previous
work new architecture, the mobile device architecture, with all the
unique characteristics and constraints.

4 Proposed Architecture

Individual entities in crowd behavior simulations depend on ob-
servations of their surrounding neighbors to decide which actions
to take. The straightforward implementation of the neighborhood
gathering algorithm has a complexity of O(n2), for n entities, since
it performs at least one proximity query for each entity pair in
the crowd. Individuals are autonomous and can move during each
frame, which leads to a very computationally intensive task. This
implementation is showed in algorithm 1.

Algorithm 1 Brute Force Neighborhood Gathering Algorithm

for i=0;i<number of entities;i++ do
for j=0;j<number of entities;j++ do

if i ! = j AND distance(i,j) ¡ k then
Do computation with (i,j)

end if
end for

end for

Techniques of spatial subdivision have been used to group and sort
these entities in order to accelerate the neighborhood finding task.
Current implementations are usually based on variations of rela-
tively coarse subdivisions techniques, such as a grid over the con-
sidered environment. After each update, all entities have their grid
cell index calculated based on their latest locations. But the scatter
memory operations on the Renderscript API is still very primitive,
lacking the ability to process this kind of structure. So most algo-
rithms that deals with some sort of neighborhood gathering uses the
brute force algorithm, which has an O(n2) complexity factor.

In this work we use another approach for the neighborhood gath-
ering problem. This approach uses a grid data structure, which is
called neighborhood grid that is used to store information about all
the entities. In this neighborhood grid, each entity is mapped in a
individual cell (1:1 mapping) accordingly to its spatial location, so
that entities that are close in a neighborhood sense, appear close
to each other in the grid. In order to keep the neighborhood grid
mapped accordingly to the spatial location, a sorting mechanism is
needed. To fulfill that need, we do a partial sort at each step the
structure to keep the relations aligned.

In order to fully function on the mobile device, this simulation ar-
chitecture is divided in four different ambients:

• the Android framework, where the application is created, and
the renderscript context is also created. Also, this ambient
is responsible for gathering the inputs and to sent it to the
computing renderscript;

• the computing renderscript is where the variables for the sim-
ulation are created, the call for the renderscript computing en-
gine are made and the sort the entities is done;

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 85

• the renderscript computing engine will process the behavior
of the scene distributing its process among the available pro-
cessors;

• OpenGL: will render all the objects, applying shaders and vi-
sual effects to them.

This architecture is illustrated on figure 1.

The following subsections describe the architecture. In the next
subsection the neighborhood grid is explained. The role of sorting
the grid are also explained in follow subsection.

4.1 The Neighborhood Grid

The proposed architecture was manly built using the renderscript
API, in order to achieve better performance by accessing the avail-
able multicores processors of the mobile device. Structs for the
information of each entity, which consists of: position (a vector,
representing the position of the entity), speed (a vector for storing
the orientation and velocity in a single structure) and type (an inte-
ger that can be used to differentiate entity classes).

All the information about the entities are stored in 3D arrays (grid),
where each position holds the entire data for an individual entity,
which contain the struct with all the information of the entity. In
this data structure, each cell fits only one entity. Figure 2 illustrates
how a randomly distributed set of entities would be arranged in the
neighborhood grid when correctly sorted viewed from a top-down
camera.

Neighborhood GridSimulation Scene

Figure 2: Construction of the Neighborhood grid in a top-down
camera.

In this work we use a extended form of neighborhood gathering
that is known as Extended Moore Neighborhood [Sarkar 2000] in
the Cellular Automata theory. The algorithm for gathering such a
neighborhood can be seen at Algorithm 2. This algorithm takes as
input the radius of the neighborhood and the neighborhood grid, the
array with the stored particles.

Algorithm 2 Extended Moore Neighborhood Gathering Algorithm

for z=-radius;z<=radius;z++ do
for y=-radius;y<=radius;y++ do

for x=-radius;x<=radius;x++ do
if (x != 0 OR y != 0 OR z!=0) then

Do computation with
(Grid[indexZ+z][indexY+y][indexX+x])

end if
end for

end for
end for

Figure 3 illustrates this structure in our 3D matrix holding arbi-
trary information about the individual entities. To reduce the cost
of proximity queries, each entity will only gather information about
the entities surrounding its cell, based on a constant radius. In the
example of Figure 3, this radius is 1, so the entity represented
at cell in gray would have access to the highlighted surrounding
cells/entities in green.

This kind of spatial data structure and extremely regular informa-
tion gathering enables a good prediction of the performance, since

Figure 3: Example of the neighborhood grid with radius = 1.

the number of proximity queries will always be constant over the
simulation. This happens because instead of making these prox-
imity queries over all entities inside a coarse grid/bucket/cell (with
variable quantity), such as in spatial subdivision implementations,
each entity would query only a fixed number of surrounding indi-
vidual neighbors. However, this grid has to be sorted continually
in such a way that those entities which are neighbors in geomet-
ric space are stored in individual cells that are close to each other.
This guarantees that each entity should gather information about
its closest neighbors. Depending on the simulation (and the sort-
ing step), some misalignment may occur over the data structure,
causing that some of the neighbor entities are missed by the gather-
ing step. However, the larger the Moore radius is, less likely it is to
happen such issue, which we could observe during the experiments.

4.2 Sorting Pass

The position information of each entity is used to perform a lexi-
cographical sort based on the three dimensions of this vector. The
goal is to store in the closer-bottom-leftmost cell of the grid the
entity with the smaller values for Z, Y and X, and in the far-top-
rightmost cell the entity with highest values of Z, Y and X respec-
tively. Using these three values to sort the matrix, the farthest lines
will be filled with the entities with the higher values of Z while the
top lines will be filled with the entities with higher values of Y and
the right columns will store those with higher values for X and so
on. This kind of sorting provides for the approximate neighborhood
query that is optimal in terms of data locality.

When performing a sorting over a one dimension array of float point
values, the goal is that given an array A, the following rule must
apply at the end:

• ∀A[i] ∈ A, i > 0⇒ A[i-1] ≤ A[i].

The architecture is independent of the sorting algorithm used, as
long as the rules above are always, eventually or even partially
achieved during simulation, depending on the desired neighborhood
precision. In this work, we have used a parallel implementation of
a partial bubble sort algorithm. In our test case, it is sufficient to
run only one partial bubble sort pass for each simulation update be-
cause we initialize the neighborhood grid in an ordered state and
the flocking nature of the simulation algorithm implies that the en-
tities do not overlap positions frequently. In practice, this means
that after very few simulation steps, the grid correctly represents
the proximity relations of the entities. Depending on the simula-
tion being performed, it may be necessary to perform a complete
sorting at each update step. In this case, it is recommended a sort-
ing algorithm with better worst case complexity, such as a parallel
merge or radix sort. However, for all scenarios experimented in our
work, the (incomplete) sort was enough to sustain an approximately
correct simulation, with no noticeable visual artifacts

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 86

Android Framework

Activity

Renderscript Runtime

Compute RenderScript

RenderScript Compute
Engine

OpenGL ES

Initialization

Creation of
RenderScript

Context
Variable

Initialization

Main Loop

Read Input Simulation
Call

Sort
Processing

Simulation
Processing

Render
Objects

Process
Shaders

Figure 1: Architecture Overview.

5 Flocking Boids

For the purpose of this work, we choose to validate the proposed
technique by implementing a well known distributed simulation al-
gorithm called, flocking boids [Reynolds 1987]. This is a good
algorithm to use because of its good visual results, proximity to
real world behavior observation of animals and understandability.
The implementation of the flocking boids model using our algo-
rithm enables a real time simulation of up to thirty two thousands
animals of several species, with a corresponding visual feedback.
The number of different species is limited only by the number of
animals in the simulation.

Our model simulates a crowd of animals interacting with each other
and avoiding random obstacles around the space. This simulation
can be used to represent from small bird flocks to huge and complex
terrestrial animal groups or either thousand of hundreds of different
cells in a living system. Boids from the same type (representing the
species) try to form groups and avoid staying close to the other type
of species. The number of simulated boids and types is limited only
by technology but, as demonstrated in the next section, our method
scales very well due to the data structures used. In this section we
focus at the extension of the concepts of cellular automata in the
simulation step, in order to represent emergent animal behavior.

To achieve a believable simulation we try to mimic what is observ-
able in nature: many animal behaviors resemble that of state ma-
chines and cellular automata, where a combination of internal and
external factors defines which actions are taken and how they are
made. A state machine is used to decide which actions are taken.
The actions themselves performed by a cellular automaton algo-

rithm. With this approach, internal state is represented by the boid
type and external ones corresponds to the visible neighbors, de-
pending from where the boid is looking at (direction), and their
relative distances.

Based on these ideas, our simulation algorithm uses internal and
external states to compute these influences for each boid: Flock-
ing (grouping, repulsion and direction following); leader following;
and other boid types repulsion (used also for obstacle avoidance).
Additionally, there are multiplier factors which dictate how each in-
fluence type may get blended to another, in each step. In order to
enable a richer simulation, these factors are stored independent for
each type of boid in separate arrays.

The remainder of the section is divided by each behavior rule of the
flocking. also the last subsection is dedicated for the Boidoid game,
which is a game based on the flocking boids rules.

5.1 Vision

In nature, each animal species has a particular eye placement,
evolved based on its survival needs such as focusing on a prey or
covering a larger field of view to detect predators. To mimic this
fact, our boids have a limited field of view, parameterized by an
angle. Obstacles and other boids outside this field of view are not
considered in the simulation. Figure 4 shows a comprehensible rep-
resentation of this field of view.

When two boids are very close to each other, up to collide, corre-
sponds to a special case where a boid takes into account a neighbor
even if it is outside of the its field of view. If collisions where

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 87

Visible Area

Invisible Area

Figure 4: The visual field of a boid

allowed to happen, the simulation could become unstable since
neighbor boids coming from behind would suddenly appear in front
of another. It is possible to think of this as a collision detection for
a prevention system, having the same effect as a movement made
by animals that, even not seeing each other, would have gotten into
a sudden contact.

5.2 Flocking Behavior

A boid keeps on moving by watching his visible neighbors and de-
ciding what direction to take next. Each neighbor influences this di-
rection in different conflicting manners, depending on its type and
distance from the simulated boid. From neighbors of the same type,
the simulated one receives three simultaneous influences: grouping,
repulsion and direction following.

5.2.1 Grouping Influence

By grouping we mean the tendency that animals from the same
species have to keep forming relatively tight groups. To simulate
this behavior we compute the group center position by averaging
the positions of all visible neighbors of the same type as the one
being simulated. This grouping influence will be multiplied by a
grouping factor, unique for each type, and by the distance from the
centre. The last factor will make the influence stronger to boids that
are far from the group. Figure 5 illustrates grouping and repulsion
influences.

5.2.2 Repulsion Influence

If only the grouping influence was taken into account, boids would
tend to form very dense groups, resulting in very frequent colli-
sions, not representing what we see in nature. To balance this
grouping tendency a collision avoidance influence is computed. For
each simulated boid, the relative distance to its neighbors is com-
puted and divided by its length. This weighted vector is then mul-
tiplied by a specified repulsion factor and added as an influence to
the desired motion vector. One can notice that the parameterized
factors of both the grouping and distance influences play a major
role in determining the density of the groups, since one cancels
each other at a certain distance when equilibrium is reached be-
tween them.

5.2.3 Direction Following Influence

Besides the tendency of forming groups, animals also tend to fol-
low the same direction as its companions. To achieve this behavior
we compute another influence every time a boid sees a neighbor
of the same type. This influence is represented by the current ve-
locity/direction followed by the neighbor. Figure 6 exemplifies this
influence.

Grouping Repulsion

Figure 5: Grouping and repulsion influences

5.3 Leader Following

Besides from recognizing its neighbors of the same type and trying
to move as a group, each type may have a leader to follow. Nor-
mal boids, when see the leader, have a stronger desire to follow it,
represented by a larger multiplier factor, that gets blended with the
other computed influences. Each leaders is simulated at the same
time as normal boids but also being identified as such and acting
accordingly. However, the movement of this leader is not driven
by the desire to keep grouping, but only trying to reach a desired
location and avoiding obstacles and other boid groups.

Inside the data structures, the leaders are represented as normal
boids. There is a small auxiliary array keeping the current matrix
index exclusively for the leaders of each boid type. The array size is
the number of different boid types. Element n of this array contains
the cell index of the leader for the boids of type t. To be correct
along the time, this array must be updated by the sorting pass if any
of the leaders change its cell.

Direction Leader

Figure 6: Direction and leader following

During the simulation step, for each boid the leaders array value for
its type is fetched and the value returned identifies the leader index
inside the matrixes. If the returned index corresponds to the boid
being simulated, it means that corresponds to the group leader and
follows to an alternative and more random simulation algorithm.
For normal boids, this leader index is used to fetch its position and
direction, so that the correct influence can be computed.

5.4 Obstacles, Enemies and Influences Composi-
tion

In this work, obstacles are also represented as boids inserted in the
same data structures, also being sorted and simulated. To avoid
movement during the simulation step, obstacles are initialized with
a different type value, and are not simulated. However, if a neigh-
bor of a specific simulated boid happens to be an obstacle, the only
influence calculated a is repulsion force. This force is then mul-
tiplied by a factor that is stored in the unused direction vector of
this still obstacle-boid, enabling the representation of obstacles of
arbitrary sizes with a round repulsion field. Neighbors of different
types that are not obstacles also have a strong repulsion influence
calculated, but the multiplier factor is kept at the simulated boid

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 88

type, representing an enemy-fearness factor. All calculated influ-
ences are added into an acceleration vector that is used to update
the position and direction/speed vectors.

5.5 The Design of Boidoid Game

The Boidoid is a massive prototype action game with a top-down
2D perspective. The story behind the game is that the boids world
are collapsing, and the boids need to escape by reaching the por-
tals. But the boids do not know that, and they only tries to respect
their flocking rules. Its up to the player to save those boids from
extinction.

The game play is very simple, in a world there are up to four dif-
ferent boids, which are represented by different colors. All of these
boids respect the flocking rules defined in this section. These boids
are random distributed on the screen. Also up to four different por-
tals, one for each type of boid, are distributed on the screen, when
the boid are inside, they are collected. The player mission is to col-
lect as many boids as they can, in the available time. Every time the
player touches the screen, he creates repulsion forces, that can be
used to lead boids to the portals.

6 Results

In this work, we implemented and tested the flocking boids case-
study and game prototype using the neighborhood grid and also
evaluated the rendering of all boids. The rendering consists of a
simple primitive, a sphere representing each void, that is bound
from the output VBO (vertex buffer object) of the simulation in
a vertex shader. A series of screenshots from the game can be seen
on Figure 7.

To evaluate the scalability of the architecture, we varied the number
of entities/boids being simulated (from 1 hundred to 32 thousands).
The Moore neighborhood radius was set to 4 (which was the radius
with better visual behavior). At preliminary tests, we observed that
the number of different boid types had no observable influence on
the performance, so a fixed number of 4 types was used for all ex-
periments. The simulation of the boids behavior were developed
using two algorithms: the neighborhood grid and the brute force al-
gorithm, which were also implemented using the renderscript API.

For the tests, we have used a Asus Tranformes TF101, which is a
10.1 inches tablet with an Android 4.03 operating system that has
a Nvidia Tegra 2 T20 chipset with a Dual-core 1 GHz Cortex-A9
CPU and a ULP (ultra-low power) GeForce GPU and 1GB RAM
memory. Simulations tests with different configurations were per-
formed. The rendering is done, in screen space, through applying a
bilateral filter in sphere’s normal. To assure that results are consis-
tent, each test was repeated 10 times and the standard deviation of
the average times was confirmed to be within 5%.

In Table 1 and Figure7 show the results of different simulation con-
figurations, by varying the number of boids in the scene. In these
results, the label FPS represents the frames per second which mea-
sure a time necessary to update and render the simulation. Speedup
is defined by the relation S = X1

Y2
, being X1 the FPS for the Neigh-

borhood Grid and Y2 the FPS for the Brute Force algorithm.

Table 1: Scalability of the Simulation.

Brute Force Neighborhood Grid Performance Gain
Boids FPS FPS
128 115 247 2.14
256 70 170 2.42
512 40 131 3.25
1024 10 117 11.7
2048 3 101 33
4096 0.50 86 172
8192 0.14 57 407

16384 0.03 30 1000
32768 0.01 16 1600

From these results, as expected, the simulation using the method

implemented with the neighborhood grid presents a better result
than the simulation using the method implemented with the brute
force algorithm. These tests also shows that even with more that
32k interactive boids in the scene, the simulation with neighbor-
hood grid can still maintain the interaction, since it maintain the
lower bound for interaction [Joselli et al. 2008]. This work has also
implemented the Neighborhood Grid using the the Android NDK
which shows a speedup of the Renderscript implementation of up
to 3 times.

7 Conclusion

In this paper we have shown an extension of a novel technique for
simulating emergent behavior of dynamic entities in a densely pop-
ulated environment. We have extended all of our data structure to
mobile architecture in order to make crowd simulation optimized
and suitable for mobile devices. We also have implemented a game
based on the boids rules. Also, we must remark, that as far as the
authors of this work knows, this is the first massive boid simulation
in a common mobile device, and also the first work on literature
using the renderscript API.

From the tests, we can see that the simulation is much faster when
using the neighborhood grid algorithm. Also other simulations
could be implemented using the API and the data structure.

References

AILA, T., LAINE, S., AND KARRAS, T. 2012. Understanding
the efficiency of ray traversal on GPUs – Kepler and Fermi ad-
dendum. NVIDIA Technical Report NVR-2012-02, NVIDIA
Corporation, June.

AITKEN, M., BUTLER, G., LEMMON, D., SAINDON, E., PE-
TERS, D., AND WILLIAMS, G. 2004. The lord of the rings:
the visual effects that brought middle earth to the screen. In
ACM SIGGRAPH 2004, ACM Press, New York, NY, USA, SIG-
GRAPH: ACM Special Interest Group on Computer Graphics
and Interactive Techniques.

AKENINE-MOLLER, T., AND STROM, J. 2008. Graphics process-
ing units for handhelds. Proceedings of the IEEE 96, 5 (may),
779 –789.

ANDROID, G., 2012. Android renderscript. Avalible
at: http://developer.android.com/guide/
topics/renderscript/index.html.

BARBOZA, D. C., JUNIOR, H. L., CLUA, E. W. G., AND RE-
BELLO, V. E. 2010. A simple architecture for digital games
on demand using low performance resources under a cloud com-
puting paradigm. Games and Digital Entertainment, Brazilian
Symposium on 0, 33–39.

CHENG, K.-T., AND WANG, Y.-C. 2011. Using mobile gpu for
general-purpose computing a case study of face recognition on
smartphones. In VLSI Design, Automation and Test (VLSI-DAT),
2011 International Symposium on, 1 –4.

CHIARA, R. D., ERRA, U., SCARANO, V., AND TATAFIORE, M.
2004. Massive simulation using gpu of a distributed behavioral
model of a flock with obstacle avoidance. In Vision, Modeling,
and Visualization (VMV), 233–240.

CNET, 2012. Android reclaims 61 percent of all u.s. smartphone
sales. Avalible at: http://tinyurl.com/cgsszfc.

CORDEIRO, O. C., BRAUN, A., SILVEIRA, C. B., AND MUSSE,
S. R. 2005. Concurrency on social forces simulation model.
In Proceedings of the First International Workshop on Crowd
Simulation (V-CROWDS), V-CROWDS.

COURTY, N., AND MUSSE, S. R. 2005. Simulation of large crowds
in emergency situations including gaseous phenomena. In CGI
’05: Proceedings of the Computer Graphics International 2005,
IEEE Computer Society, Washington, DC, USA, CGI, 206–212.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 89

(a) Init of the game. The boids are spread across the scene. (b) The boids start to form groups.

(c) The boids groups are formed. (d) Most of the boids are inside the portals

Figure 7: Screenshots in difference moments of the game.

Figure 8: Performance of the simulation.

FEINBUBE, F., TRO ANDGER, P., AND POLZE, A. 2011. Joint
forces: From multithreaded programming to gpu computing.
Software, IEEE 28, 1 (jan.-feb.), 51 –57.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive
modeling: Knowledge, reasoning and planning for intelligent
characters. In Siggraph 1999, Computer Graphics Proceedings,
Addison Wesley Longman, Los Angeles, A. Rockwood, Ed.,
Siggraph, 29–38.

GLOBALSTATS, 2012. Mobile internet us-
age is doubling year on year. Avalible at:
http://gs.statcounter.com/press/mobile-
internet-usage-is-doubling-year-on-year.

GROUP, K., 2009. Opencl - the open standard for paral-
lel programming of heterogeneous systems. Avalible at:
http://www.khronos.org/opencl/.

GUIHOT, H. 2012. Pro Android Apps Performance Optimization.
Apress.

HU, X., XIA, Z., AND YUAN, Z. 2011. Study on image defor-
mation simulation based on arm linux and opengl es. In Pro-
ceedings of the 2011 International Conference on Intelligence
Science and Information Engineering, IEEE Computer Society,
Washington, DC, USA, ISIE ’11, 303–306.

HUANG, Y., CHAPMAN, P., AND EVANS, D. 2011. Privacy-
preserving applications on smartphones. In Proceedings of the
6th USENIX conference on Hot topics in security, USENIX As-
sociation, Berkeley, CA, USA, HotSec’11, 4–4.

JEONG, D., KAMALNEET, KIM, N., AND LIM, S. 2009. Gpu-
based x server on top of egl and openvg. Computers in Educa-
tion, International Conference on 0, 1–2.

JIN, X., WANG, C. C. L., HUANG, S., AND XU, J. 2007. Inter-
active control of real-time crowd navigation in virtual environ-

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 90

ment. In VRST ’07: Proceedings of the 2007 ACM symposium on
Virtual reality software and technology, ACM, New York, NY,
USA, 109–112.

JOSELLI, M., AND CLUA, E. 2009. Gpuwars: Design and im-
plementation of a gpgpu game. Brazilian Symposium on Games
and Digital Entertainment, 132–140.

JOSELLI, M., AND CLUA, E. 2009. grmobile: A framework for
touch and accelerometer gesture recognition for mobile games.
In Proceedings of the 2009 VIII Brazilian Symposium on Games
and Digital Entertainment, IEEE Computer Society, Washing-
ton, DC, USA, SBGAMES ’09, 141–150.

JOSELLI, M., ZAMITH, M., VALENTE, L., CLUA, E. W. G.,
MONTENEGRO, A., CONCI, A., AND FEIJÓ, PAGLIOSA, P.
2008. An adaptative game loop architecture with automatic dis-
tribution of tasks between cpu and gpu. Proceedings of the VII
Brazilian Symposium on Computer Games and Digital Enter-
tainment, 115–120.

JOSELLI, M., PASSOS, E. B., ZAMITH, M., CLUA, E., MON-
TENEGRO, A., AND FEIJO, B. 2009. A neighborhood grid data
structure for massive 3d crowd simulation on gpu. Games and
Digital Entertainment, Brazilian Symposium on 0, 121–131.

JOSELLI, M., ZAMITH, M., CLUA, E., LEAL-TOLEDO, R.,
MONTENEGRO, A., VALENTE, L., FEIJO, B., AND PAGLIOSA,
P. 2010. An architeture with automatic load balancing for real-
time simulation and visualization systems. JCIS - Journal of
Computational Interdisciplinary Sciences, 207–224.

JOSELLI, M., SILVA JUNIOR, J. R., ZAMITH, M., SOLURI,
E., MENDONCA, E., PELEGRINO, M., AND CLUA, E. W. G.
2012. An architecture for game interaction using mobile. In
Games Innovation Conference (IGIC), 2012 IEEE International,
73–77.

JOSELLI, M., SILVA JUNIOR, J. R., ZAMITH, M., SOLURI, E.,
MENDONCA, E., PELEGRINO, M., AND CLUA, E. W. G. 2012.
Techniques for designing gpgpu games. In Games Innovation
Conference (IGIC), 2012 IEEE International, 78–82.

KADLEC, B., TUFO, H., AND DORN, G. 2009. Knowledge-
assisted visualization and segmentation of geologic features us-
ing implicit surfaces. IEEE Computer Graphics and Applica-
tions 99, PrePrints.

KIM, T.-Y., KIM, J., AND HUR, H. 2007. A unified shader
based on the opengl es 2.0 for 3d mobile game development.
In Proceedings of the 2nd international conference on Technolo-
gies for e-learning and digital entertainment, Springer-Verlag,
Berlin, Heidelberg, Edutainment’07, 898–903.

KOIVISTO, E. M. I. 2006. Mobile games 2010. In CyberGames
’06: Proceedings of the 2006 international conference on Game
research and development, Murdoch University, Murdoch Uni-
versity, Australia, Australia, CyberGames, 1–2.

LOPEZ, M., NYKÄNEN, H., HANNUKSELA, J., SILVEN, O., AND
VEHVILÄINEN, M. 2011. Accelerating image recognition on
mobile devices using gpgpu. In Proceedings of SPIE, vol. 7872,
78720R.

M., B. L., J., H., AND M., S. O. . V. 2009. Graphics hard-
ware accelerated panorama builder for mobile phones. Proc.
SPIE Multimedia on Mobile Devices 2009, vol. 7256. ISBN
9780819475060.

MUNSHI, A., GINSBURG, D., AND SHREINER, D. 2008.
OpenGL(R) ES 2.0 Programming Guide, 1 ed. Addison-Wesley
Professional.

MUSSE, S. R., AND THALMANN, D. 1997. A model of human
crowd behavior: Group inter-relationship and collision detection
analysis. In Workshop Computer Animation and Simulation of
Eurographics, Eurographics, 39–52.

MUYAN-OZCELIK, P., OWENS, J. D., XIA, J., AND SAMANT,
S. S. 2008. Fast deformable registration on the gpu: A cuda im-
plementation of demons. In the 1st technical session on UnCon-

ventional High Performance Computing (UCHPC) in conjunc-
tion with the 6th International Conference on Computational
Science and Its Applications (ICCSA), IEEE Computer Society,
Los Alamitos, California, M. Gavrilova, O. Gervasi, A. Lagan,
Y. Mun, and A. Iglesias, Eds., ICCSA 2008, 223–233.

NAH, J.-H., KANG, Y.-S., LEE, K.-J., LEE, S.-J., HAN, T.-D.,
AND YANG, S.-B. 2010. Mobirt: an implementation of opengl
es-based cpu-gpu hybrid ray tracer for mobile devices. In ACM
SIGGRAPH ASIA 2010 Sketches, ACM, New York, NY, USA,
SA ’10, 50:1–50:2.

NORTH, R. G., 2008. Grand theft auto iv, rockstar games.

NVIDIA, 2008. Skinned instancing. Avalible at:
http://developer.download.nvidia.com/SDK/10/
direct3d/Source/SkinnedInstancing
/doc/SkinnedInstancingWhitePaper.pdf.

NVIDIA, 2009. Nvidia cuda compute unified device ar-
chitecture documentation version 2.2. Avalible at:
http://developer.nvidia.com/object/cuda.html.

ONLIVE, 2012. http://www.onlive.com/.

OSTRANDER, J. 2012. Android Ui Fundamentals: Develop &
Design. Pearson Education.

OWENS, J. D., LEUBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRGER, J., LEFOHN, A. E., AND PURCELL, T. J. 2007. A
survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26(1), 80–113.

PASSOS, E., JOSELLI, M., ZAMITH, M., ROCHA, J., MONTENE-
GRO, A., CLUA, E., CONCI, A., AND FEIJÓ, B. 2008. Su-
permassive crowd simulation on gpu based on emergent behav-
ior. In Proceedings of the VII Brazilian Symposium on Computer
Games and Digital Entertainment, SBC, 81–86.

PASSOS, E. B., JOSELLI, M., ZAMITH, M., CLUA, E. W. G.,
MONTENEGRO, A., CONCI, A., AND FEIJO, B. 2010. A bidi-
mensional data structure and spatial optimization for supermas-
sive crowd simulation on gpu. Comput. Entertain. 7, 4 (Jan.),
60:1–60:15.

PELECHANO, N., ALLBECK, J. M., AND BADLER, N. I. 2007.
Controlling individual agents in high-density crowd simula-
tion. In SCA 07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
SCA, 99–108.

PULLI, K., BAKSHEEV, A., KORNYAKOV, K., AND ERUHIMOV,
V. 2012. Real-time computer vision with opencv. Commun.
ACM 55, 6 (June), 61–69.

QUINN, M. J., METOYER, R. A., AND HUNTER-ZAWORSKI, K.
2003. Parallel implementation of the social forces model. In
Proceedings of the Second International Conference in Pedes-
trian and Evacuation Dynamics, PED, 63–74.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. In SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, 25–34.

REYNOLDS, C. 1999. Steering behaviors for autonomous charac-
ters. In Game Developers Conference 1999, GDC.

REYNOLDS, C. 2000. Interaction with groups of autonomous char-
acters. In Game Developers Conference 2000, GDC.

REYNOLDS, C. 2006. Big fast crowds on ps3. In Sandbox
’06: Proceedings of the 2006 ACM SIGGRAPH symposium on
Videogames, ACM, New York, NY, USA, Sandbox, 113–121.

RICARDO DA SILVA JUNIOR, J., GONZALEZ CLUA, E. W., MON-
TENEGRO, A., LAGE, M., DREUX, M. D. A., JOSELLI, M.,
PAGLIOSA, P. A., AND KURYLA, C. L. 2012. A heterogeneous
system based on gpu and multi-core cpu for real-time fluid and

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 91

rigid body simulation. International Journal of Computational
Fluid Dynamics 26, 3, 193–204.

RODRIGUES, R. A., DE LIMA BICHO, A., PARAVISI, M., JUNG,
C. R., MAGALHAES, L. P., AND MUSSE, S. R. 2010. An
interactive model for steering behaviors of groups of characters.
Appl. Artif. Intell. 24, 6 (July), 594–616.

SARKAR, P. 2000. A brief history of cellular automata. ACM
Comput. Surv. 32, 1, 80–107.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous
pedestrians. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM, New York, NY, USA, SCA, 19–28.

SILVA, A. R., LAGES, W. S., AND CHAIMOWICZ, L. 2008. Im-
proving boids algorithm in gpu using estimated self occlusion. In
Proceedings of SBGames’08 - VII Brazilian Symposium on Com-
puter Games and Digital Entertainment, Sociedade Brasileira de
Computação, SBC, SBC, 41–46.

SINGHAL, N., PARK, I. K., AND CHO, S. 2010. Implementation
and optimization of image processing algorithms on handheld
gpu. In ICIP, IEEE, 4481–4484.

SINGHAL, N., PARK, I. K., AND CHO, S. 2010. Implementation
and optimization of image processing algorithms on handheld
gpu. In ICIP, 4481–4484.

SINGHAL, N., YOO, J. W., CHOI, H. Y., AND PARK, I. K. 2011.
Design and optimization of image processing algorithms on mo-
bile gpu. In SIGGRAPH Posters, 21.

STEED, A., AND ABOU-HAIDAR, R. 2003. Partitioning crowded
virtual environments. In VRST ’03: Proceedings of the ACM
symposium on Virtual reality software and technology, ACM,
New York, NY, USA, VRST, 7–14.

THERDSTEERASUKDI, K., BYUN, G., CONG, J., CHANG, M. F.,
AND REINMAN, G. 2012. Utilizing rf-i and intelligent schedul-
ing for better throughput/watt in a mobile gpu memory system.
ACM Trans. Archit. Code Optim. 8, 4 (Jan.), 51:1–51:19.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
ACM, New York, NY, USA, SIGGRAPH, 1160–1168.

TUNACODE, 2010. Cuvilib: Cuda vision and imaging library.
Avalible at: http://www.cuvilib.com/.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., AND
LIN, M. 2008. Interactive navigation of multiple agents in
crowded environments. In I3D ’08: Proceedings of the 2008
symposium on Interactive 3D graphics and games, ACM, New
York, NY, USA, 139–147.

ZAMITH, M., VALENTE, L., JOSELLI, M., CLUA, E., TOLEDO,
R., MONTENEGRO, A., AND FEIJ, B. 2011. Digital games
based on cloud computing. In SBGames 2011 - X Simpsio
Brasileiro de Jogos para Computador e Entretenimento Digital.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 92

