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(a)                                       (b) 
Fig. 12 – PPGA simulation in a tablet. Black circles represent the closed list, small white circles the open list and large white is 

the sub-path generated by GA". 
 

Abstract 
 

This paper presents a novel method to optimize the 

process of finding paths using a model based on 

Genetic Algorithms and Best-First-Search for real time 

systems, such as video games and virtual reality 

environments. The proposed solution uses obstacle 

pattern detection based at online training system to 

guarantee the memory economy. The architecture 

named Patterned based Pathfinding with Genetic 

Algorithm (PPGA) uses a learning technique in order to 

create an agent adapted to the environment that is able 

to optimize the search for paths even in the presence of 

obstacles.  We demonstrate that the PPGA architecture 

performs better than classic A* and Best-First-Search 

algorithms in patterned environment. 
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1. Introduction 
 

The search of the paths between two points is a 

fundamental problem for the area of electronic games, 

but it is also relevant for other areas [Stodola and 

Mazal 2010]. In this field the most used methods are 

A* [Russell and Norvig 2003] and Best-First Search 

[Russell and Norvig 2003]. Due to the demands of a 

real-time processing and hardware limitations, these 

traditional methods can cause problems in 

performance. Therefore many optimizations are studied 

for the same [Dechter and Pearl 1985][Leigh et al. 

2007][Rios and Chaimowicz 2011]. 

 

The traditional algorithm A* uses f(n)=g(n)+h(n) 

heuristic, where g(n) is the cost to reach the node n, 

h(n) is the estimated cost for reach the goal node from 

the node n. This calculation can be performed by 

Manhattan distance. At each iteration neighboring 

nodes of the current node has its value f(n) calculated 

and added to the open list (O). After the node from the 

open list with the lowest value of f(n) is removed from 

it, added to the closed list (C) and becomes the current 

node. When the current node is the destination node 

(G) the algorithm returns the path found. From this 

algorithm we can find the optimal solution. As can be 

seen in Fig. 1, the usage of compound heuristic 

provides a considerable expansion of the nodes, and 

these are kept in memory during processing. By 

applying these methods in multi-agents systems such as 

RPGs and strategy games in real time, memory 

consumption becomes much higher. 

 

    

 
 

Fig.1. A-Star route sample. 
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The algorithm IDA * [Korf 1985] is designed for 

the efficient use of memory. It is based on depth-first 

search using the same heuristic as algorithm A*, 

ensuring that finds the shortest path and decreasing the 

number of nodes expanded impacting the amount of 

memory required by the search. Although requiring less 

memory than the A*, it takes longer to find the path. 

 

The Best-First-Search algorithm works similarly to 

A*, but the heuristic adopted is simple and greedy (f 

(n) = h (n)), tending to expand only the nodes that are 

close to the goal one, thus the amount of memory 

required is less than the A* algorithm (as shown in Fig. 

2) as a result the solution will not necessarily optimal.  

 

   
 

 
 

Fig.2. BFS route sample. 

 

This paper proposes a promising algorithm, which 

the same as IDA*, optimizes the expense of A* 

memory, but as the Best-First, without guaranteeing the 

definition of the optimal path. For this, we designed an 

architecture based in Genetic Algorithms [Mitchell 

1996] and in the Best-First Search to optimize the 

search for paths with a reduction in the number of 

nodes expanded, and obtaining a path that is not always 

optimal. With this technique, the agent is able to adapt 

itself in an homogeneous  maze, using an heuristic that 

let the   agent calculates a path thought a considerable 

number of open nodes, in a single step, without having 

to expand them. 

 

In our previous work [Machado et al. 2011] we 

proposed an approach that aims to reduce the number 

of nodes accessed using a module with GA but with a 

local search heuristic adopted by A* to move through 

the environment. Compared with the traditional A* in 

patterned environments with obstacles, our previous 

method showed superior performance, but in 

environments without any kind of pattern obstacles, the 

performance was far below, not being suitable to many 

practical cases. Unlike the RTP-GA, our new approach 

ensures a minimal loss compared to the traditional 

Best-First in maps without pattern, maintaining a 

satisfactory standard advantage in environments with 

obstacles. 

 

We show in [Machado et al. 2011] that the decrease 

in the number of access nodes is proportional to the 

processing gain. As investigated by [Korf 1985] and 

[Russell and Norvig 2003] this relationship is not 

always proportional. Thus, to avoid this error, in this 

work we suggest only space optimization (memory). 

This papers is organized as following: chapter 2 

presents a survey about related works of pathfinding, 

followed by the PPGA algorithm specifications and 

features on chapter 3. At chapter 4 we present our tests 

and comparative analysis  between  the PPGA, BFS 

and A* algorithm.  Finally, at chapter 5, we present 

our conclusion and future work. 

 

2. Related Work 
 

Searching for patterns in maps in order to optimize the 

pathfinding algorithms is a well-known technique. 

[Demyenand and Buro 2006] shows that the 

Triangulation Reduction A* ( TRA*) method has many 

benefits, including accurate representation of polygonal 

environments, reduction of the search space and 

refinement of the optimal path. Although this algorithm 

uses real-time learning, it has severe constraints 

regarding the environment. To use the TRA* we must 

provide a description of polygonal obstacles in the 

environment, which can be easily applied to maps with 

barriers and holes but it is not suitable for labyrinths 

and mazes. 

 

The use of meta-heuristics for adaptation to the 

environment is a topic addressed by several authors. 

[Leigh et al. 2007] proposed the GA-Manufactured 

Maneuvering Algorithms (GAMMAs) that was able of 

finding paths more than 1000% faster than the 

traditional A*. In presented architecture the GA was 

able to adapt to the obstacles (called risk zones), 

approach the human-made path and define the best way 

to evaluate the path. However GAMMA depends on a 

prior offline training, that consists in exploring some 

maps in order to extract some patterns before the 

optimization process. 

 
[Burchardt and Salomon 2006] implemented a 

Genetic Algorithm to search for paths for robot routing. 

The algorithm runs until the agent achieves its goal. 

There is a constant update process on the environment. 

The fitness function is based on the length of the path 

with penalization on collisions. The gene encoding 

follows the pattern: 

 
Length X1 Y1 X2 Y2 X3 Y3 

 

The path is encoded as equidistant distances 

between the starting and ending point, allowing the 

occurrence of a deviation. However, this approach only 

works when a nearly direct route exists. 

 

[Bulitko and Lustrek 2006] call as "lookahead" the 

incomplete search method, which is similar to the min-

max based algorithms used in two-person games. It 

conducted a limited depth search, expanding the space 

centered on the agent, and heuristically evaluates the 
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distance between the agent and the destination. 

However, due to the “lookahead” pathology [Bulitko 

and Lustrek 2006], determining the optimal depth for 

the search procedure is not an easy task. 

 

As in [Demyenand and Buro 2006] and [Burchardt 

and Salomon 2006], this work investigates partial 

solutions in the map, trying to minimize the problems 

defined by [Bulitko and Lustrek 2006] when using this 

incomplete search method. We intend to hold a 

learning process through an online training (as opposed 

to [Leigh et al. 2007]), based on a codification of the 

route, such as presented in [Burchardt and Salomon 

2006]. 

 

Therefore we decide to use Genetic Algorithms for 

solving the pathfinding problem combining two 

approaches of the literature, presented in [Leigh et al. 

2007] and in [Burchardt and Salomon 2006].  The 

difference between our model and the one presented in 

[Leigh et al. 2007] is that we use an online training 

instead of an offline one. Our approach also improves 

the model presented in [Burchardt and Salomon 2006] 

since we define a chromosome able to adapt to any 

environment that present obstacle patterns. 

 

We generate possible sub-paths (or "lookahead") to 

be randomly applied in a map, evaluate the sub-paths in 

the map, and then adapt the sub-paths in order optimize 

the amount of memory necessary to generate the path. 

In Fig. 3 we show an example of obstacle avoidance: 

 

   
Fig 3: Two examples of obstacles adapting with Patterned 

based Pathfinding with Genetic Algorithm. The arrows 

represent the pattern detected by the GA, treated in this way 

sub-paths, which do not require evaluation of the neighbors. 
 

3. PPGA 
 

Patterned Based Pathfinding with Genetic Algorthm 

(PPGA) uses the classical Best-First-Seach with its 

greedy heuristic to find the path. When the criterion for 

the use of GA is reached, the fittest individual elected 

by the same will be used in the environment. 

 

The Genetic Algorithm iterates over a population of 

solutions that are called individuals or chromosomes.  

On each generation (algorithm iteration), new 

individuals are generated by crossover and mutation 

process and only the most suitable individuals survive 

for the next generation.  The individual fitness is 

calculated by a fitness function, or objective function. 

Thus, in each generation, only the individuals with the 

best values of objective function are selected to be in 

the next generation.  

 

It is important to note that, in the presented 

architecture, the quality of individuals (paths) is 

measured not only by the objective function, but also 

by the environment, ensuring an adaptation to changes 

in the map. 

 

The GA use a chromosome modeling based on 

vectors of movements. Its evaluation function uses a 

heuristic based on Best-First Search to evaluate the best 

individual. Some restrictions have been adopted to 

avoid the generation of invalid individuals, for better 

use of the GA. These restrictions are used in any 

environment. The individual chosen as the fittest by 

GA, which is a sub-valid path, is projected into the 

environment and its nodes are stored on the closed list 

of the Best-First without the need to expand them. Thus 

we obtain a reduction in the number of checked nodes. 

 

As the main processing of PPGA achieve gains at 

the presented pattern environments, in order to 

guarantee the solution it was necessary to develop a 

module for identifying when a maze has this feature. In 

those cases, the GA module is not used. 

 

In the following subsections the procedures for this 

case will be detailed. 

 

3.1 Chromosome representation 
 

As one of the goals of the algorithm is to detect 

obstacle patterns in the map, the proposed Genetic 

Algorithm uses a model based on four movement 

vectors, two horizontal and two vertical.  This model 

represents a sub-path, which can consist of up to four 

straight lines, two for each direction, which guarantees 

the boundary of obstacles.  As the maze gets narrow, 

the distance of the vectors (lines length) tends to 

decrease, and vice-versa. If the obstacles can be 

overcome by contouring them, these vectors tend to 

find this pattern. Each of these four vectors has a 

distance and a direction, as expressed in Tab 1: 
 

Type Interval Description 

Float 0.1 to 1 Distance of Movement 1 (DM1) 

Float 0.1 to 1 Distance of Movement 2 (DM2) 

Float 0.1 to 1 Distance of Movement 3 (DM3) 

Float 0.1 to 1 Distance of Movement 4 (DM4) 

Integer -1 to 1 Movement Direction 1 (M1) 

Integer -1 to 1 Movement Direction 2 (M2) 

Integer -1 to 1 Movement Direction  3 (M3) 

Integer -1 to 1 Movement Direction 4 (M4) 

Tab. 1 – Chromosome encoding 

 

 The interval where the movement distances may 

vary represent a percentage of the width (in the case of 

horizontal vectors) and height (in the case of vertical 

vectors) of the map. 

The directions are given by: 

 M1 and M3: 0 no movement, -1 down 

(subtracts the y-axis) and +1 up (increase in y-

axis).  

 M2 and M4: 0 no movement, -1 to the left 

(subtracts the x-axis) and +1 to the right 

(increase in x-axis). 
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3.2 Fitness Function 
 

The objective function (FA) is used to check each 

candidate path. It takes into consideration the following 

terms: 

 The Manhattan  Distance heuristic (MH), 

which has the largest weight in the formula. 

Its equation is given by      MH = | x1-x2 | + | 

y1-y2 |. The higher the value of MH  the worst 

the situation, since it means that the agent is 

far from the final target; 

 Total Movement (MT), calculated by the sum 

of half of the distance moved. The weight of 

MH is smaller than the one of MH to serve as 

a tie-breaker, especially in the elimination of 

cycling paths. 

 

This objective function must be maximized, 

meaning that  the higher the value the better the 

candidate. To ensure this feature, we adopted a roof 

value (upper limit) given by:  

 
Roof = (Width +Height)* 3 

 

 This value represents the sum of the maximum of 

four movement vectors plus the maximum value of the 

Manhattan distance. If a path is not valid, the 

convergence ensures that the result is the lowest 

possible (in this case, zero). The objective function is 

given by: 

 
FA = ( Roof - MH  - MT * 0,1 )  

 

3.3 Movement Instances 
 

In order to show the types of changes that may happen, 

we will consider, with no loss of generality, a 5x5 

dimension map. Also let "S" be the initial point of the 

agent and "G" be the final point (exit). The path under 

consideration will be represented by arrows in the map. 

The following situations may be represented in our 

chromosomes (Fig. 4): 

 

   
(a)                                          (b) 

Fig. 4 – Straight movement. 

 

Fig. 4 shows a visual representation of the 

chromosomes exposed in Tab. 2. 
 

DM1 DM2 DM3 DM4 M1 M2 M3 M4 

0,2 0,6 0,4 0.1 0 -1 0 0 

0,1 0,9 0,7 0.1 -1 0 0 0 

Tab. 2  – Values of straight movement 
 

Tab. 2, line 1, presents an individual in which only 

the M2 field has a valid value. Thus it represents a 

single movement to the left on the map (due to the 

negative value). The distance traveled is a fraction of 

the map size. As DM2 (relative to M2) has value 0.6 

and the map has width 5,  the total distance traveled in 

this movement is given by 0.6 x 5 = 3 squares, as 

shown in Fig. 4 (a) . The chromosome exposed in Tab. 

2 (b) , line 2, also shows a movement with a single 

direction, presented in Fig. 4 (b). The Manhattan  

distance  value of both chromosomes, i.e. the number 

of squares between the resulting point of the movement 

and the maze exit, are 3 and 7,  respectively. The 

objective functions of both chromosomes are shown: 

 
FA(a) = ( 30 – 3 – 3 * 0,1 ) * 1 => 26,7 

FA(b) = ( 30 – 7 – 1 * 0,1 ) * 1 => 22,9 

 

 Since the first chromosome of Tab. 2 has a higher 

FA it is considered better than the second one. 

 

In the next set of examples we will evaluate a 

movement with a single deviation (Fig. 5) represented 

by the chromosomes of Tab. 3: 

 

    
(a)                                          (b) 

Fig. 5 – Movement with deviation. 

 

DM1 DM2 DM3 DM4 M1 M2 M3 M4 

0,4 0,2 0,5 0.9 1 -1 0 0 

0,6 0,2 0,8 0.1 0 1 1 0 

Tab. 3 – Values of deviation movement. 

 

The first chromosome has two nonzero directions: 

M1 vertically and M2 horizontally. Therefore we will 

have two line segments forming a path with deviation. 

A similar situation occurs in the second chromosome. 

Both chromosomes are graphically exposed in Fig. 5. 

 

 Tab. 4 presents chromosomes with two deviations, 

shown in Fig. 6: 

 

    
(a)                                          (b) 

Fig. 6 – Movement with two deviations. 
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DM1 DM2 DM3 DM4 M1 M2 M3 M4 

0,4 0,2 0,5 0.9 1 -1 1 0 

0,6 0,2 0,8 0.1 0 -1 1 1 

Tab. 4 – Values of the two deviations movement 

 
3.4 Restrictions, Validations and Adaptions 
 

In order to guarantee better results for the sub-paths we 

defined some fixed and dynamic restrictions. The first 

restrictions deny the generation of sub-paths without 

movements, i.e., with all directions from M1 through 

M4 with null values. These also avoid the generation of 

paths where their segments are superimposed, which 

occurs when M2 is null and M1 and M3 have opposite 

values and when M3 is null and M2 and M4 have 

opposite values. 

 

In the second case, related to the dynamic 

restrictions, there is dependence about the output of the 

map environment and it was defined that there will not 

be a generation of a sub-path at the direction of the last 

collision. For instance, if there is an obstacle at the top 

neighbor of the last visited point, there will not be a 

generation of a sub-path for the upper way. 

 

After the chromosomes evaluation, ranking and 

ordering, each one is tested until the best valid result is 

executed at the environment (in the case that there is a 

valid one). This validation consists of verifying each 

node of the established path by the individual and in the 

case of an inexistence of a collision, it is positive 

validated. In case of a collision, the path is adapted and 

in case of the last node belongs to the closed list or has 

the F value greater than the current one, this sequence 

will be considered invalid and removed from the 

population, as illustrated in Fig. 7. 

 

   
(a)                                           (b) 

 

 
(c) 

Fig. 7. Validation of the paths: (a) is a valid sub-path; (b) is a 

sub-path to be adapted; (c) is invalid due its last node is at the 

closed list 

 

The adaptation process was implemented in order to 

take individuals from a population, decreasing the 

incidence of cases where any valid individual is found. 

After this process, the individual will receive a new 

fitness value and may be chosen to be used in the field 

test. In this case the test will not be realized for this 

individual since from that point all adapted individuals 

are valid. 

 

   
(a)                            (b) 

 Fig. 8. Adaptation of the sub-path 
 

The situation shown in Fig. 8 - (a) represents a sub-

path that passes through obstacles. Its codification is 

listed in Tab. 5. 
 

DM1 DM2 DM3 DM4 M1 M2 M3 M4 

0,4 0,6 0,4 0.9 0 -1 1 0 

Tab. 5 – Codification of the Fig. 8 – (a) Sub-Path 

 

In Fig. 8 - (b) the adapted sub-path is replaced by 

this codification (Tab. 4). 

 
DM1 DM2 DM3 DM4 M1 M2 M3 M4 

0,4 0,2 0,4 0.9 0 -1 1 0 

Tab. 5 – Codification of the Fig. 8 – (b) Sub-Path 

 

3.5 Identification of Environment without 
Pattern 
 

To avoid an excessive usage of processing in maps that 

do not have patterns of obstacles, an adopted 

measurement was the destruction of the GA module 

once its event is identified.  

 

We defined two metrics for evaluation: the 

percentage of the distance traveled (D), calculated by 

the actual distance to the destination (MDcurrent) 

divided by the total distance from the start to the 

destination (MDtotal) using the heuristic calculation of 

Manhattan, as can be seen in Equation 1, and the 

success rate (S), calculated by dividing the total 

number of times the reused "sub-path" of the previous 

generation (Cfirst) divided by the total number of times 

it failed (Ufirst), shown in Equation 2. 

 

 In order to identify if the map is patterned (result of 

the equation is Pattern=1) or not (Pattern=0), the limits 

of the success rate and the percentage of the distance 

have been set through a predetermined calibration, 

being respectively 0.4 and 0.5 as stated in Equation 3. 

 

In case that the pre-determined percentage of the 

distance between the start and the end points and the 

success rate is higher than the value stated previously, 

the GA will continue to be used. If this rate is a low 

value, the module GA should be disabled, then the 

algorithm considers that there is not a pattern of 

obstacles in the region in which the search occurs. 
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3.6 PPGA Architecture 
 

As the PPGA was developed based at a modification of 

the BFS, we introduced a module that uses the Genetic 

Algorithm in order to calculate the sub-paths that are 

used along the processing. Therefore, each time that the 

module is called, the generated sub-paths will inherit 

information of the past generations, making possible a 

considerable gain of performance. The event for calling 

the GA module happens when none of the values of the 

open node list of the BFS is better than its actual node. 

Fig. 9 shows the proposed architecture. 

  

 
Fig. 9. Patterned based Pathfinding with Genetic Algorithm 

architecture 

 

1. Best-First-Search – For each BFS iteration 

list, the actual node, previously added to the 

closed list, is expanded and the open list node 

with the lowest value of F is selected (greedy 

algorithm)  

2. Is there a pattern? – In the genetic algorithm 

module there is a counting variable that defines 

the proportion of times that the sub-paths were 

used by the tentatives of usage. If this proportion 

is low, we define that there is no pattern for the 

environment and from there on the AG module 

will not be used anymore.  

3. Is a good move? – This verify if the selected 

node corresponds to a good movement, i.e., if its 

value is lower than the actual node.  

4. Move – adds the selected node to the closed 

list.  

5. Stop Criteria – If the actual node consist on 

the destiny node, the algorithm ends, other way it 

continues for the next iteration.  

6. Genetic Algorithm – In this module it is 

obtained only one generation, following the 

determined restrictions by the following steps:  

a. Generate a initial population of 4 

individuals;  

b. Generate the first off-spring by a 

crossover of the 4 first individuals. The 

established rate was 50%;  

c. The second off-spring is generated by the 

mutation of the initial population. The 

established rate for this stage was 25%;  

d. It is calculated the fitness value for the 

12 individuals. The element that was used in 

the last generation receives the largest value;  

7. Are there individuals? – It is verified if there 

are still chromosomes to be evaluated at the 

population. In case none of the individuals are 

valid, the algorithm proceeds maintaining the 

current node still selected.  

8. Validation and adaptation – This stage helps 

to guarantee the generation and adaptation of 

good individuals coming from the AG.  

9. Is there a good sub-path? – The generated 

individuals go by this test, one at each iteration. If 

it is not a good element, this will be taken off 

from the list of population.  

10. Move sub-path – The element will be used 

as a sub-path composed by the nodes that will be 

added to the closed list. The actual node will 

become the last node of the sub-path. This 

element will be inserted to the next generation of 

the GA.  

 

Fig. 10 illustrates part of this architecture. In (a) the 

BFS does not have a neighborhood that is better than its 

current state, so it will be called the GA module. In (b) 

the valid sub-path is projected. In (c) and (d) the BFS 

ends the search.  

 

    
   (a)                                 (b) 

   
    (c)                                (d) 

Fig. 10 – Part of the stages of execution of the PPGA among 

a maze after a training step.  
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4. Experiments 
 

Since one of the goals of this work is to prepare a test 

bed for optimization algorithms for the pathfinding 

problem, suitable programming language and 

development environment were chosen. Another factor 

considered in the choice of language and development 

environment was the possibility of exporting the 

developed systems to mobile devices such as tablets 

and mobile phones where the optimized use of the 

resources is highly recommended. 

 
4.1 Technology 
 

The development technologies used were Unity 3D 

[UNITY  TECHNOLOGIES] through the C # 

language.  

 
Unity3D 3.x is a game development engine which 

has the main components needed for designing games 

developing rapidly, such as the physics engine, 

collision systems, sound system and a high level 

programming language based on C, among others. 

 

Unity 3D has an interface for programming in 

Mono. It incorporates key .NET components, including 

a compiler for the C# programming language and a 

complete suite of class libraries. 

 

 The direct assignment of a list of values to arrays in 

C #  allowed an easy viewing of maps used in the 

experiments. Thus the generation of a tile set, which is 

the display of graphics (or sprites) defined in a two-

dimensional array, can be made as shown in Fig. 11.  

 

 The modularization of the code and Object-

Oriented paradigm allows dynamic instantiation of both 

the environment and the agents in Unity.  

 
string[] map = new string[20] 

{ 
"wwwwwwwwwwwwwwwwwwww", 
"w.S................w", 
"w..................w", 
"w.www.www.www2www.ww", 
"w..................w", 
"www.www.www.www.wwww", 
"w..................w", 
"w.www.www.www.www.ww", 
"w..................w", 
"wwww.www.www.www.www", 
"w..................w", 
"w.www.www.www.www.ww", 
"w..................w", 
"wwww.www.www.www.www", 
"w.1................w", 
"w.www.www.www.www.ww", 
"w..................w", 
"wwww.www.www.www.www", 
"w..............3...w", 
"wwwwwwwwwwwwwwwwwwww" 

}; 

Fig. 11 – Dynamic tileset from a map applied to an array in C 

#. "W" represents Walls (obstacles), "S" Start, "1, 2 ..." the 

sequence of targets to be achieved. 

 

We executed this algorithm in a Tablet with 

Android Operational System 2.1 éclair, as exposed in 

Fig. 12. We note that in (a) a pattern was found at the 

beginning. As predicted, in (b) the algorithm spent 

some time to activate the module GA since the value of 

F for all nodes of the open list is smaller than the 

current node in most of the time. 

 

4.2 Tests  
 

We conducted three tests to compare the costs of 

memory between A*, BFS and PPGA algorithms. Each 

test was made in a different map, with constant 

dimensions of 80 by 80 tiles. In all, to be deterministic 

(and therefore not generate solutions with different 

memory costs in an environment without variation), the 

A* and BFS was performed only once. In contrast the 

average was calculated for 20 runs of PPGA in each 

test case. In order to characterize the principle of a 

dynamic environment, we defined five destinations in 

each map. Once a target was reached, the open and 

closed lists of all algorithms were reseted, simulating 

changes in the environment. 

 

The maps types were:  

 

 With patterns (Fig. 13 (a))  -  Aiming to assess 

the advantages of the adjustment proposed by 

PPGA; 

 Mixed Map (Fig. 13 (b))  -  In order to 

evaluate a balanced case. 

 Without patterns (Fig. 13 (c))  -  to evaluate 

the worst case of PPGA. 
 

   
(a)                                                 (b) 

 
(c) 

Fig. 13 – Map patterns 
 

4.3 Results and Analysis 
 
The results show that the agents managed to adapt 

themselves to the surrounding environments even in the 

presence of obstacles. 

 
One objective of the tests was to check if the agents 

are able to find a path to the maze exit. In 100% of the 

cases the agents achieved the goal. 
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The result of the experiments can be checked in 

Tab. 7, in which the values represent the number of 

access nodes. 
 

 Map 

Algorithm With Patterns Mixed Without Patterns 

A-Star 16016 27692 18468 

Best-First 2048 3088 5796 

PPGA 1725 3142 6252 

Tab. 7 - Tests Results 

 

In Fig. 14 it is possible to check the comparative 

projection of BFS and PPGA. We do not show the A* 

in this comparison because its high values would 

undermine the view of the difference. 

 

 
Fig. 14 – Map Patterns Comparison. 

 

The purpose of this study is optimize the search for 

paths between two points through the reduction of 

nodes accessed or expanded, but without the guarantee 

of the shortest path. 

 

The main result of this research was to optimize 

16% of the expense of processing the PPGA compared 

to the Best-First Search in maps with patterns. 

 

In the other two tests the results were balanced 

(losing by 2% on the mixed map) or slightly worse 

(losing by 8% on the map without patterns).  

 

In the test without patterns, the proportional loss of 

processing is due to the fact that in this case the PPGA 

algorithm tends to generate sub-paths more frequently, 

because there is no genetic advantage of the previous 

chromosomes which leads to an overspending of 

memory. This result could be worse if wasn’t the 

presence of the pattern identification module inserted 

into the algorithm. 

 

The results were in accordance with the 

expectation, since the PPGA has a better performance 

on maps with patterns of obstacles due to the 

adjustment provided by the Genetic Algorithm. 

 

5. Conclusion and Future Work 
 

This work defines a new method for searching the path 

between two points in 2D maps. The PPGA uses the 

classic BFS with a Genetic Algorithm in order to find 

good solutions in a short period of time.   

The proposed GA used “lookahead” based 

modeling to the chromosome that can be adapted to any 

kind of map that contains obstacle patterns. Also the 

“lookahead” pathology is avoided by the iterative 

nature of the algorithm.  

 

For this work, dynamic environment is defined as 

one that can suffer alteration in the position of the 

obstacles or target at any time. For this, our 

experiments were conducted on large maps with more 

than one goal. The knowledge gained in the initial 

executions ensures the adaptation of the agent to new 

situations with lower latency learning, in practical 

situations. 

 

Experiments proved that the PPGA showed slightly 

better than the  Best-First Search being compared on 

maps of three variations of patterns of obstacles. When 

there are patterns in this distribution, the proposed 

algorithm achieved its best performance with an 

average gain of 16% when compared with the BFS. 

Therefore we consider this architecture promising. 

 

As future work, we will seek improvements in this 

architecture to optimize the search process, such as 

varying the number of segments of lines contained in 

the chromosome and improving the function of 

identifying patterns in the map. Experiments in maps 

with other features will be conducted. 
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