
Pathfinding Based on Pattern Detection Using Genetic Algorithms

Ulysses O. Santos
1
 Alex F. V. Machado

1
 Esteban W. G. Clua²

1
Instituto Federal de Educação Tecnológica do Sudeste de Minas Gerais,

Departamento de Computação, Brazil.
2
Universidade Federal Fluminense, Instituto de Computação, Brazil.

(a) (b)
Fig. 12 – PPGA simulation in a tablet. Black circles represent the closed list, small white circles the open list and large white is

the sub-path generated by GA".

Abstract

This paper presents a novel method to optimize the

process of finding paths using a model based on

Genetic Algorithms and Best-First-Search for real time

systems, such as video games and virtual reality

environments. The proposed solution uses obstacle

pattern detection based at online training system to

guarantee the memory economy. The architecture

named Patterned based Pathfinding with Genetic

Algorithm (PPGA) uses a learning technique in order to

create an agent adapted to the environment that is able

to optimize the search for paths even in the presence of

obstacles. We demonstrate that the PPGA architecture

performs better than classic A* and Best-First-Search

algorithms in patterned environment.

Keywords: Pathfinding, Best-First-Search, Genetic

Algorithm, optimization, electronic games.

Authors’ contact:
ulyssesdvlp@gmail.com
alexcataguases@hotmail.com
esteban@ic.uff.br

1. Introduction

The search of the paths between two points is a

fundamental problem for the area of electronic games,

but it is also relevant for other areas [Stodola and

Mazal 2010]. In this field the most used methods are

A* [Russell and Norvig 2003] and Best-First Search

[Russell and Norvig 2003]. Due to the demands of a

real-time processing and hardware limitations, these

traditional methods can cause problems in

performance. Therefore many optimizations are studied

for the same [Dechter and Pearl 1985][Leigh et al.

2007][Rios and Chaimowicz 2011].

The traditional algorithm A* uses f(n)=g(n)+h(n)

heuristic, where g(n) is the cost to reach the node n,

h(n) is the estimated cost for reach the goal node from

the node n. This calculation can be performed by

Manhattan distance. At each iteration neighboring

nodes of the current node has its value f(n) calculated

and added to the open list (O). After the node from the

open list with the lowest value of f(n) is removed from

it, added to the closed list (C) and becomes the current

node. When the current node is the destination node

(G) the algorithm returns the path found. From this

algorithm we can find the optimal solution. As can be

seen in Fig. 1, the usage of compound heuristic

provides a considerable expansion of the nodes, and

these are kept in memory during processing. By

applying these methods in multi-agents systems such as

RPGs and strategy games in real time, memory

consumption becomes much higher.

Fig.1. A-Star route sample.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 64

The algorithm IDA * [Korf 1985] is designed for

the efficient use of memory. It is based on depth-first

search using the same heuristic as algorithm A*,

ensuring that finds the shortest path and decreasing the

number of nodes expanded impacting the amount of

memory required by the search. Although requiring less

memory than the A*, it takes longer to find the path.

The Best-First-Search algorithm works similarly to

A*, but the heuristic adopted is simple and greedy (f

(n) = h (n)), tending to expand only the nodes that are

close to the goal one, thus the amount of memory

required is less than the A* algorithm (as shown in Fig.

2) as a result the solution will not necessarily optimal.

Fig.2. BFS route sample.

This paper proposes a promising algorithm, which

the same as IDA*, optimizes the expense of A*

memory, but as the Best-First, without guaranteeing the

definition of the optimal path. For this, we designed an

architecture based in Genetic Algorithms [Mitchell

1996] and in the Best-First Search to optimize the

search for paths with a reduction in the number of

nodes expanded, and obtaining a path that is not always

optimal. With this technique, the agent is able to adapt

itself in an homogeneous maze, using an heuristic that

let the agent calculates a path thought a considerable

number of open nodes, in a single step, without having

to expand them.

In our previous work [Machado et al. 2011] we

proposed an approach that aims to reduce the number

of nodes accessed using a module with GA but with a

local search heuristic adopted by A* to move through

the environment. Compared with the traditional A* in

patterned environments with obstacles, our previous

method showed superior performance, but in

environments without any kind of pattern obstacles, the

performance was far below, not being suitable to many

practical cases. Unlike the RTP-GA, our new approach

ensures a minimal loss compared to the traditional

Best-First in maps without pattern, maintaining a

satisfactory standard advantage in environments with

obstacles.

We show in [Machado et al. 2011] that the decrease

in the number of access nodes is proportional to the

processing gain. As investigated by [Korf 1985] and

[Russell and Norvig 2003] this relationship is not

always proportional. Thus, to avoid this error, in this

work we suggest only space optimization (memory).

This papers is organized as following: chapter 2

presents a survey about related works of pathfinding,

followed by the PPGA algorithm specifications and

features on chapter 3. At chapter 4 we present our tests

and comparative analysis between the PPGA, BFS

and A* algorithm. Finally, at chapter 5, we present

our conclusion and future work.

2. Related Work

Searching for patterns in maps in order to optimize the

pathfinding algorithms is a well-known technique.

[Demyenand and Buro 2006] shows that the

Triangulation Reduction A* (TRA*) method has many

benefits, including accurate representation of polygonal

environments, reduction of the search space and

refinement of the optimal path. Although this algorithm

uses real-time learning, it has severe constraints

regarding the environment. To use the TRA* we must

provide a description of polygonal obstacles in the

environment, which can be easily applied to maps with

barriers and holes but it is not suitable for labyrinths

and mazes.

The use of meta-heuristics for adaptation to the

environment is a topic addressed by several authors.

[Leigh et al. 2007] proposed the GA-Manufactured

Maneuvering Algorithms (GAMMAs) that was able of

finding paths more than 1000% faster than the

traditional A*. In presented architecture the GA was

able to adapt to the obstacles (called risk zones),

approach the human-made path and define the best way

to evaluate the path. However GAMMA depends on a

prior offline training, that consists in exploring some

maps in order to extract some patterns before the

optimization process.

[Burchardt and Salomon 2006] implemented a

Genetic Algorithm to search for paths for robot routing.

The algorithm runs until the agent achieves its goal.

There is a constant update process on the environment.

The fitness function is based on the length of the path

with penalization on collisions. The gene encoding

follows the pattern:

Length X1 Y1 X2 Y2 X3 Y3

The path is encoded as equidistant distances

between the starting and ending point, allowing the

occurrence of a deviation. However, this approach only

works when a nearly direct route exists.

[Bulitko and Lustrek 2006] call as "lookahead" the

incomplete search method, which is similar to the min-

max based algorithms used in two-person games. It

conducted a limited depth search, expanding the space

centered on the agent, and heuristically evaluates the

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 65

distance between the agent and the destination.

However, due to the “lookahead” pathology [Bulitko

and Lustrek 2006], determining the optimal depth for

the search procedure is not an easy task.

As in [Demyenand and Buro 2006] and [Burchardt

and Salomon 2006], this work investigates partial

solutions in the map, trying to minimize the problems

defined by [Bulitko and Lustrek 2006] when using this

incomplete search method. We intend to hold a

learning process through an online training (as opposed

to [Leigh et al. 2007]), based on a codification of the

route, such as presented in [Burchardt and Salomon

2006].

Therefore we decide to use Genetic Algorithms for

solving the pathfinding problem combining two

approaches of the literature, presented in [Leigh et al.

2007] and in [Burchardt and Salomon 2006]. The

difference between our model and the one presented in

[Leigh et al. 2007] is that we use an online training

instead of an offline one. Our approach also improves

the model presented in [Burchardt and Salomon 2006]

since we define a chromosome able to adapt to any

environment that present obstacle patterns.

We generate possible sub-paths (or "lookahead") to

be randomly applied in a map, evaluate the sub-paths in

the map, and then adapt the sub-paths in order optimize

the amount of memory necessary to generate the path.

In Fig. 3 we show an example of obstacle avoidance:

Fig 3: Two examples of obstacles adapting with Patterned

based Pathfinding with Genetic Algorithm. The arrows

represent the pattern detected by the GA, treated in this way

sub-paths, which do not require evaluation of the neighbors.

3. PPGA

Patterned Based Pathfinding with Genetic Algorthm

(PPGA) uses the classical Best-First-Seach with its

greedy heuristic to find the path. When the criterion for

the use of GA is reached, the fittest individual elected

by the same will be used in the environment.

The Genetic Algorithm iterates over a population of

solutions that are called individuals or chromosomes.

On each generation (algorithm iteration), new

individuals are generated by crossover and mutation

process and only the most suitable individuals survive

for the next generation. The individual fitness is

calculated by a fitness function, or objective function.

Thus, in each generation, only the individuals with the

best values of objective function are selected to be in

the next generation.

It is important to note that, in the presented

architecture, the quality of individuals (paths) is

measured not only by the objective function, but also

by the environment, ensuring an adaptation to changes

in the map.

The GA use a chromosome modeling based on

vectors of movements. Its evaluation function uses a

heuristic based on Best-First Search to evaluate the best

individual. Some restrictions have been adopted to

avoid the generation of invalid individuals, for better

use of the GA. These restrictions are used in any

environment. The individual chosen as the fittest by

GA, which is a sub-valid path, is projected into the

environment and its nodes are stored on the closed list

of the Best-First without the need to expand them. Thus

we obtain a reduction in the number of checked nodes.

As the main processing of PPGA achieve gains at

the presented pattern environments, in order to

guarantee the solution it was necessary to develop a

module for identifying when a maze has this feature. In

those cases, the GA module is not used.

In the following subsections the procedures for this

case will be detailed.

3.1 Chromosome representation

As one of the goals of the algorithm is to detect

obstacle patterns in the map, the proposed Genetic

Algorithm uses a model based on four movement

vectors, two horizontal and two vertical. This model

represents a sub-path, which can consist of up to four

straight lines, two for each direction, which guarantees

the boundary of obstacles. As the maze gets narrow,

the distance of the vectors (lines length) tends to

decrease, and vice-versa. If the obstacles can be

overcome by contouring them, these vectors tend to

find this pattern. Each of these four vectors has a

distance and a direction, as expressed in Tab 1:

Type Interval Description

Float 0.1 to 1 Distance of Movement 1 (DM1)

Float 0.1 to 1 Distance of Movement 2 (DM2)

Float 0.1 to 1 Distance of Movement 3 (DM3)

Float 0.1 to 1 Distance of Movement 4 (DM4)

Integer -1 to 1 Movement Direction 1 (M1)

Integer -1 to 1 Movement Direction 2 (M2)

Integer -1 to 1 Movement Direction 3 (M3)

Integer -1 to 1 Movement Direction 4 (M4)

Tab. 1 – Chromosome encoding

 The interval where the movement distances may

vary represent a percentage of the width (in the case of

horizontal vectors) and height (in the case of vertical

vectors) of the map.

The directions are given by:

 M1 and M3: 0 no movement, -1 down

(subtracts the y-axis) and +1 up (increase in y-

axis).

 M2 and M4: 0 no movement, -1 to the left

(subtracts the x-axis) and +1 to the right

(increase in x-axis).

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 66

3.2 Fitness Function

The objective function (FA) is used to check each

candidate path. It takes into consideration the following

terms:

 The Manhattan Distance heuristic (MH),

which has the largest weight in the formula.

Its equation is given by MH = | x1-x2 | + |

y1-y2 |. The higher the value of MH the worst

the situation, since it means that the agent is

far from the final target;

 Total Movement (MT), calculated by the sum

of half of the distance moved. The weight of

MH is smaller than the one of MH to serve as

a tie-breaker, especially in the elimination of

cycling paths.

This objective function must be maximized,

meaning that the higher the value the better the

candidate. To ensure this feature, we adopted a roof

value (upper limit) given by:

Roof = (Width +Height)* 3

 This value represents the sum of the maximum of

four movement vectors plus the maximum value of the

Manhattan distance. If a path is not valid, the

convergence ensures that the result is the lowest

possible (in this case, zero). The objective function is

given by:

FA = (Roof - MH - MT * 0,1)

3.3 Movement Instances

In order to show the types of changes that may happen,

we will consider, with no loss of generality, a 5x5

dimension map. Also let "S" be the initial point of the

agent and "G" be the final point (exit). The path under

consideration will be represented by arrows in the map.

The following situations may be represented in our

chromosomes (Fig. 4):

(a) (b)

Fig. 4 – Straight movement.

Fig. 4 shows a visual representation of the

chromosomes exposed in Tab. 2.

DM1 DM2 DM3 DM4 M1 M2 M3 M4

0,2 0,6 0,4 0.1 0 -1 0 0

0,1 0,9 0,7 0.1 -1 0 0 0

Tab. 2 – Values of straight movement

Tab. 2, line 1, presents an individual in which only

the M2 field has a valid value. Thus it represents a

single movement to the left on the map (due to the

negative value). The distance traveled is a fraction of

the map size. As DM2 (relative to M2) has value 0.6

and the map has width 5, the total distance traveled in

this movement is given by 0.6 x 5 = 3 squares, as

shown in Fig. 4 (a) . The chromosome exposed in Tab.

2 (b) , line 2, also shows a movement with a single

direction, presented in Fig. 4 (b). The Manhattan

distance value of both chromosomes, i.e. the number

of squares between the resulting point of the movement

and the maze exit, are 3 and 7, respectively. The

objective functions of both chromosomes are shown:

FA(a) = (30 – 3 – 3 * 0,1) * 1 => 26,7

FA(b) = (30 – 7 – 1 * 0,1) * 1 => 22,9

 Since the first chromosome of Tab. 2 has a higher

FA it is considered better than the second one.

In the next set of examples we will evaluate a

movement with a single deviation (Fig. 5) represented

by the chromosomes of Tab. 3:

(a) (b)

Fig. 5 – Movement with deviation.

DM1 DM2 DM3 DM4 M1 M2 M3 M4

0,4 0,2 0,5 0.9 1 -1 0 0

0,6 0,2 0,8 0.1 0 1 1 0

Tab. 3 – Values of deviation movement.

The first chromosome has two nonzero directions:

M1 vertically and M2 horizontally. Therefore we will

have two line segments forming a path with deviation.

A similar situation occurs in the second chromosome.

Both chromosomes are graphically exposed in Fig. 5.

 Tab. 4 presents chromosomes with two deviations,

shown in Fig. 6:

(a) (b)

Fig. 6 – Movement with two deviations.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 67

DM1 DM2 DM3 DM4 M1 M2 M3 M4

0,4 0,2 0,5 0.9 1 -1 1 0

0,6 0,2 0,8 0.1 0 -1 1 1

Tab. 4 – Values of the two deviations movement

3.4 Restrictions, Validations and Adaptions

In order to guarantee better results for the sub-paths we

defined some fixed and dynamic restrictions. The first

restrictions deny the generation of sub-paths without

movements, i.e., with all directions from M1 through

M4 with null values. These also avoid the generation of

paths where their segments are superimposed, which

occurs when M2 is null and M1 and M3 have opposite

values and when M3 is null and M2 and M4 have

opposite values.

In the second case, related to the dynamic

restrictions, there is dependence about the output of the

map environment and it was defined that there will not

be a generation of a sub-path at the direction of the last

collision. For instance, if there is an obstacle at the top

neighbor of the last visited point, there will not be a

generation of a sub-path for the upper way.

After the chromosomes evaluation, ranking and

ordering, each one is tested until the best valid result is

executed at the environment (in the case that there is a

valid one). This validation consists of verifying each

node of the established path by the individual and in the

case of an inexistence of a collision, it is positive

validated. In case of a collision, the path is adapted and

in case of the last node belongs to the closed list or has

the F value greater than the current one, this sequence

will be considered invalid and removed from the

population, as illustrated in Fig. 7.

(a) (b)

(c)

Fig. 7. Validation of the paths: (a) is a valid sub-path; (b) is a

sub-path to be adapted; (c) is invalid due its last node is at the

closed list

The adaptation process was implemented in order to

take individuals from a population, decreasing the

incidence of cases where any valid individual is found.

After this process, the individual will receive a new

fitness value and may be chosen to be used in the field

test. In this case the test will not be realized for this

individual since from that point all adapted individuals

are valid.

(a) (b)

 Fig. 8. Adaptation of the sub-path

The situation shown in Fig. 8 - (a) represents a sub-

path that passes through obstacles. Its codification is

listed in Tab. 5.

DM1 DM2 DM3 DM4 M1 M2 M3 M4

0,4 0,6 0,4 0.9 0 -1 1 0

Tab. 5 – Codification of the Fig. 8 – (a) Sub-Path

In Fig. 8 - (b) the adapted sub-path is replaced by

this codification (Tab. 4).

DM1 DM2 DM3 DM4 M1 M2 M3 M4

0,4 0,2 0,4 0.9 0 -1 1 0

Tab. 5 – Codification of the Fig. 8 – (b) Sub-Path

3.5 Identification of Environment without
Pattern

To avoid an excessive usage of processing in maps that

do not have patterns of obstacles, an adopted

measurement was the destruction of the GA module

once its event is identified.

We defined two metrics for evaluation: the

percentage of the distance traveled (D), calculated by

the actual distance to the destination (MDcurrent)

divided by the total distance from the start to the

destination (MDtotal) using the heuristic calculation of

Manhattan, as can be seen in Equation 1, and the

success rate (S), calculated by dividing the total

number of times the reused "sub-path" of the previous

generation (Cfirst) divided by the total number of times

it failed (Ufirst), shown in Equation 2.

 In order to identify if the map is patterned (result of

the equation is Pattern=1) or not (Pattern=0), the limits

of the success rate and the percentage of the distance

have been set through a predetermined calibration,

being respectively 0.4 and 0.5 as stated in Equation 3.

In case that the pre-determined percentage of the

distance between the start and the end points and the

success rate is higher than the value stated previously,

the GA will continue to be used. If this rate is a low

value, the module GA should be disabled, then the

algorithm considers that there is not a pattern of

obstacles in the region in which the search occurs.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 68

3.6 PPGA Architecture

As the PPGA was developed based at a modification of

the BFS, we introduced a module that uses the Genetic

Algorithm in order to calculate the sub-paths that are

used along the processing. Therefore, each time that the

module is called, the generated sub-paths will inherit

information of the past generations, making possible a

considerable gain of performance. The event for calling

the GA module happens when none of the values of the

open node list of the BFS is better than its actual node.

Fig. 9 shows the proposed architecture.

Fig. 9. Patterned based Pathfinding with Genetic Algorithm

architecture

1. Best-First-Search – For each BFS iteration

list, the actual node, previously added to the

closed list, is expanded and the open list node

with the lowest value of F is selected (greedy

algorithm)

2. Is there a pattern? – In the genetic algorithm

module there is a counting variable that defines

the proportion of times that the sub-paths were

used by the tentatives of usage. If this proportion

is low, we define that there is no pattern for the

environment and from there on the AG module

will not be used anymore.

3. Is a good move? – This verify if the selected

node corresponds to a good movement, i.e., if its

value is lower than the actual node.

4. Move – adds the selected node to the closed

list.

5. Stop Criteria – If the actual node consist on

the destiny node, the algorithm ends, other way it

continues for the next iteration.

6. Genetic Algorithm – In this module it is

obtained only one generation, following the

determined restrictions by the following steps:

a. Generate a initial population of 4

individuals;

b. Generate the first off-spring by a

crossover of the 4 first individuals. The

established rate was 50%;

c. The second off-spring is generated by the

mutation of the initial population. The

established rate for this stage was 25%;

d. It is calculated the fitness value for the

12 individuals. The element that was used in

the last generation receives the largest value;

7. Are there individuals? – It is verified if there

are still chromosomes to be evaluated at the

population. In case none of the individuals are

valid, the algorithm proceeds maintaining the

current node still selected.

8. Validation and adaptation – This stage helps

to guarantee the generation and adaptation of

good individuals coming from the AG.

9. Is there a good sub-path? – The generated

individuals go by this test, one at each iteration. If

it is not a good element, this will be taken off

from the list of population.

10. Move sub-path – The element will be used

as a sub-path composed by the nodes that will be

added to the closed list. The actual node will

become the last node of the sub-path. This

element will be inserted to the next generation of

the GA.

Fig. 10 illustrates part of this architecture. In (a) the

BFS does not have a neighborhood that is better than its

current state, so it will be called the GA module. In (b)

the valid sub-path is projected. In (c) and (d) the BFS

ends the search.

 (a) (b)

 (c) (d)

Fig. 10 – Part of the stages of execution of the PPGA among

a maze after a training step.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 69

4. Experiments

Since one of the goals of this work is to prepare a test

bed for optimization algorithms for the pathfinding

problem, suitable programming language and

development environment were chosen. Another factor

considered in the choice of language and development

environment was the possibility of exporting the

developed systems to mobile devices such as tablets

and mobile phones where the optimized use of the

resources is highly recommended.

4.1 Technology

The development technologies used were Unity 3D

[UNITY TECHNOLOGIES] through the C #

language.

Unity3D 3.x is a game development engine which

has the main components needed for designing games

developing rapidly, such as the physics engine,

collision systems, sound system and a high level

programming language based on C, among others.

Unity 3D has an interface for programming in

Mono. It incorporates key .NET components, including

a compiler for the C# programming language and a

complete suite of class libraries.

 The direct assignment of a list of values to arrays in

C # allowed an easy viewing of maps used in the

experiments. Thus the generation of a tile set, which is

the display of graphics (or sprites) defined in a two-

dimensional array, can be made as shown in Fig. 11.

 The modularization of the code and Object-

Oriented paradigm allows dynamic instantiation of both

the environment and the agents in Unity.

string[] map = new string[20]

{
"wwwwwwwwwwwwwwwwwwww",
"w.S................w",
"w..................w",
"w.www.www.www2www.ww",
"w..................w",
"www.www.www.www.wwww",
"w..................w",
"w.www.www.www.www.ww",
"w..................w",
"wwww.www.www.www.www",
"w..................w",
"w.www.www.www.www.ww",
"w..................w",
"wwww.www.www.www.www",
"w.1................w",
"w.www.www.www.www.ww",
"w..................w",
"wwww.www.www.www.www",
"w..............3...w",
"wwwwwwwwwwwwwwwwwwww"

};

Fig. 11 – Dynamic tileset from a map applied to an array in C

#. "W" represents Walls (obstacles), "S" Start, "1, 2 ..." the

sequence of targets to be achieved.

We executed this algorithm in a Tablet with

Android Operational System 2.1 éclair, as exposed in

Fig. 12. We note that in (a) a pattern was found at the

beginning. As predicted, in (b) the algorithm spent

some time to activate the module GA since the value of

F for all nodes of the open list is smaller than the

current node in most of the time.

4.2 Tests

We conducted three tests to compare the costs of

memory between A*, BFS and PPGA algorithms. Each

test was made in a different map, with constant

dimensions of 80 by 80 tiles. In all, to be deterministic

(and therefore not generate solutions with different

memory costs in an environment without variation), the

A* and BFS was performed only once. In contrast the

average was calculated for 20 runs of PPGA in each

test case. In order to characterize the principle of a

dynamic environment, we defined five destinations in

each map. Once a target was reached, the open and

closed lists of all algorithms were reseted, simulating

changes in the environment.

The maps types were:

 With patterns (Fig. 13 (a)) - Aiming to assess

the advantages of the adjustment proposed by

PPGA;

 Mixed Map (Fig. 13 (b)) - In order to

evaluate a balanced case.

 Without patterns (Fig. 13 (c)) - to evaluate

the worst case of PPGA.

(a) (b)

(c)

Fig. 13 – Map patterns

4.3 Results and Analysis

The results show that the agents managed to adapt

themselves to the surrounding environments even in the

presence of obstacles.

One objective of the tests was to check if the agents

are able to find a path to the maze exit. In 100% of the

cases the agents achieved the goal.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 70

The result of the experiments can be checked in

Tab. 7, in which the values represent the number of

access nodes.

 Map

Algorithm With Patterns Mixed Without Patterns

A-Star 16016 27692 18468

Best-First 2048 3088 5796

PPGA 1725 3142 6252

Tab. 7 - Tests Results

In Fig. 14 it is possible to check the comparative

projection of BFS and PPGA. We do not show the A*

in this comparison because its high values would

undermine the view of the difference.

Fig. 14 – Map Patterns Comparison.

The purpose of this study is optimize the search for

paths between two points through the reduction of

nodes accessed or expanded, but without the guarantee

of the shortest path.

The main result of this research was to optimize

16% of the expense of processing the PPGA compared

to the Best-First Search in maps with patterns.

In the other two tests the results were balanced

(losing by 2% on the mixed map) or slightly worse

(losing by 8% on the map without patterns).

In the test without patterns, the proportional loss of

processing is due to the fact that in this case the PPGA

algorithm tends to generate sub-paths more frequently,

because there is no genetic advantage of the previous

chromosomes which leads to an overspending of

memory. This result could be worse if wasn’t the

presence of the pattern identification module inserted

into the algorithm.

The results were in accordance with the

expectation, since the PPGA has a better performance

on maps with patterns of obstacles due to the

adjustment provided by the Genetic Algorithm.

5. Conclusion and Future Work

This work defines a new method for searching the path

between two points in 2D maps. The PPGA uses the

classic BFS with a Genetic Algorithm in order to find

good solutions in a short period of time.

The proposed GA used “lookahead” based

modeling to the chromosome that can be adapted to any

kind of map that contains obstacle patterns. Also the

“lookahead” pathology is avoided by the iterative

nature of the algorithm.

For this work, dynamic environment is defined as

one that can suffer alteration in the position of the

obstacles or target at any time. For this, our

experiments were conducted on large maps with more

than one goal. The knowledge gained in the initial

executions ensures the adaptation of the agent to new

situations with lower latency learning, in practical

situations.

Experiments proved that the PPGA showed slightly

better than the Best-First Search being compared on

maps of three variations of patterns of obstacles. When

there are patterns in this distribution, the proposed

algorithm achieved its best performance with an

average gain of 16% when compared with the BFS.

Therefore we consider this architecture promising.

As future work, we will seek improvements in this

architecture to optimize the search process, such as

varying the number of segments of lines contained in

the chromosome and improving the function of

identifying patterns in the map. Experiments in maps

with other features will be conducted.

Acknowledgments

The authors wish to thank the Programa de Educação

Tutorial of the Ministério da Educação (Brazil) for the

opportunity to participate on this project. Also

thank the Instituto Federal de Educação Ciência e

Tecnologia do Sudeste de Minas Gerais – Campus Rio

Pomba, for their support with the implementation of

the Laborátorio de Multimídia interativa (LAMIF).

REFERENCES

DECHTER, R., AND PEARL, J., "Generalized Best-First

Search Strategies and the Optimality of A*."

Journal of the Association for Computing Machinery ,

Vol. 32, No. 3, July 1985, pp. 505-536.

UNITY TECHNOLOGIES: Unity 3D User Manual. At

www.unity3d.com/support/documentation/.

LEIGH, R., LOUIS, S. J. AND MILES, C. “Using a Genetic

Algorithm to Explore A*-like Pathfinding Algorithms”.

In: IEEE Congress on Computational Intelligence and

Games. CIG – 2007.

DEMYENAND, D. AND BURO, M. “Efficient

Triangulation-Based Pathfinding”. In: AAAI'06

Proceedings of the 21st national Conference on Artificial

intelligence. 2006.

BURCHARDT, H. AND SALOMON, R. “Implementation

of Path Planning using Genetic Algorithms on Mobile

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 71

Robots”. IEEE Congress on Evolutionary Computation.

CEC 2006.

BULITKO, V., LUSTREK, M. “Lookahead pathology in

real-time path-finding”. In Proceedings of the National

Conference on Artificial Intelligence. AAAI 2006.

HART, P.E., NILLSON, N.J. AND RAPHAEL, B. “A formal

basis for the heuristic determination of minimum cost

paths”. IEEE Transactions on Systems Science and

Cybernetics, 1968.

BJORNSSON, Y., ENZENBERGER, M., HOLTE, R.C.

AND

SCHAEFFER, J. “Fringe search: Beating A* at pathfinding

on gamemaps”. IEEE Computational Intelligence in

Games, 2005.

STODOLA, P. AND MAZAL, J. “Optimal location and

motion of autonomous unmanned ground vehicles”. In

World Scientific and Engineering Academy and Society.

WSEAS 2010.

MITCHELL, M.; “An introduction to genetic algorithms”.

The MIT Press, United States; 1996.

KORF, R. Depth-first iterativedeepening: An optimal

admissible tree search. Artificial Intelligence, (1985).

RUSSELL, S.J. AND NORVIG, P. Artificial Intelligence: A

Modern Approach , Second Edition.

MACHADO, A. F. V. ; CLUA, E. W. ; GONÇALVES, R.;

VALE, H. ;SANTOS, U. O. ; NEVES, T. ; OCHI, L. S.

“Real Time Pathfinding with Genetic Algorithm”. In:

SBGames, 2011, Salvador, BA. Simpósio Brasileiro de

Jogos e Entretenimento Digital (SBGames), 2011.

RIOS, L. H. O. ; CHAIMOWICZ, L. . PNBA*: A Parallel

Bidirectional Heuristic Search Algorithm. In: Encontro

Nacional de Inteligência Artificial (ENIA 2011), 2011,

Natal. Anais do XXXI Congresso da Sociedade Brasileira

de Computação, 2011.

RIOS, L. H. O.; CHAIMOWICZ, L. . A Survey and

Classification of A* based Best-First Heuristic Search

Algorithms. In: Brazilian Symposium on Artificial

Intelligence - SBIA, 2010, São Bernardo do Campo.

Advances in Artficial Intelligence - SBIA 2010 (LNAI),

2010. v. 6404. p. 253-262.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 72

