
AN EVOLUTIONARY ALGORITHM APPROACH FOR A REAL TIME
STRATEGY GAME

Rodrigo de Freitas Pereira Claudio Fabiano Motta Toledo

Marcio Kassouf Crocomo Eduardo do Valle Simões

University of São Paulo, SSC, ICMC, São Carlos, SP, Brazil

Figure 1: The user interface of the BOS War game

Abstract

The present paper reports the preliminary results of the

application of an evolutionary algorithm developed to

adjust artificial intelligence scripts in a real time

strategy game. The evolutionary algorithm (EA) is

embedded in the game engine of the Bos Wars, which

is a real time strategy game coded in C++ and LUA

language. The proposed algorithm is an adaptation of a

similar approach introduced in [Crocomo 2008], which

was applied to the battle system of a Role Playing

Game. A tailor-made representation of the individual

chromosomes is proposed, as well as a set of new

genetic operators. The computational results indicate a

superior performance of the scripts produced by the

presented evolutionary algorithm when playing against

the set of the standard scripts available in Bos Wars

[2010].

Keywords: Artificial Intelligence, Evolutionary

Algorithm, Real Time Strategy Games

Authors’ contact:

rodrigofp@grad.icmc.usp.br, claudio@icmc.usp.br,

marciokc@gmail.com, simoes@icmc.usp.br.

1. Introduction

The game industry innovates constantly to satisfy its

customers. It is already possible to play using sensors

that detect movement and a lot of effort has been spent

to allow massive multiplayer matches. There have been

also advances in the degree of realism with the

development of sophisticated audio and graphics

engines that lead players closer to the game

environment [Bittencourt and Osório 2006].

Another factor about the realism in games that has

received special attention in the last years is the

artificial intelligence (AI) [Millington 2007]. And,

more specifically, intelligent scripts responsible to

control the decision-making process for non-player

characters (NPCs). A well planned AI script should be

able to provide gaming experiences against NPCs that

are more similar to playing against other human

players. In that case, real time adaptation of the NPCs

behavior to player strategies can increase the level of

entertainment [Ponsen et al. 2007].

In [Sweetser 2002], several AI techniques applied

to programming game scripts are reported, such as

fuzzy logic, flocking, decision tree, finite state

machines, artificial neural network and evolutionary

algorithms. The finite state machines (FSM) have been

most frequently used to implement AI in games, since

they are relatively easy to code and understand, and

usually they are able to hit the objective proposed in

the game [Sweetser 2002]. However, FSM can make

the game strategy predictable leading the players to

lose interest early.

The use of evolutionary algorithms (EAs) to

provide AI scripts, in the other hand, is advantageous

according to Lucas and Kendal [2006] due to its

natural adaptability that allows them to generate

different and unpredictable strategies. For this reason,

the motivation for using EAs as the game AI goes

beyond making the computer win or lose. Since EAs

give the computer the ability to create strategies that

sometimes outperform the player current abilities, it

forces the player to create new strategies, improving

the overall ability to entertain of the game.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 56

mailto:rodrigofp@grad.icmc.usp.br
mailto:rodrigofp@grad.icmc.usp.br
mailto:rodrigofp@grad.icmc.usp.br
mailto:rodrigofp@grad.icmc.usp.br
mailto:claudio@icmc.usp.br
mailto:claudio@icmc.usp.br
mailto:claudio@icmc.usp.br
mailto:claudio@icmc.usp.br
mailto:marciokc@gmail.com
mailto:marciokc@gmail.com
mailto:marciokc@gmail.com
mailto:marciokc@gmail.com
mailto:simoes@icmc.usp.br
mailto:simoes@icmc.usp.br
mailto:simoes@icmc.usp.br
mailto:simoes@icmc.usp.br

The skills of the human player can also be

improved by evolutionary algorithms as reported by

Smith et al. [2010]. The authors argue that the use of

evolutionary algorithms as AI by NPC improved the

human player abilities more than playing against other

humans.

In this context, the present paper proposes a novel

EA that can be used to program scripts to control the

AI for a Real Time Strategy (RTS) game called Bos

Wars. This is a game that demands resource

management and action planning to attack other

opponents. A screenshot of the Bos Wars game is

presented in Figure 1.

The developed EA is an adaptation of the

evolutionary algorithm presented in Crocomo [2008]

that was applied to optimize NPC behavior in a Role-

Playing Game (RPG). However, this algorithm was

modified to incorporate a tailor-made representation of

individuals, as well as specific initialization, mutation

and crossover operators.

The paper is organized as follows. The related

works are presented in Section 2 and the RTS game

Bos Wars is described in Section 3. The proposed EA

is detailed in Section 4 and the results found are

reported in Section 5. The conclusions follow in

Section 6.

2. Related Works

Appolinario and Pereira [2007] developed a game

where a tank must reach a target avoiding randomly

inserted obstacles. The authors applied an EA to

execute actions for this tank. An individual is coded as

a sequence of actions which are defined by several

possibilities of tank rotation. This is different from the

proposal of this paper, since our objective in the Bos

Wars game is to generate strategies for controlling

multiple individuals, considering that basic individual

behaviors, such as path finding, is solved by the game

engine.

Spronck et al [2006] proposed a method called

Dynamic Scripting (DS) to be used in online learning

for games. The authors say that EAs lack the necessary

qualities needed by an algorithm to be applied in the

online learning of commercial games.

Ponsen et al. [2007] proposed an EA as a learning

routine in a RTS game called Wargus
1
. Each individual

is represented by 20 building states and a set of actions

is determined from each construction type defined by

each state. Although an EA is used by the proposed AI,

it is responsible for off-line learning in the game,

meaning that the evolutionary process occurs before

the game begins. The Dynamic Scripting algorithm is

used for online learning, i.e., during the match.

The off-line learning consists in the acquisition of

knowledge by the NPCs without contact with a player,

it can be done before the game release and it can test

1
 Wargus. Available in :<

https://launchpad.net/wargus>.[Accessed 16 December

2011]

many variations of AI whereas it is impossible by a

human in a short amount of time [Posen et al. 2007].

The on-line learning makes possible the adaptation

of behaviors used by NPCs during the gameplay,

according to the actions performed by a player

[Spronck et al. 2004].

An EA is also applied by Smith et al. [2010] on a

RTS game. The aim of this EA is to define simple

tactics spatially oriented to control the overall strategy

of game NPCs. The authors verified that players were

able to develop creative strategies that were effective

against these tactics when playing against the

evolutionary algorithm. They argue that the learning

process was more effective in this way than playing

against human opponents.

The behavior of NPCs was also improved by Jang

et al. [2009] using an evolutionary algorithm in a RTS

game. The algorithm is used to make decisions about

what actions should be executed. The authors

developed a game called Conqueror, where the

computational tests showed a superior performance of

the proposed method.

Crocomo [2008] proposed an EA as the AI for a

Role Playing Game (RPG) based on the Baldur’s Gate

game. The EA individuals (or chromosomes) encode

rules that have to be executed by the NPC through the

matches. These actions are selected from a data base of

rules previously defined. The implemented EA

presented good results in the game online learning,

despite the statements presented by Spronck et al

[2006].

In this paper, we use an EA based on the one

developed in [Crocomo 2008], where the EA was

divided in three steps: generate initial population,

evaluate individuals and generate the next population.

In the former EA, each individual has a chromosome

that stores game rules. These rules are executed during

the battles by the NPCs and they are chosen from a set

of rules previously defined. The rules consist of basic

actions such as attack, move, drink potion or cast spell.

The initial population was formed by 4 individuals

generated by a tournament, where the best individual

was always kept in the next population. The other 3

individuals of the next population were obtained

executing a uniform crossover between the best

individual and each one of the other individuals.

The EA approach in the present paper is

responsible for the game online learning. In doing so,

we aim to expand the results from [Crocomo 2008],

showing that EAs can also be successfully applied to

the online learning of RTS games. This is also a

different approach than the EA developed in [Ponsen et

al. 2007], which does not deal with online learning.

Another goal of this project is to create a new AI

strategy for the Bos Wars Game, which is an open

source RTS game. In doing so, we intend to contribute

to other academic researches, which will be able to test

other learning strategies against the one reported on

this paper.

To sumarize the main contributions of this paper, we

may highlight: i) the generalization of the EA proposed

in [Crocomo 2008] to a different type of game (from

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 57

RPG to RTS) and ii) the creation of an AI for the Bos

Wars game, which is an open source game that can be

used as a test platform for new AI techniques

developed from academic research.

3. The Bos Wars Game

The game we chose is called Bos Wars [2010]. It is a

RTS game set in a futuristically environment, where

players must not only fight against enemy teams, but

also develop their economy. Thus, it is necessary to

find a balance among keeping the economy growing

and at the same time produce strong armies to fight off

enemy invasions. The game allows playing against

human as well as against computer scripts. It is an open

source game that runs under Windows and Linux.

The game starts with one or more opponent teams,

where each team starts with some structures like a

town center, a power plant and some engineers as

illustrated in Figure 2.

The aim of the player is to completely destroy all

the enemy units and structures. The resources must be

collected as well as armies need to be built to attack

and repel the enemies.

There are two types of resources available in Bos

Wars: magma and energy. These resources are used to

the creation of structures and armies. To collect

magma, it is necessary to build magma pumps on hot

spots spread on the map or to use engineers to collect it

from rocks. There are three ways to get energy:

building a power plant, a nuclear power plant, or

collecting it from trees and morels with engineers.

Figure 2: The game start.

Bos Wars offers a wide variety of buildings and

units to create. The buildings include vaults, power

plants, aircraft factories, turrets for defense among

others, totalizing 14 available structures. The unities

include assault tanks and aircrafts in a total of 15

available types.

The game comes with five pre-made scripts which

represent strategies to be executed by NPCs as their

AI. There are three offensive scripts, one defensive,

and one that is more balanced, having a balance

between offensive and defensive actions. All these

scripts are coded in two parts: a set of instructions that

are executed just once and another set that are executed

repeated times in a loop until the game is over. This

looping is used to keep the NPCs executing different

actions during the gameplay.

The game engine was developed in C++ and the AI

scripts such as definitions of units, buildings, images,

sounds and data capture functions were coded in the

LUA language [LUA 2012]. Thus, the EA code was

embedded into the game engine. The EA, which was

also developed in C++, must communicate with both

environments to make possible the loading of AI

scripts into the LUA environment. Figure 3 shows a

scheme of this communication mechanism.

Figure 3: Communication among the Genetic Algorithm,

C++ and LUA

4. The Proposed Evolutionary
Approach

The proposed EA is an adaptation of the method

developed by Crocomo [2008], originally coded for a

Role-Playing Game (RPG) simulator based on the

Baldur’s Gate game. The first part of the adaptation

lies on the representation of the EA individuals. The

individual is constituted of genes, which represent a

sequence of atomic actions. These actions are divided

in two groups: actions to build constructions and

actions to create armies. Figure 4 illustrates the two

possible gene representations.

Figure 4: Representation of Genes

The “Building Gene” just contains the information

about what kind of structure will be built. The “Army

Gene” contains information concerning what kind of

unit will be created, its quantity and its force. The force

is an identification integer value between 0 and 9. This

number will be used to identify the army during the

decode phase of the gene by the EA. Figure 5

illustrates a possible individual representation.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 58

Figure 5: Representation of an individual containing 100

genes

For instance, the gene G1 of the individual in

Figure 5 can encode the action “Build a vehicle

factory” and G100 can mean “Create 3 helicopters

unities.

The genes in each individual are decoded into an

instruction of the game script. Thus, all the information

encoded in each individual can be decoded generating

a script that will be executed as an AI control strategy

by the NPCs. The EA executes basically the three steps

presented in Figure 6.

Figure 6: Evolutionary Algorithm Steps

In the first step, the initial population is generated

by a tournament. A total of 8 individuals are randomly

generated and the champion of this tournament is

inserted in the initial population. A total of 4

tournaments are executed with a total of 32 individual

randomly generated and evaluated. Thus, the EA will

have an initial population of 4 individuals (the 4

winning strategies), as previously proposed in

Crocomo [2008]. Figure 7 has an example of a

tournament.

Figure 7: An example of a tournament that selects one of the

four initial individuals

The individuals are evaluated playing a match

against each other. At this moment, the information

encoded by each individual is decoded as a script that

is executed by a team of non-player characters in the

game.

At the end, this individual receives a score that will

be used as its fitness value by the EA. The applied

fitness function is defined by expression (1).







 



T

T

t

t

tF

*2

*2

max

max

1

)(

where:

• F(t): fitness function

• t: time spent in the match

• Tmax: time limit for a match.

The fitness function F(t) assigns scores to the

winners or losers regarding the game time. A higher

fitness value is associated to a winner strategy which

took less time to win than a different winner strategy.

On the other hand, a loser strategy which survived

longer have a higher fitness value than a strategy that is

quickly defeated.

 The evolutionary process continues after the initial

population has been created. At this step, the same

evaluation process can be conducted even if the

individual plays a match against the game scripts or

against human players. In this case, if a match has

reached the time limit (Tmax), the individual evaluated

is considered a loser and victory is assigned to the

game script or human player.

The selection, crossover and mutation operators are

executed during the evolution process. The elitism

strategy is applied in selection, where the individual

with the highest fitness value is selected to mate with

all the others and is maintained in the population for

the next generation. The crossover recombines the best

individual with all the other 3 individuals in the

population. The new created offspring always replaces

the 3 worst individuals and with the best individual that

is maintained in the population, the population size is

kept in 4 individuals. In the mating process, the

uniform crossover is executed, which means that each

gene of the new individual has a 50% chance to come

from the best individual, otherwise, the gene is

inherited from the other parent. Figure 8 illustrates this

crossover.

Figure 8: Example of a uniform crossover

The mutation operator is then applied to all new

individuals, except the best one which is not modified.

Each gene of the new individual has a small probability

to be changed, given by the mutation rate. If a gene is

mutated, it has one or more of its parameters modified

as illustrated in Figure 9.

Figure 9: Example of a mutation

The loop between steps 2 and 3 takes place until a

stopping criteria is achieved, that can be the number of

matches or the execution time.

Parent 1

Gx Gy Gz Gw

Parent 2

Ga Gb Gc Gd

Child

Gx Gb Gc Gw

if NPC won the match

 (1)

if NPC lost the match

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 59

5. Computational Results

The computational results reported in this section

evaluate the EA configurations aiming to find the best

one to be used to work the AI for Bos War. The EA is

set with a population of 4 individuals and a mutation

rate of 10%. Each computational test is composed of

200 matches. In each match, during the evolutionary

process, each individual plays against the default script

of the Bos War. This default script is represented by

the more balanced one, containing offensive and

defensive actions.

To evaluate the EA stability, each test is repeated

10 times and all presented results (graphics and tables)

are evaluated taking into account the average

performance of the propose EA. The first assessment is

on the size of the individual, which means evaluating

the impact that the amount of actions encoded in the

individual has in the EA adaptability. Figures 10, 11

and 12 compare the average values of the fitness

function. The presented charts use the moving average

to identify the trends regarding the fitness obtained by

the used strategies. Each represented point is calculated

by the average of the last 10 fitness values. The

expression (1) in section 3 was also used to evaluate

the performance of the default script.

Number of Matches

Figure 10 – Adaptability of the EA using individuals encoded

with a total of 50 actions.

Number of Matches

Figure 11 – Adaptability of the EA using individuals encoded

with a total of 100 actions.

Number of Matches

Figure 12 – Adaptability of the EA using individuals encoded

with a total of 150 actions.

Figure 11 reveals that an EA containing individuals

with 100 actions encoded present the best performance.

The moving average values found by EA outperforms

the default script before 26 matches take place. The

same happens after 51 matches for individuals with

size 50 and 150 (Figures 10 and 12).

The moving average of the EA is in the interval

[0.7; 0.8] after 51 matches in Figure 10 and after 76

matches in Figure 12. These values are more unstable

in Figure 10 where they are ranging in the interval [0.5;

0.8] after 51 matches.

Another evaluation measure used in Crocomo

[2008] and Spronck et al [2006] is the average

equilibrium point (AEP). It provides the number of the

first match from which the method reached at least a

minimum number of consecutive wins. Thus, if a

method is able to reach an AEP earlier this can also

indicates a better performance.

Table I compares the AEP values and the

percentage of wins obtained by the EA. The values of 5

and 10 were considered as minimum number of

consecutive runs to determine the AEP. The percentage

of victory is calculated over 200 matches.

Table I – Percentage of wins and AEP values for

EA individuals with sizes 50, 100 and 150.

Size % Wins AEP – 5 AEP - 10

50 58,85 54 73

100 64,5 35 71

150 62,5 64 62

The EA with individual length of 100 is, once

more, the one with the better results. This

configuration reached the best percentage of wins as

well as the earliest AEP for 5 consecutive wins. The

EA with individual length of 150 found competitive

results with the best value of AEP for 10 consecutive

wins. To summarize these experiments, the results

reported so far indicate that EA with 100 actions

encoded in the individual has the better performance.

The next test evaluated different values for

mutation rate with individual length of 100 genes. For

 EA

 Default script

M
o

v
in

g
A

v
e
ra

g
e

 -
 F

it
n

e
s
s

 EA

 Default script

M
o

v
in

g
A

v
e
ra

g
e

 -
 F

it
n

e
s
s

 EA

 Default script

M
o

v
in

g
A

v
e
ra

g
e

 -
 F

it
n

e
s
s

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 60

this purpose, the EA was executed with mutation rates

of 5%, 10% and 20%. The same number of 200

matches and 10 repetitions were applied. Figures 13,

and 14 show the moving average results using these

mutation rates.

Number of Matches

Figure 13 – EA with mutation rate of 5%

Number of Matches

Figure 14 – EA with mutation rate of 20%

The Figure 13 and the previous Figure 10 show that

EA with mutation rate of 5% and 10%, respectively,

outperforms the default script before 26 matches.

However, the mutation rate of 5% leads the method to

reach better moving average values, in this case, on the

interval [0.8;0.9]. The worst performance of the EA

was obtained using the highest mutation rate (Figure

14).

Table II compares the mutation rates in terms of

AEP and percentage of wins.

Table II – Percentage of wins and AEP values for

EA individuals with mutation rate 5%, 10% and

20%.

Rate (%) % Wins AEP - 5 AEP – 10

5 72 44 68

10 64,5 35 71

20 48 51 110

While the EA with 10% mutation rate presented the

better AEP with 5 consecutive wins, the EA with 5%

mutation rate presented better values for the percentage

of wins and improved the AEP value for 10

consecutive wins. Thus, it is possible to conclude that

the best found configuration works with individuals

composed by 100 actions and a mutation rate of 5%.

Next, the EA with these parameters is evaluated

against the other four default scripts of the game. There

are three offensive scripts called Tank Rush, Rush and

Blitz. The Tank Rush emphasizes the use of several

types of tanks to attack whereas Rush does the same

using several types of assault units. The Blitz attacks

mixing tanks, assault units and air craft units. The

fourth script is called Spacious and is a defensive

strategy where it is emphasized the construction of

gun-turrets.

Figures 15-18 show the moving average results of

the EA against each one of these scripts.

Number of Matches

Figure 15 – EA against Tank Rush

Number of Matches

Figure 16 – EA against Blitz

 EA

 Default script

M
o

v
in

g
A

v
e

ra
g

e
 -

 F
it

n
e

s
s

 EA

 Default script

M
o

v
in

g
A

v
e
ra

g
e

 -
 F

it
n

e
s
s

M
o

v
in

g
 A

v
e
ra

g
e

 -
 F

it
n

e
s
s

 EA

 Tank Rush script

 EA

 Blitz script

M
o

v
in

g
 A

v
e
ra

g
e

 -
 F

it
n

e
s
s

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 61

Number of Matches

Figure 17 – EA against Rush

Number of Matches

Figure 18 – EA against Spacious

The EA reaches better moving average values

before 26 matches against Tank Rush and Blitz scripts.

The method is better since the beginning than Rush and

Spacious scripts, where the majority of average fitness

values are in the interval [0.9; 1.0]. This result means

that even the initial population of the EA, built with the

champions of the 4 tournaments, was able to beat the

Rush and the Spacious scripts.

Table III presents the percentage of wins and AEP

values taking into account all scripts.

Table III – Percentage of wins and AEP values for

EA playing against the five scripts of the game.
Script % Wins AEP - 5 AEP - 10

Default 72 44 68

Tank Rush 81,1 26 42

Rush 95 10 13

Spacious 99,9 1 1

Blitz 65,3 44 71

The proposed method wins easily when playing

against the defensive strategy called Spacious. In this

case, the EA won almost 100% of the matches since

the first match of the game. Our method had more

trouble to win against the Blitz strategy, since it

alternates different type of units. However, it reached a

satisfactory rate of wins (65,3%) with AEP values

found after 44 and 71 matches. A similar behavior of

EA occurred when playing against the default script

that also alternates between defensive and offensive

actions.

6. Conclusion

The presented paper reported the preliminary results

found when applying an EA to produce the artificial

intelligence control scripts in a real time strategy game

called Bos Wars. The proposed EA was an adaptation

of a similar EA approach applied previously by some

of the authors in a Role Playing Game. However, a

tailor-made representation of individual as well as new

genetic operators were proposed and evaluated in this

paper using the Bos Wars engine.

The proposed EA was first evaluated playing

against one of the default scripts of the Bos Wars

game. The results indicated a better performance when

each individual encodes 100 actions for the resulting

script. Also this representation of individuals performs

better with a small mutation rate. In the next phase, the

configuration found to the EA was validated playing

against the other four standard scripts available in the

game. The proposed method outperformed all the other

game scripts.

It is possible to conclude that the EA had more

difficulty to win against default scripts that mixed

defensive and offensive actions, as well as the Blitz

script that alternated several types of attack units. On

the other hand, the method outperformed those

offensive scripts that prioritize a specific type of

action. Also the method had no problems to win

against the standard defensive script.

As future work, we will be evaluating

modifications in the individual representation, as well

as different selection criteria for crossover. Also, an

adaptation of the described EA approach to the Wargus

game is under development

Acknowledgements

This research received financial support from

Fundação de Amparo à Pesquisa do Estado de São

Paulo (FAPESP), project grant 2012/00995-0.

References

APPOLINARIO, B. V., PEREIRA, T.L., 2007.Navegação

autônoma em jogos eletrônicos utilizando algoritmos

genéticos. Exacta, São Paulo, v.5, n.1, p.79-92.

BITTENCOURT, J. AND OSÓRIO, F., 2006. Motores de

jogos para criação de jogos digitais – gráficos, áudio,

interface, rede, inteligência artificial e física. In: Anais

da V ERI-MG SBC, v. 1, 1–36.

BOS WARS ©2004-2010. Available in:

http://www.boswars.org/ [Accessed May 05 2012].

CROCOMO, M. K., 2008.Um Algoritmo Evolutivo para

Aprendizado On-line em jogos Eletrônicos. Proceedings

of SBGames 2008: Computing Track. Available in:

http://www.sbgames.org/papers/sbgames08/computing/fu

ll/ct22_08.pdf [Accessed October 02 2011].

 EA

 Rush script

 EA

 Spacious script

M
o

v
in

g
 A

v
e
ra

g
e

 -
 F

it
n

e
s
s

M

o
v
in

g
 A

v
e
ra

g
e

 -
 F

it
n

e
s
s

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 62

http://www.boswars.org/
http://www.boswars.org/
http://www.boswars.org/
http://www.boswars.org/
http://www.sbgames.org/papers/sbgames08/computing/full/ct22_08.pdf
http://www.sbgames.org/papers/sbgames08/computing/full/ct22_08.pdf
http://www.sbgames.org/papers/sbgames08/computing/full/ct22_08.pdf
http://www.sbgames.org/papers/sbgames08/computing/full/ct22_08.pdf
http://www.sbgames.org/papers/sbgames08/computing/full/ct22_08.pdf
http://www.sbgames.org/papers/sbgames08/computing/full/ct22_08.pdf
http://www.sbgames.org/papers/sbgames08/computing/full/ct22_08.pdf
http://www.sbgames.org/papers/sbgames08/computing/full/ct22_08.pdf

JANG, S., YOON, J., CHO, S., 2009.Optimal Strategy

Selection of Non-Player character on Real Time Strategy

Game using a Speciated Evolutionary Algorithm. IEEE

Conference on Computational Intelligence and Games

(CIG'09) p. 75-79.

LUA 2012. Available in : http://www.lua.org/. [Accessed

May 05 2012]

LUCAS, S.M. AND KENDALL, G. 2006, Evolutionary

Computation and Games. IEEE Computational

Intelligence Magazine., February, p.10-18.

MILLINGTON,I. G, 2006, Artificial Intelligence for Games.

The Morgan Kaufmann Series in Interactive 3D

Technology, Morgan Kaufamann.

PONSEN, M., SPRONCK, P., MUÑOZ-AVILA, H. AHA,

D., 2007Knowledge Acquisition for Adaptive Game AI.

Science of Computer Programming, v.4, n.1, p. 59-75.

SMITH, G., AVERY, P., HOUMANFAR, R., LOUIS, S.,

2010.Using Co-evolved RTS Opponents to Teach Spatial

Tactics. IEEE Conference on Computational Intelligence

and Games (CIG'10) p. 146-153.

SPRONCK, P., PONSEN, M., SPRINKHUIZEN-KUYPER,

I. ANDPOSTMA E., 2006. Adaptive Game AI with

Dynamic Scripting. Machine Learning, Vol. 63, No. 3,

pp. 217-248. (Springer DOI: 10.1007/s10994-006-6205-

6)

SPRONCK, P., SPRINKHUIZEN-KUYPER, I., POSTMA,

E., 2004. Online Adaptation of Game Opponent AI with

Dynamic Scripting. International Journal of Intelligent

Games and Simulation, Vol.3, No.1, ISSN: 1477-2043,

pp. 45-53.

SWEETSER, P., 2002. Current AI in games: a review.

Technical Report, School of ITEE, University of

Queensland.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 63

http://www.lua.org/
http://www.lua.org/
http://www.lua.org/
http://www.lua.org/

