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Figure 1: The user interface of the BOS War game 

 

Abstract 
 

The present paper reports the preliminary results of the 

application of an evolutionary algorithm developed to 

adjust artificial intelligence scripts in a real time 

strategy game. The evolutionary algorithm (EA) is 

embedded in the game engine of the Bos Wars, which 

is a real time strategy game coded in C++ and LUA 

language. The proposed algorithm is an adaptation of a 

similar approach introduced in [Crocomo 2008], which 

was applied to the battle system of a Role Playing 

Game. A tailor-made representation of the individual 

chromosomes is proposed, as well as a set of new 

genetic operators. The computational results indicate a 

superior performance of the scripts produced by the 

presented evolutionary algorithm when playing against 

the set of the standard scripts available in Bos Wars 

[2010]. 
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1. Introduction 
 

The game industry innovates constantly to satisfy its 

customers. It is already possible to play using sensors 

that detect movement and a lot of effort has been spent 

to allow massive multiplayer matches. There have been 

also advances in the degree of realism with the 

development of sophisticated audio and graphics 

engines that lead players closer to the game 

environment [Bittencourt and Osório 2006].  

Another factor about the realism in games that has 

received special attention in the last years is the 

artificial intelligence (AI) [Millington 2007]. And, 

more specifically, intelligent scripts responsible to 

control the decision-making process for non-player 

characters (NPCs). A well planned AI script should be 

able to provide gaming experiences against NPCs that 

are more similar to playing against other human 

players. In that case, real time adaptation of the NPCs 

behavior to player strategies can increase the level of 

entertainment [Ponsen et al. 2007].  

In [Sweetser 2002], several AI techniques applied 

to programming game scripts are reported, such as 

fuzzy logic, flocking, decision tree, finite state 

machines, artificial neural network and evolutionary 

algorithms. The finite state machines (FSM) have been 

most frequently used to implement AI in games, since 

they are relatively easy to code and understand, and 

usually they are able to hit the objective proposed in 

the game [Sweetser 2002]. However, FSM can make 

the game strategy predictable leading the players to 

lose interest early. 

The use of evolutionary algorithms (EAs) to 

provide AI scripts, in the other hand, is advantageous 

according to Lucas and Kendal [2006] due to its 

natural adaptability that allows them to generate 

different and unpredictable strategies. For this reason, 

the motivation for using EAs as the game AI goes 

beyond making the computer win or lose. Since EAs 

give the computer the ability to create strategies that 

sometimes outperform the player current abilities, it 

forces the player to create new strategies, improving 

the overall ability to entertain of the game. 
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The skills of the human player can also be 

improved by evolutionary algorithms as reported by 

Smith et al. [2010]. The authors argue that the use of 

evolutionary algorithms as AI by NPC improved the 

human player abilities more than playing against other 

humans. 

In this context, the present paper proposes a novel 

EA that can be used to program scripts to control the 

AI for a Real Time Strategy (RTS) game called Bos 

Wars. This is a game that demands resource 

management and action planning to attack other 

opponents. A screenshot of the Bos Wars game is 

presented in Figure 1. 

The developed EA is an adaptation of the 

evolutionary algorithm presented in Crocomo [2008] 

that was applied to optimize NPC behavior in a Role-

Playing Game (RPG). However, this algorithm was 

modified to incorporate a tailor-made representation of 

individuals, as well as specific initialization, mutation 

and crossover operators. 

The paper is organized as follows. The related 

works are presented in Section 2 and the RTS game 

Bos Wars is described in Section 3. The proposed EA 

is detailed in Section 4 and the results found are 

reported in Section 5. The conclusions follow in 

Section 6. 

 

2. Related Works 
 

Appolinario and Pereira [2007] developed a game 

where a tank must reach a target avoiding randomly 

inserted obstacles. The authors applied an EA to 

execute actions for this tank. An individual is coded as 

a sequence of actions which are defined by several 

possibilities of tank rotation. This is different from the 

proposal of this paper, since our objective in the Bos 

Wars game is to generate strategies for controlling 

multiple individuals, considering that basic individual 

behaviors, such as path finding, is solved by the game 

engine. 

Spronck et al [2006] proposed a method called 

Dynamic Scripting (DS) to be used in online learning 

for games. The authors say that EAs lack the necessary 

qualities needed by an algorithm to be applied in the 

online learning of commercial games. 

Ponsen et al. [2007] proposed an EA as a learning 

routine in a RTS game called Wargus
1
. Each individual 

is represented by 20 building states and a set of actions 

is determined from each construction type defined by 

each state. Although an EA is used by the proposed AI, 

it is responsible for off-line learning in the game, 

meaning that the evolutionary process occurs before 

the game begins. The Dynamic Scripting algorithm is 

used for online learning, i.e., during the match. 

The off-line learning consists in the acquisition of 

knowledge by the NPCs without contact with a player, 

it can be done before the game release and it can test 

                                                 
1
  Wargus. Available in :< 

https://launchpad.net/wargus>.[Accessed 16 December 

2011]   

many variations of AI whereas it is impossible by a 

human in a short amount of time [Posen et al. 2007]. 

The on-line learning makes possible the adaptation 

of behaviors used by NPCs during the gameplay, 

according to the actions performed by a player 

[Spronck et al. 2004]. 

An EA is also applied by Smith et al. [2010] on a 

RTS game. The aim of this EA is to define simple 

tactics spatially oriented to control the overall strategy 

of game NPCs. The authors verified that players were 

able to develop creative strategies that were effective 

against these tactics when playing against the 

evolutionary algorithm. They argue that the learning 

process was more effective in this way than playing 

against human opponents. 

The behavior of NPCs was also improved by Jang 

et al. [2009] using an evolutionary algorithm in a RTS 

game. The algorithm is used to make decisions about 

what actions should be executed. The authors 

developed a game called Conqueror, where the 

computational tests showed a superior performance of 

the proposed method. 

Crocomo [2008] proposed an EA as the AI for a 

Role Playing Game (RPG) based on the Baldur’s Gate 

game. The EA individuals (or chromosomes) encode 

rules that have to be executed by the NPC through the 

matches. These actions are selected from a data base of 

rules previously defined. The implemented EA 

presented good results in the game online learning, 

despite the statements presented by Spronck et al 

[2006]. 

In this paper, we use an EA based on the one 

developed in [Crocomo 2008], where the EA was 

divided in three steps: generate initial population, 

evaluate individuals and generate the next population. 

In the former EA, each individual has a chromosome 

that stores game rules. These rules are executed during 

the battles by the NPCs and they are chosen from a set 

of rules previously defined. The rules consist of basic 

actions such as attack, move, drink potion or cast spell. 

The initial population was formed by 4 individuals 

generated by a tournament, where the best individual 

was always kept in the next population. The other 3 

individuals of the next population were obtained 

executing a uniform crossover between the best 

individual and each one of the other individuals. 

The EA approach in the present paper is 

responsible for the game online learning. In doing so, 

we aim to expand the results from [Crocomo 2008], 

showing that EAs can also be successfully applied to 

the online learning of RTS games. This is also a 

different approach than the EA developed in [Ponsen et 

al. 2007], which does not deal with online learning. 

Another goal of this project is to create a new AI 

strategy for the Bos Wars Game, which is an open 

source RTS game. In doing so, we intend to contribute 

to other academic researches, which will be able to test 

other learning strategies against the one reported on 

this paper. 

To sumarize the main contributions of this paper, we 

may highlight: i) the generalization of the EA proposed 

in [Crocomo 2008] to a different type of game (from 
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RPG to RTS) and ii) the creation of an AI for the Bos 

Wars game, which is an open source game that can be 

used as a test platform for new AI techniques 

developed from academic research. 

 

3. The Bos Wars Game 
 

The game we chose is called Bos Wars [2010]. It is a 

RTS game set in a futuristically environment, where 

players must not only fight against enemy teams, but 

also develop their economy. Thus, it is necessary to 

find a balance among keeping the economy growing 

and at the same time produce strong armies to fight off 

enemy invasions. The game allows playing against 

human as well as against computer scripts. It is an open 

source game that runs under Windows and Linux. 

The game starts with one or more opponent teams, 

where each team starts with some structures like a 

town center, a power plant and some engineers as 

illustrated in Figure 2. 

The aim of the player is to completely destroy all 

the enemy units and structures. The resources must be 

collected as well as armies need to be built to attack 

and repel the enemies. 

There are two types of resources available in Bos 

Wars: magma and energy. These resources are used to 

the creation of structures and armies. To collect 

magma, it is necessary to build magma pumps on hot 

spots spread on the map or to use engineers to collect it 

from rocks. There are three ways to get energy: 

building a power plant, a nuclear power plant, or 

collecting it from trees and morels with engineers. 

 

Figure 2: The game start. 
 

Bos Wars offers a wide variety of buildings and 

units to create. The buildings include vaults, power 

plants, aircraft factories, turrets for defense among 

others, totalizing 14 available structures. The unities 

include assault tanks and aircrafts in a total of 15 

available types. 

The game comes with five pre-made scripts which 

represent strategies to be executed by NPCs as their 

AI. There are three offensive scripts, one defensive, 

and one that is more balanced, having a balance 

between offensive and defensive actions. All these 

scripts are coded in two parts: a set of instructions that 

are executed just once and another set that are executed 

repeated times in a loop until the game is over. This 

looping is used to keep the NPCs executing different 

actions during the gameplay. 

The game engine was developed in C++ and the AI 

scripts such as definitions of units, buildings, images, 

sounds and data capture functions were coded in the 

LUA language [LUA 2012]. Thus, the EA code was 

embedded into the game engine. The EA, which was 

also developed in C++, must communicate with both 

environments to make possible the loading of AI 

scripts into the LUA environment. Figure 3 shows a 

scheme of this communication mechanism. 

 

 
Figure 3: Communication among the Genetic Algorithm, 

C++ and LUA 

 

 

 

 

4. The Proposed Evolutionary 
Approach  
 

The proposed EA is an adaptation of the method 

developed by Crocomo [2008], originally coded for a 

Role-Playing Game (RPG) simulator based on the 

Baldur’s Gate game. The first part of the adaptation 

lies on the representation of the EA individuals. The 

individual is constituted of genes, which represent a 

sequence of atomic actions. These actions are divided 

in two groups: actions to build constructions and 

actions to create armies. Figure 4 illustrates the two 

possible gene representations. 

 

 
Figure 4: Representation of Genes 

 

The “Building Gene” just contains the information 

about what kind of structure will be built. The “Army 

Gene” contains information concerning what kind of 

unit will be created, its quantity and its force. The force 

is an identification integer value between 0 and 9. This 

number will be used to identify the army during the 

decode phase of the gene by the EA. Figure 5 

illustrates a possible individual representation.  
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Figure 5: Representation of an individual containing 100 

genes 
 

For instance, the gene G1 of the individual in 

Figure 5 can encode the action “Build a vehicle 

factory” and G100 can mean “Create 3 helicopters 

unities. 

The genes in each individual are decoded into an 

instruction of the game script. Thus, all the information 

encoded in each individual can be decoded generating 

a script that will be executed as an AI control strategy 

by the NPCs. The EA executes basically the three steps 

presented in Figure 6. 

 
Figure 6: Evolutionary Algorithm Steps 

 

In the first step, the initial population is generated 

by a tournament. A total of 8 individuals are randomly 

generated and the champion of this tournament is 

inserted in the initial population. A total of 4 

tournaments are executed with a total of 32 individual 

randomly generated and evaluated. Thus, the EA will 

have an initial population of 4 individuals (the 4 

winning strategies), as previously proposed in 

Crocomo [2008]. Figure 7 has an example of a 

tournament. 

 

 
Figure 7: An example of a tournament that selects one of the 

four initial individuals 

 

The individuals are evaluated playing a match 

against each other. At this moment, the information 

encoded by each individual is decoded as a script that 

is executed by a team of non-player characters in the 

game.  

At the end, this individual receives a score that will 

be used as its fitness value by the EA. The applied 

fitness function is defined by expression (1). 
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where: 

• F(t): fitness function 

• t: time spent in the match 

• Tmax: time limit for a match. 

 

The fitness function F(t) assigns scores to the 

winners or losers regarding the game time. A higher 

fitness value is associated to a winner strategy which 

took less time to win than a different winner strategy. 

On the other hand, a loser strategy which survived 

longer have a higher fitness value than a strategy that is 

quickly defeated. 

 The evolutionary process continues after the initial 

population has been created. At this step, the same 

evaluation process can be conducted even if the 

individual plays a match against the game scripts or 

against human players. In this case, if a match has 

reached the time limit (Tmax), the individual evaluated 

is considered a loser and victory is assigned to the 

game script or human player. 

The selection, crossover and mutation operators are 

executed during the evolution process. The elitism 

strategy is applied in selection, where the individual 

with the highest fitness value is selected to mate with 

all the others and is maintained in the population for 

the next generation. The crossover recombines the best 

individual with all the other 3 individuals in the 

population. The new created offspring always replaces 

the 3 worst individuals and with the best individual that 

is maintained in the population, the population size is 

kept in 4 individuals. In the mating process, the 

uniform crossover is executed, which means that each 

gene of the new individual has a 50% chance to come 

from the best individual, otherwise, the gene is 

inherited from the other parent. Figure 8 illustrates this 

crossover. 

 

 

 

 

 

 

 

 
Figure 8: Example of a uniform crossover 

 

The mutation operator is then applied to all new 

individuals, except the best one which is not modified. 

Each gene of the new individual has a small probability 

to be changed, given by the mutation rate. If a gene is 

mutated, it has one or more of its parameters modified 

as illustrated in Figure 9. 

 

 
Figure 9: Example of a mutation 

 

The loop between steps 2 and 3 takes place until a 

stopping criteria is achieved, that can be the number of 

matches or the execution time. 

Parent 1 

Gx Gy Gz Gw 

 

Parent 2 

Ga Gb Gc Gd 

 

 

Child 

Gx Gb Gc Gw 

 

if NPC won the match 

      (1) 

if NPC lost the match 

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers
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5. Computational Results 
 
The computational results reported in this section 

evaluate the EA configurations aiming to find the best 

one to be used to work the AI for Bos War. The EA is 

set with a population of 4 individuals and a mutation 

rate of 10%. Each computational test is composed of 

200 matches. In each match, during the evolutionary 

process, each individual plays against the default script 

of the Bos War. This default script is represented by 

the more balanced one, containing offensive and 

defensive actions.  

To evaluate the EA stability, each test is repeated 

10 times and all presented results (graphics and tables) 

are evaluated taking into account the average 

performance of the propose EA. The first assessment is 

on the size of the individual, which means evaluating 

the impact that the amount of actions encoded in the 

individual has in the EA adaptability. Figures 10, 11 

and 12 compare the average values of the fitness 

function. The presented charts use the moving average 

to identify the trends regarding the fitness obtained by 

the used strategies. Each represented point is calculated 

by the average of the last 10 fitness values. The 

expression (1) in section 3 was also used to evaluate 

the performance of the default script.  

 
Number of Matches 

 

 

 

 
Figure 10 – Adaptability of the EA using individuals encoded 

with a total of 50 actions. 

 

Number of Matches 
 

 

 

 
Figure 11 – Adaptability of the EA using individuals encoded 

with a total of 100 actions. 

 

 
Number of Matches 

 

 

 

 
Figure 12 – Adaptability of the EA using individuals encoded 

with a total of 150 actions. 

 

Figure 11 reveals that an EA containing individuals 

with 100 actions encoded present the best performance. 

The moving average values found by EA outperforms 

the default script before 26 matches take place. The 

same happens after 51 matches for individuals with 

size 50 and 150 (Figures 10 and 12).  

The moving average of the EA is in the interval 

[0.7; 0.8] after 51 matches in Figure 10 and after 76 

matches in Figure 12. These values are more unstable 

in Figure 10 where they are ranging in the interval [0.5; 

0.8] after 51 matches. 

Another evaluation measure used in Crocomo 

[2008] and Spronck et al [2006] is the average 

equilibrium point (AEP). It provides the number of the 

first match from which the method reached at least a 

minimum number of consecutive wins. Thus, if a 

method is able to reach an AEP earlier this can also 

indicates a better performance.  

Table I compares the AEP values and the 

percentage of wins obtained by the EA. The values of 5 

and 10 were considered as minimum number of 

consecutive runs to determine the AEP. The percentage 

of victory is calculated over 200 matches. 

 

Table I – Percentage of wins and AEP values for 

EA individuals with sizes 50, 100 and 150. 

Size % Wins AEP – 5 AEP - 10 

50 58,85 54 73 

100 64,5 35 71 

150 62,5 64 62 
 

The EA with individual length of 100 is, once 

more, the one with the better results. This 

configuration reached the best percentage of wins as 

well as the earliest AEP for 5 consecutive wins. The 

EA with individual length of 150 found competitive 

results with the best value of AEP for 10 consecutive 

wins. To summarize these experiments, the results 

reported so far indicate that EA with 100 actions 

encoded in the individual has the better performance. 

The next test evaluated different values for 

mutation rate with individual length of 100 genes. For 
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this purpose, the EA was executed with mutation rates 

of 5%, 10% and 20%. The same number of 200 

matches and 10 repetitions were applied. Figures 13, 

and 14 show the moving average results using these 

mutation rates. 

 

 
Number of Matches 

 

 

 

 
Figure 13 – EA with mutation rate of 5% 

 

 

 
Number of Matches 

 
 

 
Figure 14 – EA with mutation rate of 20% 

 

The Figure 13 and the previous Figure 10 show that 

EA with mutation rate of 5% and 10%, respectively, 

outperforms the default script before 26 matches. 

However, the mutation rate of 5% leads the method to 

reach better moving average values, in this case, on the 

interval [0.8;0.9]. The worst performance of the EA 

was obtained using the highest mutation rate (Figure 

14).  

 

Table II compares the mutation rates in terms of 

AEP and percentage of wins. 

 

Table II – Percentage of wins and AEP values for 

EA individuals with mutation rate 5%, 10% and 

20%. 

Rate (%) % Wins AEP - 5 AEP – 10 

5 72 44 68 

10 64,5 35 71 

20 48 51 110 
 

While the EA with 10% mutation rate presented the 

better AEP with 5 consecutive wins, the EA with 5% 

mutation rate presented better values for the percentage 

of wins and improved the AEP value for 10 

consecutive wins. Thus, it is possible to conclude that 

the best found configuration works with individuals 

composed by 100 actions and a mutation rate of 5%. 

Next, the EA with these parameters is evaluated 

against the other four default scripts of the game. There 

are three offensive scripts called Tank Rush, Rush and 

Blitz. The Tank Rush emphasizes the use of several 

types of tanks to attack whereas Rush does the same 

using several types of assault units. The Blitz attacks 

mixing tanks, assault units and air craft units. The 

fourth script is called Spacious and is a defensive 

strategy where it is emphasized the construction of 

gun-turrets.  

Figures 15-18 show the moving average results of 

the EA against each one of these scripts. 
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Figure 15 – EA against Tank Rush 
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Figure 16 – EA against Blitz 
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Number of Matches 

 

 

 

Figure 17 – EA against Rush 

 
Number of Matches 

 

 

 
Figure 18 – EA against Spacious 

 

The EA reaches better moving average values 

before 26 matches against Tank Rush and Blitz scripts. 

The method is better since the beginning than Rush and 

Spacious scripts, where the majority of average fitness 

values are in the interval [0.9; 1.0]. This result means 

that even the initial population of the EA, built with the 

champions of the 4 tournaments, was able to beat the 

Rush and the Spacious scripts.  

Table III presents the percentage of wins and AEP 

values taking into account all scripts. 

 

Table III – Percentage of wins and AEP values for 

EA playing against the five scripts of the game. 
Script % Wins AEP - 5 AEP - 10 

Default  72 44 68 

Tank Rush  81,1 26 42 

Rush  95 10 13 

Spacious  99,9 1 1 

Blitz  65,3 44 71 
 

The proposed method wins easily when playing 

against the defensive strategy called Spacious. In this 

case, the EA won almost 100% of the matches since 

the first match of the game. Our method had more 

trouble to win against the Blitz strategy, since it 

alternates different type of units. However, it reached a 

satisfactory rate of wins (65,3%) with AEP values 

found after 44 and 71 matches. A similar behavior of 

EA occurred when playing against the default script 

that also alternates between defensive and offensive 

actions. 

 

6. Conclusion 
 

The presented paper reported the preliminary results 

found when applying an EA to produce the artificial 

intelligence control scripts in a real time strategy game 

called Bos Wars. The proposed EA was an adaptation 

of a similar EA approach applied previously by some 

of the authors in a Role Playing Game. However, a 

tailor-made representation of individual as well as new 

genetic operators were proposed and evaluated in this 

paper using the Bos Wars engine.  

The proposed EA was first evaluated playing 

against one of the default scripts of the Bos Wars 

game. The results indicated a better performance when 

each individual encodes 100 actions for the resulting 

script. Also this representation of individuals performs 

better with a small mutation rate. In the next phase, the 

configuration found to the EA was validated playing 

against the other four standard scripts available in the 

game. The proposed method outperformed all the other 

game scripts. 

It is possible to conclude that the EA had more 

difficulty to win against default scripts that mixed 

defensive and offensive actions, as well as the Blitz 

script that alternated several types of attack units.  On 

the other hand, the method outperformed those 

offensive scripts that prioritize a specific type of 

action. Also the method had no problems to win 

against the standard defensive script. 

As future work, we will be evaluating 

modifications in the individual representation, as well 

as different selection criteria for crossover. Also, an 

adaptation of the described EA approach to the Wargus 

game is under development 
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