
Towards a Method for AI Problem Modeling in Real Time Strategy
Games

Fernando Rocha Thiago Andrade Geber Ramalho Patrícia Tedesco

Federal University of Pernambuco, Informatics Center, Brazil

Abstract

Modeling and implementing game AI is often a

complex task in game development, particularly when

dealing with real-time AI which is the case of Real-

Time Strategy Games (RTS). Most of current literature

on game AI only proposes the application of AI to

specific problems. In this paper, we introduce an

original method devoted to help the developer to model

the game AI. The method is the result of a five-year

effort of observing and coaching under-graduate

students to implement the AI of Non-Player Characters

(NPC) for RTS games.

Keywords:

Real-Time Strategy Games, Artificial Intelligence,

Game AI

Authors’ contact:
{fafr,tas3,glr,pcart}@cin.ufpe.br

1. Introduction

It is known that computer games are considered a fairly

complex computing environment, where, in addition to

the whole process of control, one needs to consider

also problems related to Artificial Intelligence (AI).

Some genres such as Real-Time Strategy Games (RTS)

are still more complex, since their environment

involves several variables, each one of these with the

potential to influence each other and the environment

itself [Bourg 2004][Weber 2011]. The decisions made

in RTS must take time into account to combine tactics

and strategy adequately. Finally, some RTS games can

also have large number of agents controlling Non-

Player Characters (NPC) [Walther 2006].

The process of developing Game AI has often three

stages [Rollings 2003]: modeling, implementation and

adjusting. In the modeling stage, the developer must

analyze the game in order to identify and map all the

problems which require AI, as well as the relevant

variables involved in these problems, the reasoning

approaches that can be adopted, and multiagent design

issues. Modeling is hard, since it deals with difficult

problems such as planning, multicriteria decision,

agents coordination, etc. The generated model

represents, in a more generic way, the structure of

decisions in a game and it is an essential input to the

next stage.

In the implementation stage, the specific AI techniques

(such as rule-based systems, supervised and

unsupervised learning, etc.) are chosen, and the model

generated previously is detailed and instantiated to fit

the chosen AI technique. In the adjusting stage, tests

are made and modifications are performed to satisfy

the game requirements.

All this complexity, in particular for RTS, makes the

development game AI a costly task. This often leads to

a simplification of game AI, which may result in a low

player experience.

Unfortunately, the current literature on game AI,

particularly in AI for RTS, only describes the

application of a AI technique to specific problems

[Weber 2009][Weber 2011][Ívarsson 2005][Miles

2006][Cheng 2004]. Very little attention is given the

modeling stage and it does not cover the whole game

with all the problems, tasks, decisions, etc.

In this paper, in order to help the game developer, we

introduce an original method for the first stage of

modeling a game AI. This method will map in an easy

way, the problems that require some AI. The method is

decision-centered and enumerates a series of simple

questions that the developer must answer to figure out

the AI game problems.

This model emerged from a five-year effort of

observing and coaching more than 250 students of an

undergraduate discipline (Autonomous Agents and

Multiagent Systems) taught in the Informatics Center

of the Federal University of Pernambuco (CIn-UPFE).

The student form teams to program the AI of NPCs of

a strategy game. During the course, the AI techniques

that can be used in the task as studied and hints are

given on how to model the AI. At 3 moments of the

course, a competition takes place among the teams,

where the NPCs programmed by each team must fight

against each other. The grade obtained by the students

depends on their performance in the competition. In the

last two years, we moved from a generic RTS game

definition and a platform developed by our research

team [Vieira Filho et al. 2007], to the StarCraft using

the Broodwar platform [BWAPI 2012].

In the last version of the course, we have fully applied

the method presented here to help the teams to define

the AI. The results were clearly satisfactory as we

discuss later.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 41

The method developed was only used in RTS games so

far. Despite this, it is possible to apply the method with

few or no changes to other styles of games. For being

one of the most complex game styles, we idealize that

applying this method in other styles will have a result

quite promising.

This paper is organized as follows: the second section

we make a review about the others works in the area;

following a section that defines the method that we

used for modeling an AI of a RTS game. The fourth

section we show the model that we build. In the fifth

we discuss the results and the last section we finalizes

this work.

2. Related Work

RTS games may have hundreds to thousands of agents

that interact with each other, with the environment and

with the player. The better intelligence those agent

actions has better will be the user experience.

2.1 Multi-Agent Systems

Although the development of Multi-Agent Systems

(MAS) currently being a technique quite widespread, it

is still held, in the vast majority of times, without the

aid of a methodology as a guide. One of the reasons is

the inadequacy of MAS’ development to current

engineering techniques [Fisher 1997]. However, there

are already some approaches that seek to bring

software development techniques for the development

of SMA. Techniques such as: (i) Tropos [Bresciani

2003]; (ii) MaSE [Deloach 2006]; and (iii) SADAAM

[Clynch 2007].

Tropos [Bresciani 2003] methodology guide the whole

software development process using the concept of

agents still the beginning. However, this approach is

very rigid as some old software engineering

techniques, making the multi agent system

development very static.

While the approach of methodology MaSE [Deloach

2006] seeks to facilitate the development of the system

by specifying a set of formal documents that will guide

the developer during the remainder of the development

cycle. However, it remains a very rigid methodology,

contrary to some newer techniques of software

engineering, such as the agile techniques. Where can

we find contrary to excessive generation of technical

documentation.

In the case of SADAAM [Clynch 2007] is used an

approach based on agile methodologies, bringing

together the worlds of some more conservative

methods with the idea of flexibility introduced by

Agile methodologies. The features incorporated by the

agile methodologies regarding the ability to make

development less costly the changes that may occur

during the lifetime of the process.

In the case of the methodology proposed in this paper,

we address a more agile process, allowing greater

flexibility. Added to a more didactic and practical

system of problems’ identification that a multi-agent

system will face.

2.2 RTS Modeling

Weber [Weber 2011] in his work entitled "Building

Human-Level AI for real-time Strategy Games",

reports the complexity in designing an intelligent

system that controls the AI of a RTS game. In addition,

Weber suggests the use of a hierarchy decisions. This

choice, according to the author, makes it easier for a

given level of the hierarchy to generate an activity that

can be consumed by the correct management level.

Who also follows this same idea of creating a hierarchy

of decisions is Ívarsson [Ívarsson 2005].

Harmon, [Harmon 2002] used an economy based

approach to Goal-Directed Reasoning which deals with

the investment problem during an RTS game making

analogy with the marginal utility economics’ model.

The marginal utility is used to model a system which

adapts to dynamic reality of a RTS game environment.

In another work, Dahlbom [Dahlbom 2004] models an

AI which aims to minimize the adaptation time of a

player in a RTS game through dynamic scripting.

Goal-based AI establishes relations between rules and

goals, weight-adjustment, and not only takes into

account the effective result of the rules but also

considers the ability level of the enemy player and

prevents the AI to learn in case of a unskilled enemy.

Churchill [Churchill 2011] proposes a model that seeks

to optimize the order in which the construction of

structures in a game of StarCraft is carried out. This

approach is well defined, but is limited to a very

specific point in the game, the construction of new

buildings. In addition, as is focused on only one case of

game, focuses on much in the way of implementing the

proposed model, not abstracting the idea to other

situations and/or cases of an RTS.

In his dissertation "AI for real-time strategy games",

Walther [Walther 2006] describes many details of what

is present in an environment of an RTS game. Among

the techniques that are used in the development of RTS

AI, Walther cites the idea of using a hierarchical

modeling, where we would have the behaviors of the

game basically divided into three levels: (i) low-level

behavior, which deals directly with what each unit will

be doing every moment; (ii) medium-level behavior,

that would be the Group of control units; and (iii) the

high-level control, which would be related to the

General control of the game, which would encompass

issues such as as choices of strategies and town

construction. However, Walther did not formalize the

architecture of control of the AI of the game, being

then one more work that is focused on how to make AI

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 42

effective and not on how the architecture that would d

do that could be designed.

Another work that uses the idea of a hierarchical

architecture for AI of an RTS is the work of Safadi

[Safadi 2011]. However, Safadi deals with the actions

differently from most works. He defines that the

highest level of the hierarchy would request a high-

level activity (e.g. create a group of marines). In order

to accomplish such high-level activities, each high-

level generates some middle-level activities (create a

barrack) that can, in their turn, generate several other

low-level activities (searching resources). However, it's

just another job that has his contribution focused only

on the development of AI and not in the definition of a

template that can be reused by other surveys.

In the next section we will discuss the process that we

use for the idealization of a model capable of

representing the AI of a RTS game.

3. Problems Mapping Method

All this difficulty motivated us to propose a

methodology that helps with configuring the

development of an AI for a RTS game. This

methodology was put into use in a case study over the

course of an undergraduate discipline called

Autonomous Agents (AA), which was taught in

semester 2012.1, in the Center of Informatics of the

Federal University of Pernambuco (CIn-UFPE).

During this semester, we did some reflection exercises

with the students who have a better view on defining a

complex AI system. These exercises allowed us, for

example, to identify which the decisions were taken by

a player during a game of an RTS game. Furthermore,

they allowed us to examine, in the case of an AI, which

part of the system would take each decision or at what

time.

In order to leverage the RTS AI researches, this paper

models a Multi Agent System Design Process which

provides to the researchers of this area a method that

guides their studies and helps in understanding the

whole RTS AI problem.

3.1 Autonomous Agents

The discipline of AA is currently once per school year.

When it was last offered (2012.1), 50 students

attended. As an incentive to make the subject a bit

more tangible to students, we put in place a MAS

design process. This method helped the definition of an

intelligent mechanism able to execute the control of an

RTS game.

This method was used by all students, in some

discursive classes. From the application of this method,

we reached the goal of an organizational structure

capable of representing architectural decisions that the

AI of a RTS game would make. As their final project

discipline, the class was divided into five teams, each

one responsible for developing their own AIs for

control of the commercial game StarCraft-BroodWar,

using BWAPI [BWAPI 2012]. This API allows

developers to write a C code through which they can

control the actions that occur in the game.

After the end of the course, we received positive

feedback from the students about the appliance of the

method. In a written exam, students demonstrated a

greater theoretical knowledge on the subject and in the

development of the project; it was possible to find the

implementation of some concepts seen in the room.

3.2 Method

For the discipline of AA we used a method to assist the

definition of AI in a RTS game. This method consists

of several steps displayed in the listing below. In this

listing, we see the main stages for which teams built

their models.

1. List the decisions that must be made – What

should be done?

2. Define the variables for each decision

3. Identify who should take each decision – Who

should done?

4. Identify relationships and priorities for each

trigger actions – When decision should be taken?

5. Decide how to take each decision

The first step is characterized by the questioning of

"what should be done". After listing these activities

other questions will guide the assembly of the rest of

the model. However, before one has any other

questions it is important to define which variables are

taken into account for the decision to be taken. The

definition of these variables will facilitate the future

implementation, but also facilitate the analysis of the

next process questions.

According to [Safadi 2011][Ívarsson 2005][Weber

2011], the better representation of a game AI would be

hierarchical decisions. Hence, we would have in the

next step the identification of which activities are being

performed at each level of the hierarchy. To make this

possible, we have posed a new question, that is: "who

should get it done?". The answer to this question will

tell us: (i) if this is a strategic decision, which is the

highest level, like a general in an army; (ii) a tactical

decision, that will be like a Commander of an army

grouping; while the third answer (iii) would be an

operational decision, which technically would be a

decision at the level of a unit (soldier of the army).

This step is useful in defining the environment

variables that must be taken into account in making the

decision, because these variables will determine the

degree of knowledge about the environment that every

decision must have.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 43

Another issue that should be decided is when each

decision will be made. This would be the third question

of the method, namely “when the decision should be

taken”. The answers of this question, in relation to each

decision listed earlier, will begin to give us an idea of

the chronological execution of actions. What we

defined in this step is the relationship between

decisions that must be taken, (i) which comes first; (ii)

which a decision requires external events as trigger;

(iii) when a decision is part (sub decision) of another

decision; and other temporal relations associated with

these decisions. This will allow us to draw the first

sketches of an intelligent system for AI of a complex

RTS.

The next question asked, is basically what is already

massively studied in other works, and relates to how to

implement the decision of each one of the decisions

listed. This step is not the focus of this work. Thus, we

do not explore the subject in more depth.

After a semester, we had built a model that represents

the AI of a RTS game. This model was the result of the

application of the method will be discussed in more

detail in the next section.

4. Model

Several studies have been conducted on RTS games,

but each ones seeks the development of their AI in an

arbitrary way. The purpose of this model is to facilitate

the development of a new AI for a RTS games. With

the template at hand, the developer will be able to

better visualize the activities that AI must perform and

thus organize in a better way the intelligent system

architecture.

As main result from the application of this method in

the discipline of AA was a model that can represents

the decisions that occur in an RTS game. This model

will allow the development of an intelligent system

that will control the RTS game.

4.1 Decisions

Initially we can list the decisions that were identified.

The list of 50 decisions can be seeing below.

1. Analyze defensive system.

2. Identify suitable points to enemy attack.

3. Need to strengthen defense?

4. There is unused in defense military unit that can

be recruited?

5. Needs to build a new structure?

6. Needs to produce a new unity?

7. Have resource?

8. Which structure to build?

9. Needs to build a new command center?

10. Where to put the new structure?

11. Allocate workers.

12. Build the structure.

13. Some structure needs to be repaired?

14. Some army cavalry needs to be repaired?

15. Which unity to produce?

16. Which support structure will produce the unity?

17. Where to put the unity?

18. Analyze resource.

19. Need more resource?

20. Need more worker to get resources?

21. Which resource source to collect?

22. Set activity to the worker.

23. Need a new resource source?

24. Which resource source to acquire?

25. Command attack to attach the resource source.

26. Identify which new technology to produce.

27. Some unity needs medical care?

28. Allocate doctor to heal the unity.

29. Command doctor to heal.

30. Needs to expand the base?

31. Commands the defense system to expand.

32. Identify the moment to attack.

33. Which enemy base attack?

34. Which enemy defensive system is worse?

35. Which enemy structures are more important?

36. Define attack strategy.

37. What will be the composition of the attack?

38. When send backup army?

39. Identify difficult to destroy an enemy structure.

40. Identify which enemy unity to attack.

41. Who attack?

42. Make some enemy recognition?

43. Needs to abort the attack?

44. Command retreat.

45. Identify strategic points in the map.

46. Analyze the possibility to take control of the

strategic point.

47. Command attack to take control of the strategic

point.

48. Need some recognition patrol?

49. Allocated some unities to make the recognition

patrol.

50. Identify the path of the recognition patrol.

Having this list, we can make the second question,

“who should done?”, which will give us an idea of

where in the intelligent system the decision will be

make. The answer will tell us whether the decision will

be made at a high level, in a centralized way, by the

core of the system that controls the AI of the game;

otherwise from the agent itself, using a distributed way

happening a low level decision; or if we will have a

new agent between these two, which will be

responsible for decisions on the medium level, using an

hybrid system.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 44

Figure 1 - The relationship of the AI decisions in a RTS game

For example, a decision of “need more worker to get

resources” have to be done by the high level system,

which will be able to take this decision without the

participation of any other part of the system. Otherwise

the decision “who attack”, make a unit to attack an

enemy, this decision have to be made by the agent

itself without coordination. After this, the next step is

to verify some relationships about each one of that

decisions. This will facilitate to make a better analysis

about each part of the system. The result of this

analysis is a diagram that can be seen in Figure 1 and

Figure 2.

Following the process previously seen, each of these

decisions will be expanded into several other decisions.

To help understanding, the examples used in this

section will be in relation to a small part of the

intelligent decision system for RTS. In this way, we

will only deal with the case of how to perform base

defense of his army.

We can see that in the Figure 3, this diagram presents

not have only the activities, but also the representation

of the main variables that can influence the decision-

making. In addition, we also have the relationship

between decisions, watching so that a single decision

can have a list of chained decisions. Also in this same

figure, we can see the insertion and the representation

of what we consider triggers for the intelligent system

to analyze a given decision-making.

Thus, this template already allows a broad view of the

sequence of activities that an AI for a game RTS

should accomplish. However, we still see some

complex decisions, with a certain level of depth (levels

Figure 2 - (Cont.) The relationship of the AI decisions in a RTS game

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 45

Figure 3 - Detailed defense activities with environment variables and decisions triggers

of nested decisions). All of this just confirms the

complexity involved in the environment of an RTS

game.

The solution was the creation of multiple state

machines, where we would have one for each module

identified.

4.2 Machine State

This model is able to represent the decisions in a god

manner, including their relationships and when each

one should be initiated. However, this model can still

leave margins to be misinterpreted. In this way, we

refine this model seeking a manner that would allow a

better analysis by the developer of the AI system. For

this new modeling, we use a state machine, because it

removes the possible ambiguities that could exist.

In Figure 4 we can see the machine state that was

generated for the defense case. This machine state will

manage the defense of the base, checking when will be

necessary to repair or build a new defense structure or

recruiting a new unit to compose the defense.

A more complex case is the command center where we

can see in the Figure 5. This machine state is

responsible for manage the resources and acquisitions

for new resources source. Beyond this, this machine

state manages the situations of new structures, new

unities and the research for new technologies.

Those machine states were compiled from the results

obtained in the AA classes. For simplify the method,

we just present some of the cases of an RTS game AI.

Figure 4 - Machine state of the defense AI

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 46

.

Figure 5 - A machine state that will represent the command center

5. Results

We stated to propose an AI programming for RTS as a

competition in our course in 2006. Last year, as the

result of observation and coaching, we finally arrived

to the first mature version of a method presented in this

paper

This year, 2012, we decided to explicitly teach the

method to the 50 students we had in the course. We

spent 15 min explaining the method and a couple of

hours starting the modeling processing with them

according to the method.

The results are beyond our best expectations. First, the

NPC have clearly more intelligent behavior with

respect to the ones from the previous version of the

course. The majority of matches played by the 2012

teams against the previous ones corroborated our first

good impressions, since they were won by the 2012's.

Second, the students’ results in the written test were

also better than the previous versions of the course. It

is possible to compare results because we apply the

same written test to all versions of this course. The

questions may change a little syntactically, but they are

the semantically equivalent. The questions, which are

given in the very first day of the course, ask the

students to explain how they implemented their agents

(NPCs) using the concepts and terminology discussed

during the classes. We noticed that their explanation

were far more structured and clear after the application

of the method explained in this paper.

6. Conclusion

This paper introduces preliminary results of a method

that help game developers to structure and map the AI

for a RTS games. The preliminary and practical

evaluation of the method is encouraging when applied

to help students to develop the AI of NPCs of Starcraft,

a well-known and typical RTS game.

For future work, we will apply this method for other

games stiles and beyond that, for other complex multi-

agent systems. We expect that this method will be

applied in those cases with little or no modification.

This paper also presents, as a side-effect contribution, a

partial model of game AI for RTS. The description of

the entire model is not in the scope of the paper indeed.

The method emerged from an academic course and we

do not have the opportunity to test in other

environment beyond the academic. So, this is a case

study for the future, adding a further evaluation of the

method by performing experiments with a control

group.

As seen, there are a few methods that make it easy to

develop MAS. However, the authors are not aware of a

method that helps in the modeling of an intelligent

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 47

system designed for gaming. In this way, although we

have only preliminary results, the proposed method has

reached quite promising results.

References

BRESCIANI, P., GIORGINI, P., GIUNCHIGLIA, F., MYLOPOULOS,

J., & PERINI, A., 2003. Tropos: An Agent-Oriented

Software Development Methodology. Autonomous

Agents and Multi-Agent Systems. May 2004, Volume 8,

Issue 3, pp 203-236.

BOURG, D. M., & SEEMAN, G., 2004. AI for Game

Developers. Environments (p. 400). O’Reilly.

BWAPI, 2012. An API for interacting with Starcraft:

Broodwar. Retrieved from

http://code.google.com/p/bwapi/ in august 03th of 2012.

CHENG, D. C., & THAWONMAS, R., 2004. Case-based plan

recognition for real-time strategy games. Proceedings of

the Fifth Game-On.

CHURCHILL, D., & BURO, M., 2011. Build Order

Optimization in StarCraft. Seventh Artificial Intelligence

and Interactive Digital, 14-19.

CLYNCH, N. & COLLIER, R. W., 2007. SADAAM: Software

Agent Development An Agile Methodology.
LADS/Durham Agents.

DAHLBOM, A., 2004. An adaptive AI for real-time strategy

games. Institutionen för kommunikation och information
{p. 74}.

DELOACH, S. A., 2006. Engineering Organization-based

Multiagent Systems. LNCS. 2006, pp 109-125.

FISHER, M., MÜLLER, J., SCHROEDER, M., WAGNER, G. &

STANIFORD G., 1997. Methodological Foundations for

Agent-Based Systems. Knowledge Engineering Review.
September, 1997, Volume 12, pp 323-329.

HARMON, V., 2002. An Economic Approach to Goal-

Directed Reasoning in an RTS. Charles River Media.

ÍVARSSON, Ó., 2005. Improved Combat Tactics of AI Agents

in Real-Time Strategy Games Using Qualitative Spatial

Reasoning. Hogskolan Skovde.

MILES, C., & LOUIS, S. J., 2006. Towards the co-evolution of

influence map tree based strategy game players.

Computational Intelligence and Games, 2006 IEEE

Symposium on (pp. 75–82). IEEE.

ROLLINGS, A., & MORRIS, D., 2003. Game Architecture and

Design - A New Edition. New Riders Games. p. 960.

Safadi, F., Fonteneau, R., & Ernst, D., 2011. Artificial

Intelligence Design for Real-time Strategy Games. 25th

Annual Conference on Neural Information Processing

Systems (NIPS 2011), 1-6.

VIEIRA FILHO, V., SIEBRA, C., MOURA JÚNIOR, J.C., WEBER,

R. & RAMALHO, G., 2007. RTSCup Project: Challenges and

Benchmarks. In: Anais do VI Simpósio Brasileiro de Jogos e

Entretenimento Digital, SBGames 2007, (pp. 163-179). São

Leopoldo: Sociedade Brasileira e Computação. ISBN:

857669154-X

WALTHER, A., KIM STEENSTRUP PEDERSEN, & LOOG, M.,

2006. AI for real-time strategy games. Learning. IT-

University of Copenhagen Design.

WEBER, B. G., & MATEAS, M., 2011. Building Human-Level

AI for Real-Time Strategy Games. AAAI Fall Symposium on

Advances in Cognitive Systems.

WEBER, B. G., & MATEAS, M., 2009. A data mining approach

to strategy prediction. 2009 IEEE Symposium on

Computational Intelligence and Games, 140-147. Ieee.

doi:10.1109/CIG.2009.5286483

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 48

