
Characterizing and Modeling Agents in Digital Games
Marlos C. Machado and Gisele L. Pappa and Luiz Chaimowicz

Department of Computer Science
Federal University of Minas Gerais

Belo Horizonte, Brazil

Abstract

A promising approach in digital games is the possibility of cus-
tomizing the game according to different demands. Artificial Intel-
ligence algorithms play an important role in this direction, allowing
the implementation of different behaviors for game agents. To ac-
complish this, it is necessary to model these agents in such way
their behavior can be easily tunned to address different game fea-
tures. In this paper, we discuss a generic representation to model
virtual agents in digital games. Agents are modeled using a linear
combination of different variables, which are used to represent spe-
cific game features. We perform experiments with FPS and Strategy
games (COUNTER STRIKE and CIVILIZATION IV, respectively)
and results show the effectiveness of this approach in character-
izing and modeling agents. We were able to infer agents models by
observing matches and also to generate different behaviors varying
agent’s models.

Keywords:: Agents Modeling and Characterization, Computer
Games, Player Modeling, Adaptive Game AI

Author’s Contact:

{marlos, glpappa, chaimo}@dcc.ufmg.br

1 Introduction

In most digital games, agents’ behavior is modeled using simple
Artificial Intelligence (AI) techniques such as Finite State Machines
and Decision Trees. The implemented behaviors are generally static
and do not allow changes and adaptation [Bakkes et al. 2009]. But
in recent years, an increase in the processing power of computers
and game consoles, combined with a greater interest in game AI,
from both the industry and academia, have propelled the study and
development of more sophisticated agent behaviors in games. As
a consequence, we have seen the development of more immersive
and challenging games.

As discussed by Manovich [2001], Taylor [2002] and Bakkes et
al. [2009], immersion can be considered a general measure of en-
tertainment. It is generally related to how absorbing and engaging
a game is. In general, predictable behaviors break down the immer-
sion and, consequently, make games less fun. For example, a pre-
dictable behavior may allow the player to discover a specific oppo-
nent weakness and repeatedly explore it during the game. Charles
and Black [2004] affirm that “Often this means that the player finds
it easier to succeed in the game but their enjoyment of the game is
lessened because the challenge that they face is reduced and they
are not encouraged to explore the full features of the game”.

Thus, adaptability is becoming a key feature in modern video
games. By adaptability we mean the ability of adapting agents’
behavior to specific game conditions. As an example, in a soccer
game, the computer controlled agents may evolve their tactics to
avoid always suffering goals in the same way. This makes the game
more interesting and challenging. Note that this adaptability does
not prevent the game designer to define a consistent game, with
a well defined structure. The game continues with its predefined
structure, but does not present an obvious weakness.

There are several characteristics that must be considered when de-
signing adaptable behaviors in games, such as when, how and why
to do it. Three possibilities of when to change behavior are, for
example, dynamically in a game level, between levels, or between
games. It can be done autonomously, or by some kind of player
interference, such as selecting a difficulty level. Furthermore, the

reasons for the change must also be stated since it may occur due
to specific game features, or to general player performance. In fact,
several works in the literature consider that modeling player behav-
ior is an essential action towards an adaptive game AI [Charles and
Black 2004], [Charles et al. 2005], [Spronck 2005], [Laviers et al.
2009].

In order to implement adaptable behaviors in games, it is neces-
sary to use a representation capable of modeling agents according
to different features of the game environment. This paper evaluates
a methodology that is able to generically model agents in digital
games. This methodology uses a representation that is a weighted
sum of variables and can be applicable to most agents. Additionally,
as discussed in the following sections, it satisfies some important
industry requirements such as customization and explicitness [Isla
2005]. We base our framework on the work of Houlette [2003], per-
forming experiments with different game genres in order to evalu-
ate the representation. We were able to show the effectiveness of
this approach in characterizing and modeling agents. Applying this
framework on the strategy game CIVILIZATION IV1 we are able to
infer model parameters by observing different matches. In the op-
posite way, we use the framework to generate different agents be-
havior on COUNTER STRIKE2, a typical First Person Shooter (FPS)
game.

This paper is organized as follows: the next Section discusses some
of the related work in the area. In Section 3, we present and detail
the proposed model. Section 4 discusses the representativeness of
this model and its applicability in commercial games. In Section 5
we validate this model analyzing it in two different games. Finally,
Section 6 concludes this paper and discusses some future directions.

2 Related Work

Most works related to agents’ models for games that allow adapta-
tion are tightly related to player modeling, which aims at the gen-
eration of models based on the player characteristics and behav-
iors. Two taxonomies that try to review and organize the area have
been proposed almost at the same time [Machado et al. 2011a] and
[Smith et al. 2011]. In these papers several works are discussed and
categorized. Another work with this goal is [Bakkes et al. 2012],
where the authors present a survey of the field.

One of the first works that proposed a more complex characteriza-
tion for virtual agents was [Houlette 2003], where the author sug-
gested a model that would be able to represent players and virtual
agents preferences in more complex games such as First Person
Shooters. Houlette described this representation as “a collection of
numeric attributes, or traits, that describe the playing style of an
individual player” [Houlette 2003].

Several works have already proposed player and agent models for
different platforms and goals but the majority of them is tailored to
very specific applications. As far as we know, one of the few works
that discusses a general methodology for obtaining models through
different environments is [Charles and Black 2004]. In spite of that,
it does not validate its assumptions in a real game. A sequence of
this work is presented in [Charles et al. 2005], where the authors
also discuss a high-level framework for adaptive game AI. They
briefly present an approach for player modeling with factorial mod-
els but do not investigate it further.

1Firaxis Games, 2K Games, Civilization(2005):
http://www.2kgames.com/civ4/

2Valve Corporation, Counter Strike(1999):
http://www.valvesoftware.com/games/

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 26

Some of the most recent works, now tailored to specific games,
are [Machado et al. 2012] and [Spronck and den Teuling 2010],
which identified different agents preferences in the game CIVI-
LIZATION IV with kernel machine techniques; and [Drachen et al.
2009] where the authors used neural networks to discover different
player types in the game TOMB RAIDER: UNDERWORLD. One of
the problems of these and other approaches [Laviers et al. 2009],
[Tan et al. 2011] is that they are related to complex classifiers that
are difficult to understand, generate and use in generic applications.

Other approaches for agents’ modeling are presented in [Machado
et al. 2011b] and [Doirado and Martinho 2010]. In the first work
the authors discuss agents characterization in the game CIVILIZA-
TION IV using a methodology based on linear regressions to model
agents preferences. Finally, Doirado and Martinho [2010] present
an interesting work that modeled agents intentions, proposing a
framework called DOGMATE.

As mentioned, the agent representation presented in this paper is
based on the model proposed in [Houlette 2003]. This represen-
tation was introduced almost as a theoretical model since no real
implementation or evaluation of its feasibility was presented. Thus,
our main contribution is to present an experimental evaluation of the
method, applying it in different commercial games, both for mod-
eling and characterizing agents. We also discuss its applicability
considering the industry requirements listed in [Isla 2005].

3 Agent Representation

The representation presented in this paper to model game agents
is based on two main components: a set of variables represent-
ing specific features of the game and a set of weights that multi-
ply these variables. The set of variables is determined by the game
designer and the AI programmer, and it is based on the domain
knowledge of each game, an inevitable requirement for adaptive
AI as Spronck [2005] and Bakkes et al. [2009] previously stated.
The weights represent the importance that a specific agent gives to
the feature represented by that variable. They can be manually set
by the designer / programmer or learned from experience. Com-
pletely different behaviors can be obtained varying the weights of
each agent, which allows agents to adapt to different game condi-
tions.

More formally, the model is represented as a weighted sum of n
different variables:

Pm =

n∑
i=1

wici,

where wi is a weight for characteristic ci of the model Pm.

This representation is generic and can be applied to various games
such as Chess, Poker, FPS and Strategy games. It is very simple, yet
powerful enough to represent and model different agent behaviors.
The main characteristic of this representation is that it is defined as
a vector of weights for different game features, that can be agent’s
preferences or knowledge, for example. This modeling is generic
but the model’s features/variables are particular to each game and
must be defined by an expert. The main advantage of this approach
is that, once techniques are created to infer weights, they can be
applied to different games that use this approach.

As a didactic example we may use Poker to illustrate our discussion.
It is a very hard game for computers to play and, so far, they are
not able to defeat the best human players. A promising approach
is player modeling and there are many works in this area such as
[Billings et al. 1998], [Davidson et al. 2000], [Southey et al. 2005]
and [Bard and Bowling 2007].

To apply the proposed representation to model Poker players, it is
necessary to represent different agent behaviors. A very simplistic
model, created just for this example, can be extracted analyzing
relevant game features such as agents temerity (Te), probabilistic
capacity (Pc) and bluff tendency (Bt). We could define each of
these variables as:

• Te representing the agents tendency to take risks;

• Pc representing agent’s awareness about the probability of
winning given a card distribution in a match;

• Bt describing how much does an specific agent bluffs during
a game.

Once we created this simple set of variables we generate the fol-
lowing representation, capable of modeling completely different
agents:

Pm = w1Te + w2Pc + w3Bt.

To exemplify, defining weights between 0 and 1 and a higher value
representing a stronger preference, we could easily generate an ex-
pert conservative player, represented as Pm1 = 0.1Te + 0.9Pc +
0.2Bt or an aggressive player, Pm2 = 0.8Te + 0.6Pc + 0.5Bt.

Thus, this representation implies in two different tasks to generate
an agent model:

1. To define the model variables: with the domain knowledge
of the specific genre or game, define what are the relevant
features to be modeled and in what level of abstraction it will
be done.

2. To define the variables weights: this is what distinguishes be-
haviors, i.e., different behaviors are set in this second step.
It can be done to model non-player characters as well as to
human players.

The definition of variables is an easier task since we just need to
define what we want to model, but the weights setup is a very hard
task for several reasons. Maybe the biggest one is the fact that there
is no rule of thumb for doing it. Generating these weights (or other
type of modeling) from repeated play, observing players and other
agents and tracking game results, often involves the use of machine
learning techniques and the most used are those inspired in nature as
neural networks or genetic algorithms. A work that can be seen as
performing this task setting weights only equal to 0 or 1 in the game
CIVILIZATION IV is [Machado et al. 2012], despite not directing
using this discussed model. The approach used is based on Support
Vector Machines (SVMs), a machine learning technique.

Finally, once we have defined a representation for digital agents we
need to certify its applicability. In the next section we will discuss
this topic and how to evaluate the model representativeness.

4 Applicability

4.1 Representativeness

A model, to be useful, must be capable of satisfactorily represent
different agents with different characteristics. This topic includes
the capacity of the methodology to represent agents allowing any
behavior derived from the model, what could be seen as a coverage
requirement. As we already discussed, once appropriate features
are selected, this is completely feasible.

Furthermore, to evaluate this model representativeness, it must al-
low two tasks to be performed. These tasks are:

1. The generation of different behaviors by varying the model.
In our approach, it would be different weights generating dif-
ferent behaviors; and

2. A model that generates a specific behavior must be “infer-
able”, i.e., one must be able to infer a model that generates
an observed behavior. This task, in our modeling, consists in
inferring variables weights from observation.

The requirements listed above create a cycle: once we observe a
specific behavior we must be able to infer the model which gen-
erated it and we must be capable of generating different behaviors
from the model.

We present the results for both tests in Section 5, corroborating
our assumption about this representation usefulness, since we were
able to perform both tasks. Our experiments were performed in
two commercial games, CIVILIZATION IV and COUNTER STRIKE.
This flow is presented in Figure 1.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 27

Figure 1: Summary of the proposed evaluation.

4.2 Applicability in Commercial Games

An important topic to discuss before presenting our results is re-
lated to the applicability of this modeling in commercial games. In
general, the game industry is somewhat reluctant about the game
AI solutions proposed by academy. As discussed by Fairclough et
al. [2001], Laird and Lent [2001], Nareyek [2004] and Bakkes et
al. [2009], there are several reasons for this: the concern about un-
predictable behavior, the necessity of heavy modification and spe-
cialization for each game, and the difficulty in understanding the
reasons for some observed behaviors and in modifying any config-
uration.

We argue that due to its simplicity and expressiveness, the represen-
tation presented in this paper avoids most of these problems. We use
as a base for this discussion the work of Isla [2005], which presents
the AI architecture of a very well-succeeded game, HALO 23, and
discusses several design principles that should be targeted when de-
veloping the AI of a complex game.

First of all, Isla defines some basic AI requirements: coherence,
transparency, run-time, mental-bandwidth, usability, variety and
variability. Coherence is related to actions’ selection at appropriate
times, i.e., how we select actions once we have defined an agent
model. Thus, coherence is much more related to the mapping be-
tween agent models and actions than to the model itself. On the
other hand, transparency is one of the major points of our represen-
tation, since we are able to understand agents and even try to predict
its behaviors only observing the linear combination and its weights.
This is also related to mental-bandwidth, since we need to “reason
about what’s going on in the system” [Isla 2005].

The representation is also important and useful to level designers
since it allows usability (the characters are configurable since we
only need to change their weights) and variety (the AI works differ-
ently for each different weight combination). Variability, as many
of the discussed requirements, is related to the use of the model. It
is important to observe that, once this model is defined, it is neces-
sary that game programmers use the weights paradigm to develop
their games. It is also important to note that this representation does
not limit or hinder any desirable feature as neural network or kernel
machine models generally do. Moreover, this approach, due to its
simplicity, does not impact game performance.

Once we discussed the basic AI requirements, we are able to show
that this representation goes further and also meets the design prin-
ciples proposed by [Isla 2005]. The first one is “Everything is cus-
tomizable”, i.e., the model should be general enough to allow mod-
ifications in behaviors. This is exactly the main advantage of this
representation since it can be seen as an organized set of parame-
ters, a clear definition of customization.

The second design principle, “Value explicitness above all other
things” is obviously met by the explicit use of weights. Also, the
use of weights simplifies the generation and test of specific behav-
iors and makes easier the process of generating relatively similar
behaviors with some small variations in each weight. This is ex-
actly Isla’s fourth principle: “Take something that works and then
vary from it”. (The third principle, “Hackability is key”, is not

3Bungie Studios, Microsoft Games Studios, Halo 2 (2004):
http://www.microsoft.com/games/halo2/

applicable directly to the representation but to other programming
levels).

It is interesting to note that, despite the independent development
of [Houlette 2003] and [Isla 2005], it seems they were developed
together because of the similarity in most of the discussed require-
ments. A final sentence of [Isla 2005] evidences its usefulness:
“... we are not interested in a scripting system in which the designer
specifies EVERYTHING the AI does and where it goes - that would
be too complex. We do need, however, the AI to be able to handle
high-level direction: direct them to behave generally aggressively,
or generally cowardly.”.

5 Experiments

We performed two types of experiments using two different com-
mercial games in order to show the representativeness of the dis-
cussed model. They follow the approach discussed in Subsec-
tion 4.1 to evaluate the model’s representativeness.

In the first set of experiments, we tried to infer the model of dif-
ferent agents of the game CIVILIZATION IV, using an approach
derived from [Machado et al. 2011b]. Basically, from behavior ob-
servation, we try to infer some of the weights that could model the
agents and compare them with the predefined agent model. This
shows how different behaviors can be explained and expressed by
different models.

The second set of experiments goes in the opposite direction. Using
the game COUNTER STRIKE, we model different agents varying
the model weights and observe the resultant behaviors in the game.
This shows how small changes in the model can generate different
behaviors in the game.

Figure 1 summarizes this approach: using CIVILIZATION IV we
try to infer the model from the observed behaviors, while using
COUNTER STRIKE we show how different models result in differ-
ent behaviors.

We have selected these two games to perform the experiments due
to the interface they offer to the programmer. Different game devel-
opers have different approaches to data extraction and game mod-
ification and it is important to evaluate them before planning the
experiments. We were not able to use one unique game platform
due to this limitation. A discussion about several game platforms
and its possible use in game research is available in [Machado et al.
2011a].

CIVILIZATION IV presents a simple interface for data extraction
and has agent models, easily adapted to the one discussed here.
These two characteristics allowed us to extract gameplay data, an-
alyze it, and infer an agent model, comparable to the one already
available in the game. Unfortunately, it does not easily allow AI
modification, what the game COUNTER STRIKE allows. This is
why we selected it in the second set of experiments. COUNTER
STRIKE does not provide an easy interface for data extraction, not
allowing us to use it in the first set of experiments.

5.1 Civilization IV: from behaviors to models

Our first experiment aimed at showing that it is possible to infer
weights for the discussed representation, i.e., we show that it is
possible to infer models observing behaviors. We have used the
game CIVILIZATION IV to perform our tests, since it allows data
to be easily extracted and explicitly presents agents characteristics
in XML files, what allowed us to convert it to our representation.

CIVILIZATION IV is a Turn-Based Strategy Game (TBS) where
each player controls a civilization and evolves it until its annihila-
tion or victory (Figure 2). The main goal of a player is to overcome
all the others. This can be achieved in six different ways, called vic-
tory conditions, ranging from peaceful conditions, as diplomacy, to
military conditions. This is one of the reasons this game is so inter-
esting to study: different agents are modeled intending to generate
behaviors that seek different victory types, assuring a “preference”
in the game.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 28

Figure 2: Snapshot of CIVILIZATION IV.

As previously stated, CIVILIZATION IV provides XML files with
several game characteristics, such as agents preferences, buildings
and units info. This interface allows us to observe and modify the
game characteristics [Spronck and den Teuling 2010]. Each agent
presents several attributes in the XML defining them. This is quite
useful since we are able to correctly generate relevant variables for
the model. Six agents preferences are defined in the game, they are:
Culture, Gold, Growth, Military, Religion and Science. Each of
these preferences serve as multipliers to agents decisions and cost
of specific actions.

Since we do not intend to present the best possible model for the
game, we decided to use the preferences described and valued in
the XML to generate an agent representation:

Pm = w1Cu + w2Go + w3Gr + w4Mi + w5Re + w6Sc,

where Cu is preference for culture, Go for gold, Gr for growth, Mi

for military, Re for religion and Sc for science.

Our goal is to infer different models from different behaviors, to
verify that this representation is coherent with observed behaviors.
To do it we selected two different agents where one of them has
a high preference for a specific feature while the other does not.
Our goal is to analyze game indicators that would, theoretically, be
affected by this preference in order to compare behaviors to infer
weights for the representation above. We expect higher weights for
the agent with a higher preference.

For example, agent Alexander has a strong Military preference
while agent Hatshepsut prefers Culture. These agents, who were
randomly selected, may be represented by us using the information
available on the XML files. Extracting the respective weights from
the configuration files we obtain the following models (PmA for
Alexander and PmH for Hatshepsut):

PmA = 0Cu + 0Go + 2Gr + 5Mi + 0Re + 0Sc

PmH = 5Cu + 0Go + 0Gr + 0Mi + 2Re + 0Sc

As we can see, the set of variables different from zero of each agent
is a disjoint set and it is expected to result in distinct behaviors
during the game, assuming that the above representation is useful.

One of our previous works [Machado et al. 2011b] characterizes be-
haviors of several agents with linear regressions and shows differ-
ences between different agents. We will make a similar evaluation
here, instantiating our modeling to the representation presented in
Section 3, which was not used in [Machado et al. 2011b].

To generate matches between two agents without human interfer-
ence and log them, we used an script called AIAutoPlay, developed
in [Spronck and den Teuling 2010]. The used dataset is the same
presented in [Spronck and den Teuling 2010] and we use it to look
for different behavior patterns, respecting the agents selection de-
scribed above. This dataset contains 40 matches of each agent, and
each match is composed of, at most, 460 turns.

We processed this data computing its mean for the 40 games played
by the analyzed agent, generating 460 points, each one responsible
for one turn. The plots for Alexander and Hatshepsut overall culture
score along all matches is presented in Figure 3. An analogous plot,
but for Culture Rate, is presented in Figure 4. Culture is defined as
“overall culture score” and Culture Rate as the “amount of culture
gained per turn” [Spronck and den Teuling 2010].

 0⋅10
0

 7⋅10
4

 2⋅10
5

 0 100 200 300 400

C
u
lt
u
re

Turn

Alexander
Hatshepsut

Figure 3: Comparison of Culture between different agents.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400

C
u
lt
u
re

 R
a
te

Turn

Alexander
Hatshepsut

Figure 4: Comparison of Culture Rate between different agents.

As expected, based on the agent’s models, Hatshepsut’s curves rep-
resent a superior bound for Alexander’s curves. This is coherent
with Hatshepsut’s higher preference for Culture.

To verify an statistical difference, we performed linear regressions
to these data looking for statistically different coefficients in the
straight-line equations. Since the data represented in the above
figures were not linear, we applied transformations to make it lin-
ear. For Figure 3 we extracted the 5th-root while for Figure 4 the
4th-root. These results were presented by us in a previous work
[Machado et al. 2011b] where we characterized several agent’s be-
haviors. Our main contribution here is to show the representative
power of the discussed model, showing that it is possible to infer
weights from observation; while in [Machado et al. 2011b] we just
characterized agents’ behavior without even mentioning a specific
representation.

After the data processing, we obtained the following line equations
for Alexander (yA) and Hatshepsut (yH), for Culture. Between
parenthesis we present R2, i.e., the coefficient of determination4,
a general metric of how good the regression is in predicting other
values.

yA = 0.0183x+ 1.7772 (99.86%)
yH = 0.0194x+ 2.1366 (99.85%)

Using the same pattern, the respective line equations for the Culture
Rate indicator were:

yA = 0.0096x+ 1.0939 (99.93%)

4“The fraction of the variation that is explained determines the goodness
of the regression and is called the coefficient of determination, R2” [Jain
1991]

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 29

yH = 0.0101x+ 1.3567 (99.11%)

Finally, we were able to show, using paired t-tests, that both coeffi-
cients are statistically different with a confidence of 99%.

After this characterization we can clearly see that Alexander indi-
cators are bounded below those from Hatshepsut. Then we can
infer that CuA < CuH . Simplifying the assignment, assuming
that we have only two different values, 0 and 5, we can say that
PmA = 0Cu + ... and PmH = 5Cu + ..., which corresponds to
the agent original model.

We performed the same operations for other two randomly selected
preferences using an indicator that is related to a variable that is
the same in both agents. Our objective here was to show that it
is possible to generate models in the discussed representation from
data collected during play.

The two other preferences modeled are Growth and Gold, repre-
sented by variables Gr and Go respectively. For the Growth vari-
able we characterized three different indicators, Cities, Lands and
Plots. The first one is defined as the “Number of cities”, the second
as “Amount of land tiles” and the third as “Amount of land and wa-
ter tiles”. The Gold variable was characterized with Gold and Gold
Rate, respectively “Amount of gold” and “Amount of gold gained
per turn”.

We used the same two agents, Alexander and Hatshepsut, to obtain
Gr weights. We divided the growth data in two different periods: an
expansionist, when there still exist unoccupied lands that are easily
dominated, and a maintenance, when there is almost an stabilization
of the indicators since all the world has already been “colonized”
by some agent. This division was made due to the game character-
istics and it allowed us to clearly see two different behaviors for the
analyzed agents using the indicator Cities. From the obtained data,
with a confidence of 99%, we can say that the linear equations are
different for each agent on the expansionist period. In fact, Alexan-
der has a slight preference for growth over Hatshepsut, which cor-
responds to the coefficients assigned in the original model. Both
equations for the expansionist period (turns 1:220), and its R2 are
presented below.

yA = 0.03143x+ 0.49439 (97.17%)

yH = 0.02960x+ 0.55610 (96.80%)

As previously said, a complete characterization, graphs and regres-
sions for several indicators is presented in [Machado et al. 2011b],
but without the discussion about the presented representation.

Finally, the last analyzed variable was Go. We used two other
agents in this task: Louis XIV and Mansa Musa, since Alexander
and Hatshepsut had no preference for it in the presented models.
Calling Louis XIV model as PmL and Mansa Musa as PmM we
extracted the following model from CIVILIZATION IV’s configura-
tion files:

PmL = 5Cu + 0Go + 0Gr + 2Mi + 0Re + 0Sc

PmM = 0Cu + 2Go + 0Gr + 5Mi + 0Re + 0Sc

We were not able to differ agents preferences based on a unique
indicator. We believe this is due to the fact that there are many
interactions between gold and other game features. Another work
that tried to classify agents preferences with machine learning tech-
niques was [Spronck and den Teuling 2010] and their conclusions
also corroborated with the fact that this preference is harder to be
distinguished between agents.

This last result shows that, for some game variables, it may be nec-
essary to use a different approach in order to obtain the weights. But
it does not invalidate our claim that it is possible to use a simple
agent model and infer some of its parameters from agents behav-
iors. In fact, we proposed an approach based on Binary Classifica-
tion in [Machado et al. 2012] using Machine Learning and we were
able to achieve an accuracy for Gold equals to 61.6% to completely
unknown agents, what supports our claim.

Figure 5: Snapshot of COUNTER STRIKE.

5.2 Counter Strike: from models to behaviors

Once we were able to show that it is possible to infer weights for
the discussed representation that are coherent to observed behav-
iors, we need to assure that we are capable of generating different
behaviors from agent’s models variation. As we already showed in
Figure 1, we used the game COUNTER STRIKE to perform this task.

COUNTER STRIKE, shown in Figure 5, is a First-Person
Shooter (FPS) game with two different teams that must defeat each
other: Terrorists and Counter-Terrorists. The game is divided in
rounds and each round is won or lost when its mission objective is
achieved or when all members of the adversary team are killed. The
mission goals can be (1) to rescue hostages or (2) to defuse bombs
(this second goal was used in our experiments). Each round starts
with both teams spawning in different parts of the environment and
it lasts, at most, five minutes.

One of the reasons for choosing this game is the availability of a
bot source code called Ping of Death Metamod5 that implements
AI behavior (the original game only works with human players,
not permitting computer-controlled agents), allowing us to directly
modify the source code. This feature is not common in commercial
games, what makes COUNTER STRIKE very attracting for research
purposes.

In COUNTER STRIKE matches, we can clearly see interactions
in a multi-agent environment, allowing us to analyze the impact
of different agents’ models. It is interesting because, differently
from CIVILIZATION IV, we are concerned with generating behav-
ior from different models, not with inferring models from behav-
iors.

Once we had access to agents’ behavior implementation in the bot
source code, we were able to generate a specific model for them. In
fact, as discussed in previous sections, we do not intend to gener-
ate the best possible model for agents in the game, but one that is
capable to capture some relevant game characteristics.

We used the bot’s source code to assist us on the modeling task
since we base our model in the current implementation. The vari-
ables modeled were extracted from source code variables present in
the bot’s implementation. The final generated model is:

Pm = w1DB + w2At + w3SC + w4Hd,

where DB is the priority to defuse bombs and At, SC , Hd are, re-
spectively, the agent’s priority to attack, seek cover and hide. Note
that the variables’ level of abstraction is different when compared to
those present in CIVILIZATION IV. This is mainly due to the inter-
face offered. While we extracted high-level information in the CIV-
ILIZATION IV XML files, COUNTER STRIKE offers to us a bot im-
plementation, that is more focused on specific actions to be taken.
These differences are interesting to support our claim that this rep-
resentation can be used generically, for several different purposes.

Every agent in the game is represented by the equation above, ter-
rorists and counter terrorists; despite DB having no meaning for

5http://podbotmm.bots-united.com/main_pb_page/
index.htm

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 30

the terrorist team. Using the pre-defined source code values of the
variables, we obtain the following agent model, which represents
an initial bot status.

Pm = 0.88DB + 0.90At + 0.91SC + 0.92Hd

After defining an agent model, we evaluated if different models
generate different behaviors. To do this, we changed counter-
terrorists model’s weights and analyzed if this change caused any
impact in gameplay. In order to objectively evaluate changes in
gameplay we compared match results between two team’s of vir-
tual agents, with only one having its behavior varied. Besides that,
we also compared bots’ actions frequency.

Since we do not intend to perform a complete characterization of
each variable and its impact in gameplay, but to show that different
weights do cause a behavior variation, we decided to vary weights
of one variable. We have chosen w1, associated with DB to validate
our assumption due to its semantics, since defusing bombs priority
is certainly an important task in COUNTER STRIKE.

The game may have up to thirty two players simultaneously, but
we decided to run our experiments with teams composed of four
members, the initial number defined by the bots implementation.
We executed the game in the scenario de inferno, which has two
different locations where terrorists can plant the bomb.

Our experimental setup consisted in running the game ten times,
with a fixed time of 30 minutes each, varying w1 value and record-
ing the game results. With this approach we were able to evaluate
the average time of each round (each game contains several rounds)
and the team’s performance. We defined a w1 starting value equals
to 0.88 (initial pre-defined value) and added/subtracted 0.11 from
this variable. The higher value was 0.99, representing a very high
priority in defusing bombs. At the end, we generated the following
set of values: {0.55, 0.66, 0.77, 0.88, 0.99}.

To analyze game result with absolute scores we have modeled each
experiment of thirty minutes as a zero-sum game where each vic-
tory raises the terrorists team score. The following formula repre-
sents the score (S) presented in our discussion:

S =
VT − VCT

VT + VCT
,

where VT is the number of rounds won by Terrorist team and VCT

those won by Counter-Terrorist team. All the results presented be-
low used analysis based on two-side intervals with a confidence
of 95%.

After performing the experiments we calculated the average score
of the counter-terrorist team for different values of w1 and its con-
fidence interval. These data are presented in Table 1.

w1 Score ± C. Interval Std. Dev.
0.55 0.73± 0.40 0.56
0.66 −0.37± 0.26 0.36
0.77 −0.61± 0.20 0.28
0.88 −0.42± 0.30 0.41
0.99 −0.44± 0.28 0.39

Table 1: Performance of Terrorist Team varying w1.

To ease the data analysis and discussion, we also plotted the results
of Terrorist team in Figure 6. The vertical lines are the confidence
interval.

Table 1 and Figure 6 present interesting results about different agent
models at the defined environment. At a first look, a result that is
highlighted is the high variance of data. It was expected due to the
randomness of bots both in terms of behaviors and goals during all
matches. This random outcome is what keeps players interested,
because every game becomes different.

Analyzing the data we can affirm that as w1 increases, meaning that
the counter-terrorists have a higher priority for defusing bombs,

-1

-0.5

 0

 0.5

 1

 0.5 0.6 0.7 0.8 0.9 1

S
co

re
 (

S
)

DB

Figure 6: Terrorist Team Performance varying w1

the score of the terrorist team decreases. In other words, by pri-
oritizing defusing bombs, the counter-terrorist win more matches
in this scenario. The w1 confidence intervals for 0.88 and 0.99
overlap, meaning that we cannot state that we observed differ-
ent results with statistically significance. Nevertheless, we were
able to show that the score obtained when w1 = 0.77 (S0.77) is
lower than those obtained by w1 = 0.88 (S0.88) and w1 = 0.99
(S0.99), with a confidence of 95%. We were also able to show
that S0.55 > S0.99, S0.88, S0.77, S0.66; that S0.66 > S0.77 and that
S0.66 < S0.88, S0.99. Thus, we can observe that a simple variation
in the agent model drastically impacts the general game result due
to variations on agents behaviors.

To corroborate our hypothesis that different weights generate dif-
ferent behaviors, we also counted how many times the bots from
the Counter-Terrorist team took each action. This experiment aims
to explain the results presented above. We decided to analyze the
Counter-Terrorist team because it is the team affected by the varia-
tion of the DB weight.

There are dozens of actions available to each bot. Some of them
are rarely performed, such as “throwing an smoke grenade”. Due
to that we decided to analyze the six most frequent actions taken,
namely:

• TASK NORMAL (Normal (roaming) Task)

• TASK MOVETOPOSITION

• TASK CAMP (If Bot is camping, he should be firing anyway
and NOT leaving his position)

• TASK DEFUSEBOMB

• TASK ATTACK

• TASK SEEKCOVER

We did not presented all actions descriptions because we believe
its names describe their use. The descriptions presented between
parenthesis were copied from source code comments.

After running the 10 rounds of 30 minutes we calculated the number
of performed actions. To ease the comparison we normalized all
the numbers between 0 and 1 (dividing the count by the number of
actions), since each match has a different number of actions. The
obtained results are plotted in Figure 7.

The total of actions taken in different weights configuration were
compared with paired t-tests using a confidence of 90%. We also or-
dered these numbers considering the confidence interval obtained,
we call this ordering as statistical ordering, since we do not just
evaluate the average but also the confidence interval.

A first analyzed variable is TASK DEFUSEBOMB. We were able
to observe that the amount of attempts to defuse a bomb was lower
when w1 = 0.55, while we were not able to statistically distin-
guish the attempts frequency between w1 = 0.77; w1 = 0.88
and w1 = 0.99. We have seen some unexpected results when
w1 = 0.66, since it presented a higher number of actions for defus-
ing a bomb than teams with higher priority for this task. This is also
reflected in the number of victories obtained since S0.66 > S0.77,
as previously said. We suspect that this game may have an optimum

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 31

parameter configuration and w1 = 0.66 is the closer we were from
it. This is a very complex question and must be further studied in
the future. At the end, we were able to generate the following sta-
tistical ordering for the action frequencies when weight is equal to
w1(Fw1): F0.55 < F0.77 = F0.88 = F0.99 < F0.66.

Analyzing TASK NORMAL actions taken in each configuration,
we also observed a lower value for w1 = 0.55 and a higher
value for w1 = 0.66. A final statistical ordering obtained was:
F0.55 < F0.99 < F0.88 < F0.77 ≤ F0.66. It is hard to explain this
behavior due to the genericity of this action, but we can observe that
it is coherent with the TASK DEFUSEBOMB pattern, and, most im-
portant, it is also affected by the weights variation.

Besides the frequency that bots try to defuse bombs, and default
actions, we were also able to draw conclusions about other ac-
tions, not directly related to defusing bombs, showing that its vari-
ation do causes a behavior change. A first result that is clearly
observable in Figure 7 is that the bot’s team performed the ac-
tion TASK MOVETOPOSITION much more frequently when w1 =
0.55. We were able to observe that for most of the w1 values, a
lower value implies in a higher count of this action. Table 2 sum-
marizes all the obtained results with the average and standard de-
viation of each frequency. The generated statistical ordering was:
F0.99 < F0.77 < F0.88 ≤ F0.66 < F0.55

We also observed an inverse behavior (higher weights imply-
ing in lower frequency) for the actions TASK ATTACK and
TASK SEEKCOVER. With the following statistical ordering:
F0.55 < F0.66 ≤ F0.77 < F0.88 < F0.99 for TASK ATTACK and
F0.66 < F0.55 ≤ F0.88 < F0.77 < F0.99 for TASK SEEKCOVER.

Finally, the action TASK CAMP kept a constant frequency among
almost all weights. The final ordering by confidence intervals was:
F0.55 < F0.66 = F0.77 = F0.88 = F0.99. We present all the
averages and standard deviations for all actions in Table 2.

Analyzing the presented results we can argue that a reduction in
the priority for defusing bombs forces the counter-terrorist bots to
search for the terrorist team, since they must kill all of them to
win (increasing TASK MOVETOPOSITION). A lower counting for
attacking and seeking is probably due to the fact that they will not
go, recklessly, to the place where the bomb is generally put. They
do not fell the need of protecting this place.

An interesting topic is related to the generated game results. In
general, the terrorists team present a much worse performance than
counter-terrorists. We are able to make this claim because the re-
ported score and its confidence interval is generally lower than zero.
A zero score means an even game, so if zero is not in the confidence
interval, we have a statistical confidence that the game is uneven
between teams. This unbalance at the bots implementation may
compromise player’s satisfaction when using these bots to complete
their teams.

To ease a graphical analysis of the discussed results we also plotted
Figure 7 without the TASK NORMAL, to allow a better visualiza-
tion of the other frequencies. This result is presented in Figure 8.

One final note is that we did not observe any change in the duration
of the game varying w1. It seems that, in average, the time spent by
a team to eliminate the adversary team or to plant/defuse the bomb
is approximately the same.

6 Conclusion

In this work, we discussed and evaluated a generic representation to
model virtual agents in digital games. This representation models
agents behavior using a linear combination of different variables,
which are used to represent specific game features. We performed
experiments with different game genres and results show the effec-
tiveness of this model. We have shown that the representation dis-
cussed is able to handle two opposing situations: the inference of
models observing agents behaviors and the generation of behavior
from models variation.

There are several paths for future work. First related to bots’ be-
havior characterization and its parameters in a multi-agent envi-

Figure 7: Average frequency of actions performed by the Counter-
Terrorist team during 10 turns of 30 minutes. The counters were
normalized to be between 0 and 1.

Figure 8: Average frequency of actions performed by the Counter-
Terrorist team during 10 turns of 30 minutes. The counters
were normalized to be between 0 and 1, ignoring the action
TASK NORMAL.

ronment, a future work is the attempt to find correlations between
matches duration and actions count, trying to identify what type of
action assures victory and how long does the team take to win.

Related to the model discussed, a research branch is related to de-
veloping methods that are able to model humans instead of com-
puter agents. Using this same representation, this task can be seen
as an attempt to obtain the weights of each feature in a given model
for different players.

A completely different topic that can also be extracted from this
representation is the study of its application on game development
process, evaluating its benefits for level designers and programmers
developing the game.

Finally, we could also analyze how hierarchical representations
would apply in practice. This topic was proposed in [Houlette
2003], where the author suggests the generation of weights that
represent very low level actions such as throw grenade or use rifle
and a hierarchical organization that extracts higher level informa-
tion as the combination of its leaf nodes. Higher level representa-
tions could be aggression or intelligence, for example. Note that
we have worked with both levels in this paper, while we used low
level actions to represent agents in COUNTER STRIKE we used high
level concepts to represent agents in CIVILIZATION IV.

Acknowledgments

We would like to thank Pieter Spronck who was always keen to
solve any of our doubts related to the bots implementation for the
game Counter Strike, what allowed us to use it as platform for val-
idation of the discussed representation.

This work is partially supported by CAPES, CNPq and Fapemig.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 32

Action Name / w1 0.55 0.66 0.77 0.88 0.99
TASK NORMAL 0.6753 (0.0303) 0.7168 (0.0361) 0.7124 (0.0288) 0.7063 (0.0368) 0.6972 (0.0326)
TASK MOVETOPOSITION 0.1063 (0.0404) 0.0549 (0.0123) 0.0475 (0.0247) 0.0578 (0.0259) 0.0393 (0.0213)
TASK CAMP 0.1324 (0.0424) 0.1632 (0.0339) 0.1622 (0.0240) 0.1648 (0.0363) 0.1699 (0.0436)
TASK SEEKCOVER 0.0143 (0.0094) 0.0114 (0.0056) 0.0210 (0.0120) 0.0134 (0.0085) 0.0246 (0.0125)
TASK ATTACK 0.0098 (0.0051) 0.0114 (0.0072) 0.0120 (0.0064) 0.0138 (0.0073) 0.0168 (0.0077)
TASK DEFUSEBOMB 0.0000 (0.0000) 0.0127 (0.0032) 0.0090 (0.0051) 0.0088 (0.0044) 0.0089 (0.0044)

Table 2: Frequency of actions for each weight configuration. The reported result is the average; standard deviation is between parenthesis.

References

BAKKES, S., SPRONCK, P., AND VAN DEN HERIK, J. 2009. Rapid
and Reliable Adaptation of Video Game AI. IEEE Transactions
on Computational Intelligence and AI in Games 1, 2 (june), 93
–104.

BAKKES, S. C., SPRONCK, P. H., AND VAN LANKVELD, G.
2012. Player Behavioural Modelling for Video Games. Enter-
tainment Computing.

BARD, N., AND BOWLING, M. 2007. Particle Filtering for Dy-
namic Agent Modelling in Simplified Poker. In Proceedings of
the Twenty-Second Conference on Artificial Intelligence, AAAI,
515–521.

BILLINGS, D., SCHAEFFER, J., AND SZAFRON, D. 1998. Oppo-
nent modeling in poker. In Proceedings of the 15th National
Conference on Artificial Intelligence, AAAI Press, AAAI-98,
493–499.

CHARLES, D., AND BLACK, M. 2004. Dynamic Player Mod-
elling: A Framework for Player-Centered Digital Games. In
Proceedings of International Conference on Computer Games:
Artificial Intelligence, Design and Education, 29–35.

CHARLES, D., KERR, A., MCNEILL, M., MCALISTER, M.,
BLACK, M., KCKLICH, J., MOORE, A., AND STRINGER, K.
2005. Player-Centred Game Design: Player Modelling and
Adaptive Digital Games. In Digital Games Research Confer-
ence, Citeseer, vol. 285.

DAVIDSON, A., BILLINGS, D., SCHAEFFER, J., AND SZAFRON,
D. 2000. Improved opponent modeling in poker. In Proceedings
of the International Conference on Artificial Intelligence, AAAI
Press, ICAI-2000, 493–499.

DOIRADO, E., AND MARTINHO, C. 2010. I Mean It!: Detect-
ing User Intentions to Create Believable Behaviour for Virtual
Agents in Games. In International Conference on Autonomous
Agents and Multiagent Systems, International Foundation for
Autonomous Agents and Multiagent Systems, no. Aamas, 83–
90.

DRACHEN, A., CANOSSA, A., AND YANNAKAKIS, G. N. 2009.
Player Modeling using Self-Organization in Tomb Raider: Un-
derworld. In Proceedings of the 5th International Conference on
Computational Intelligence and Games, IEEE Press, Piscataway,
NJ, USA, CIG’09, 1–8.

FAIRCLOUGH, C., FAGAN, M., MAC NAMEE, B., AND CUN-
NINGHAM, P. 2001. Research Directions for AI in Computer
Games. In Irish Conference on Artificial Intelligence and Cog-
nitive Science, Citeseer, 333–344.

HOULETTE, R. 2003. Player Modeling for Adaptive Games.
Charles River Media, Dec.

ISLA, D. 2005. Handling Complexity in the Halo 2 AI. In Game
Developers Conference.

JAIN, R. 1991. The Art of Computer Systems Performance Anal-
ysis: techniques for experimental design, measurement, simula-
tion, and modeling. Wiley.

LAIRD, J. E., AND LENT, M. V. 2001. Human-Level AI’s Killer
Application. AI Magazine 22, 2, 15–26.

LAVIERS, K., SUKTHANKAR, G., MOLINEAUX, M., AND AHA,
D. 2009. Improving Offensive Performance Through Opponent
Modeling. In Artificial Intelligence and Interactive Digital En-
tertainment, 58–63.

MACHADO, M. C., FANTINI, E. P. C., AND CHAIMOWICZ, L.
2011. Player Modeling: Towards a Common Taxonomy. In
Computer Games (CGAMES), 2011 16th International Confer-
ence on, 50–57.

MACHADO, M. C., ROCHA, B. S. L., AND CHAIMOWICZ, L.
2011. Agents Behavior and Preferences Characterization in Civ-
ilization IV. In X Brazilian Symposium on Computer Games and
Digital Entertainment (SBGames).

MACHADO, M. C., PAPPA, G. L., AND CHAIMOWICZ, L. 2012.
A Binary Classification Approach for Automatic Preference
Modeling of Virtual Agents in Civilization IV. In Proceedings of
the 8th International Conference on Computational Intelligence
and Games, CIG’12.

MANOVICH, L. 2001. The Language of New Media. Massachusetts
Institute of Technology, Cambridge, Mass.

NAREYEK, A. 2004. AI in Computer Games. Queue 1 (February),
58–65.

SMITH, A. M., LEWIS, C., HULLETT, K., SMITH, G., AND SUL-
LIVAN, A. 2011. An Inclusive View of Player Modeling. In
Proceedings of the 6th International Conference on the Founda-
tions of Digital Games, ACM, New York, NY, USA, FDG ’11.

SOUTHEY, F., BOWLING, M., LARSON, B., PICCIONE, C.,
BURCH, N., BILLINGS, D., AND RAYNER, C. 2005. Bayes
bluff: Opponent Modelling in Poker. In In Proceedings of the
21st Annual Conference on Uncertainty in Artificial Intelligence
(UAI, 550–558.

SPRONCK, P., AND DEN TEULING, F. 2010. Player Modeling in
Civilization IV. In Proceedings of the 6th Artificial Intelligence
and Interactive Digital Entertainment Conference (AIIDE), 180–
185.

SPRONCK, P. 2005. A Model for Reliable Adaptive Game Intelli-
gence. In Workshop on Reasoning, Representation, and Learn-
ing in Computer Games, IJCAI’05.

TAN, C., TAN, K., AND TAY, A. 2011. Dynamic Game Dif-
ficulty Scaling using Adaptive Behavioural Based AI. IEEE
Transactions on Computational Intelligence and AI in Games
PP Issue:9, 99.

TAYLOR, L. N. 2002. Video games: Perspective, point-of-view,
and immersion. M.S. thesis, Grad. Art School, Univ. Florida,
Gainesville, FL.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 33

