
An Architecture for Mobile Games with Cloud Computing Module
Mark Joselli

UFF
IC, Medialab

Marcelo Zamith
UFF

IC, Medialab

José Ricardo Silva Junior
UFF

IC, Medialab

Luis Valente
VisionLab/PUC-Rio

Esteban Clua
UFF

IC, Medialab
Bruno Feijó

VisionLab/PUC-Rio
Regina Célia P. Leal-Toledo

UFF, IC
Eduardo Soluri

Nullpointer Tecnologias

Abstract

Applications for mobile devices are getting more and more sophis-
ticated, including features as location based systems, image recog-
nition and speech recognition, for example. Most of these applica-
tions uses cloud computing to process these services. In order to use
these features, this work presents a novel architecture specially de-
signed for mobile games, which includes a cloud module for inter-
acting with the aforementioned services. This architecture provides
layers to control several modules as cloud services, networking, ac-
cess to social networks, input, rendering and AI processing. Our
proposal also allows for robust connections to social networks for
publishing player achievements. This work also presents the Alien-
Quiz Invaders, which is a game built with the proposed architecture
that uses augmented reality and speech recognition on the cloud.

Keywords:: Mobile Games, Cloud Computing, Game Loop, Aug-
mented Reality, Real-Time Systems, speech recognition

Author’s Contact:

mjoselli@ic.uff.br
mzamith@ic.uff.br
jricardo@ic.uff.br
lvalente@inf.puc-rio.br
esteban@ic.uff.br
bfeijo@inf.puc-rio.br
esoluri@nullpointer.com.br

1 Introduction

Mobile games are applications that run on mobile devices as smart-
phones and tablets. Those devices offer opportunities to design
novel gaming experiences due to their distinct characteristics (as
always-on connectivity, multitude of sensors).

As an example, smartphones provide a high degree of convergent
features: multimedia capacities (producing and consuming audio,
video), networking (local and global), and sensors (camera, ac-
celerometers, GPS, etc). This opens up the possibility to cre-
ate games as location based games [M1ndLab 2007], voice based
games [Zyda et al. 2008], accelerometer-based games [Valente et al.
2009], [Valente et al. 2008] and [Chehimi and Coulton 2008],
camera-based games [Park and Jung 2009] and touch based games
[Rohs 2007]. In order to develop good mobile games, they must
be designed to take advantages of such unique characteristics into
gameplay [Zyda et al. 2007]. The game presented in this paper as
an example of our architecture uses many of these unique features,
as the camera, accelerometer sensor, touch and speech inside a aug-
mented reality game.

Digital games are real-time interactive multimedia applications. In
other words, if the application is not able to perform the required
tasks on time, it will fail. For game applications, this means not
being able to sustain the interactive experience, due to factors like
the game taking too much time to process the tasks, or delayed re-
sponses for user input. In the case of the cloud services, if the loop
has to wait for the services response, the interactivity will fail. A
common parameter for measuring game and visual simulation per-
formance is frames per second (FPS). The general lower acceptable
bound for a game is 16 FPS. There are not higher bounds for FPS
measurements, but when the refresh rate of the video output (a com-
puter monitor or the mobile screen) is inferior to the game applica-
tion refresh rate, some generated frames will not be presented to the

user (they will be lost). One motivation for designing game loops
is to better achieve an optimal FPS rate for the application. A new
game loop model, called mobile game loop with a cloud module, is
one of the contributions of this work.

Mobile phones are connected devices by definition. This means
networking is an important feature to consider for mobile applica-
tions, especially for games. Mobile phones are able to establish
connection with local (co-located) or global peers. Local peers are
connected through technologies as Bluetooth, while global peers
are reached through WiFi and the mobile operator network (e.g.
3G). This built-in feature makes the use of the cloud as a service on
mobile devices a natural move.

The architecture presented in this work uses cloud computing
[Armbrust et al. 2009] to offer a set of services. In traditional cloud
computing, machines across the internet share resources, software
and information, while in our approach the mobile client is able to
use resources available in the network to process some services, like
speech, location based services (like retrieving map data and other
context information based on the device location) and image recog-
nition, enhancing the computational capacity of those services.

1.1 Motivation and Contribution

This work aims at providing a layer to use cloud services in mo-
bile games to improve game quality in general (visual effects, AI
processing, game responsiveness, and so on).

This work extends previous works proposed by Zamith et al.
[ZAMITH et al. 2011], where the authors present a framework for
game loops that use automatic task distribution between CPU cores
and the GPU. The present work discusses an approach to mobile
game loops that employs a distribution architecture, based on cloud
computing paradigm, which also includes the concepts presented in
earlier works and new ones as follows:

• Load balancing of cloud computing tasks;

• Use of mobile unique features, like augmented reality, speech
recognition and location, in games;

• Mobile games using the cloud to process services;

• A new game loop model, for mobile games with a cloud mod-
ule;

• A prototype mobile game using augmented reality, speech
recognition and location features provided by the proposed
architecture, as a proof of concept.

Finally, the organization of this work is as follows: Section 2
presents related works. Section 3 discusses the proposed game loop
model that this work proposes. Section 4 presents the architecture
developed for this work and Section 5 presents the test case, the
AlienQuiz Invaders game, to validate the architecture. Section 6
discusses and analyses the tests. Finally, Section 7 presents the
conclusions of this work.

2 Related Work

Mobile devices present constraints (as processing power, memory
and battery life) that pose a challenge for developing complex mo-
bile games. On the other hand, cloud computing services allow for
processing tasks that have high processing demands (using com-
puter clusters, for example).

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 8



Computer games are multimedia applications that employ knowl-
edge of many different fields, such as Computer Graphics, Artifi-
cial Intelligence, Physics, Network and others [Valente et al. 2005].
More specifically, computer games are interactive applications that
exhibit three general classes of tasks:

• Data acquisition in games is related to gathering data from
input devices as keyboards, touch screens, mice and joysticks.
This is also known as ”player input”;

• Data processing tasks consist on applying game rules, re-
sponding to user commands, simulating Physics and Articial
Intelligence behaviors. These tasks are referred to as ”update
tasks”;

• Data presentation tasks relate to providing feedback to the
player about the current game state, usually through images
and audio. Commonly, these tasks are referred to as ”game
visualization and auralization”.

This work includes a new class of task: a cloud processing task.
This kind of task is made of connectors that interact with services
on the cloud.

The real-time loop represents the heart of real-time simulations and
games. However, the literature on this subject is scarce. The works
by Valente et. al [Valente et al. 2005], are among the few works that
discuss this subject. Dalmau [Dalmau 2003], Dickinson [Dickinson
2001], Watte [Watte 2005], Gabb and Lake [Gabb and Lake 2005],
and Mönkkönen [Mönkkönen 2006]. None of them discuss game
loop models with focus on mobile devices and cloud services.

The most straightforward approach to modeling real-time loops (for
single-player games) is the Simple Coupled Model. Basically, this
model consists of sequentially arranging the tasks in a main loop
as Figure 1 illustrates. This is a basic approach that mobile games
have already adopted in the past, due to its simplicity.

Figure 1: Simple Coupled Model

Dickinson [Dickinson 2001] proposed an extension to the Sim-
ple Coupled Model, named Single-thread Uncoupled Model. This
model has the rendering and updating stages uncoupled, i.e., ren-
dering and updating are running independently of the power pro-
cessing of CPU. Moreover, the single-thread uncoupled model tries
to bring determinism to the game execution by feeding the update
stage with a time parameter. For example, existing open-source
game engines, as [COCOS2D 2011] adopts this model.

Single-thread Uncoupled Model is an improved model that adapts
the game execution according to the capacity of the host machine,
so the game runs the same way in different devices. More power-
ful devices will be able to run the game more smoothly, while less
powerful ones should still be able to provide some experience to the
user.

Although these are working solutions, time measuring may greatly
vary in different hardware devices due to many reasons (such as
process load), making it difficult to be reproduced faithfully. For

Figure 2: Single-thread Uncoupled Model

example, a network module implementation and program debug-
ging [Dickinson 2001] may be easier to implement if the loop uses
a deterministic model. Another issue is that running some simu-
lations too frequently, like AI and the game logic, may not yield
better results.

Hence, research works as [Valente et al. 2005] propose models that
try to address those issues. The Fixed-frequency Uncoupled Model
outlined in [Valente et al. 2005] features another update stage that
runs at fixed frequency, besides the time-based one. The work
by Dalmau [Dalmau 2003] presents a similar model, although not
naming it explicitly. Those works describe the model using a single-
thread approach. Figure 3 illustrates the Fixed-frequency Uncou-
pled Model.

Figure 3: Fixed-frequency Uncoupled Model

Dickinson [Dickinson 2001] discusses another approach for fixed-
frequency uncoupled models, which presents just one up date stage
that runs at a fixed-frequency. The main objective of that model is
to attain reproducibility.

Current mobile devices like the Motorola Atrix 2, iPad 3, iPhone
4S, and the Samsung Galaxy S-III, have multi-core processors. For
this reason, real-time loops for mobile games that take advantage
of those resources are likely to become important in the near future.
Therefore, making the tasks parallel in multiple threads is a natural
step.

However, dealing with concurrent programming introduces another
set of problems, such as data sharing, data synchronization, and
deadlocks. Also, as Gabb and Lake [Gabb and Lake 2005] state

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 9



not all tasks can be fully parallelized due to dependencies among
them. As examples, in a game, characters cannot move until the
game logic is computed, and rendering cannot be performed until
the game state is updated. Hence, serial tasks represent a bottleneck
to parallelized simulation computation.

The Asynchronous Function Parallel Model [Mönkkönen 2006],
which separates the tasks (input player, update and render) in three
threads. Another example is the Synchronous Function Parallel
Model [Mönkkönen 2006], which processes the game physics in
a separated thread while the main thread process the characters an-
imations.

The Data Parallel Model [Mönkkönen 2006] uses a different
paradigm where data are grouped in parallel sections of the appli-
cation where they are processed. So, instead of using a main loop
with concurrent parts that process all data, the Data Parallel Model
proposes using separate threads for sets of data (like game objects).
This way, the objects run their own tasks (like AI and animation) in
parallel. Figure 4 depicts this approach.

Figure 4: Data Parallel Model

According to the author [Mönkkönen 2006], his model scales well
because it is able to allocate as many processing cores as they are
available. Performance is limited by the amount of data process-
ing that can run in parallel. An important issue is how to syn-
chronize communication of objects running in different threads.
Mönkkönen states that the biggest drawback of this model is the
requirement to have components designed with data parallelism in
mind. Mönkkönens work has been inspirational for the distributed
part of our architecture, where it splits a task into threads that run
across the cloud.

Barbosa and co-authors [Barboza et al. 2010a] propose a cloud-
computing approach for mobile devices, similar to the Onlive ar-
chitecture [OnLive 2012]. In their proposal, a mobile device sends
user input in formation to a server, and later receives back the ren-
dered images for the game as a streaming video. Figure 5 illustrates
the game loop by Barbosa and co-authors.

Another approach for game loop architectures adopts the GPU as a
new resource in the computer. This resource can be used to process
physics or any other massively mathematics problems apart from
visualization task. This approach is based on GPGPU, whose im-
portance has been increasing since graphics hardware became pro-
grammable. There are some works that discuss using GPGPU with
game loops [Barboza et al. 2010b; Joselli et al. 2008b; Joselli et al.
2008c; Joselli et al. 2008a; Joselli et al. 2010]. However, these
works concentrate on game loops for desktop computers, and are
not applicable yet to mobile devices as current mobile GPUs do not
have GPGPU programming capabilities.

Figure 5: The cloud game loop

Our work differs from previous works, as it is concerned mainly
with providing a cloud module for mobile applications. By using
this approach, a game is able to use tasks and services that could
not be processed on a mobile device, due to device and/or network
constraints (power processing or memory capacity).

3 The mobile game loop with a cloud
computing module model

This work proposes an architecture for game loops that has a cloud
computing module. This architecture comprises a server cluster and
a set of mobile devices. The mobile devices connect to the server
cloud to use cloud computing services. Despite the cloud comput-
ing module being uncoupled from the main game loop, the cloud
computing module and the cloud itself are coupled, because using
cloud services requires a blocking operation (sending and receiving
data over a network). Hence, using this kind of service may degrade
game performance if the network or the cloud fails. In this case, the
game stops and will resume when the cloud communication is back
again. On the other hand, using this approach (the cloud computing
module) allows for some network delays to occur without affect-
ing the game performance negatively. Figure 6 illustrates this loop
model.

Figure 6: The game loop with a cloud computing module model.

The architecture has two main components: the main game loop
(responsible for the traditional tasks of the game, like handling user
input, presentation tasks and the update tasks), and the cloud mod-
ule, which is responsible for the communication between the game
and the cloud services the game uses.

The current implementation of the proposed architecture uses
OpenGL ES 2.0 for rendering and Vuforia [Qualcomm 2012] for
augmented reality processing. The implementation uses cloud ser-
vices for speech recognition and synthesis, with iSpeech [iSpeech
2012].

Vuforia is a Software Development Kit to create augmented reality
applications on mobile devices. Vuforia uses computer vision algo-
rithms to recognize image targets and 3D objects in real-time. With
this SDK, the game creates virtual 3D objects and superimposes
them on the game view, on top of image targets. The recognition
part uses a tracker component, which comprises computer vision al-

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 10



gorithms used to detect and track real world objects. These objects
form a ”image targets database”. The database is a XML file that
contains all trackable image targets that the application will use.
The Vuforia Target Management System is responsible for compil-
ing these assets, creating the image database.

Using voice for interacting with mobile devices is becoming more
common. For example, Apple iOS devices provide the SIRI ap-
plication and Android devices have built-in packages to use this
functionality. These voice-related services require an internet ac-
cess to work, since they need the cloud to process this task. The
present work also needs a cloud server to process voice. We used
the iSpeech speech recognition SDK, which is a commercial prod-
uct (free for mobile platforms, which is the case of the test-case of
this work) that process TTS (text to speech) and ASR (automated
speech recognition) on the cloud.

4 The Architecture

The core of the proposed architecture corresponds to the Task Man-
ager and the Performance Test class. The Task Manager schedules
tasks to be processed either locally, or on the cloud. The Perfor-
mance Test detects the available hardware configuration capabili-
ties. For example, if a game must use network or location services,
this must be available for the game.

In the proposed architecture, a task can be anything that the appli-
cation must process. The Task class is the abstract base class and
has four subclasses: Update Task, Performance Test Task, Input
Task, Presentation Task and Task Manager. These classes, except
for Task Manager, are also abstract classes. The Task Manager is a
special class that is responsible for performing the task distribution.
Figure 7 illustrates the UML diagram of the proposed architecture,
including the task classes that our case study uses.

The remaining of this Section describes the UML diagram ele-
ments, with five subsections: Input Task, Presentation Task, Perfor-
mance Test Task, Update Task and Task Manager. The remaining
of this Section details each one of these tasks.

4.1 Input Task

The Input Task classes are responsible for handling user input. In-
put may come from different sources. Typically for desktop appli-
cations this corresponds to keyboards and mice, while mobile ap-
plications may use touch screens and microphones as input devices,
for example.

The Input class is an abstract class with seven children: Keyboard
Task, Mic Task, Touch Task, GPS Task, Camera Task, Compass
Task, and Accelerometer Task. The Keyboard task gathers input
from keyboards, which can be physical (like PC keyboards and nu-
merical keypads on mobile devices) or virtual (where a mobile de-
vice simulates a keyboard on touch screens by drawing the keys).
The Mic Task gathers sounds that comes from the microphone. The
Touch Task handles input from touch screens, as well as gestures.
The GPS class gathers information coming from GPS sensors. The
Accelerometer Task gathers input coming from accelerometer sen-
sors. The Camera Task captures images, which can also be used to
estimate device motion. The Compass Task reads the device com-
pass to determinate the direction of the player.

4.2 Presentation Task

The Presentation task is responsible for rendering game scenes,
usually being a feedback to the player about the current game state,
which was calculated by the Update Task. This information can
reach the user through several modalities, as visual (Render Task,
with images, 3D models and visual effects), aural (Sound Task, with
music and sound effects), or haptics (Vibrate Task, controlling the
vibration motors in mobile devices). Also on some mobile devices,
the Render Task class can control the luminosity of the screen, al-
lowing a different kind of visual feedback.

4.3 Update Task

The Update Task classes and subclasses are responsible for pro-
cessing the new game state. This game state may include results of
physical simulations and/or artificial intelligence processing.

The Update Task is an abstract class and has two children: an ab-
stract Local Task, which is used for tasks that are processed locally
on the device, and an abstract Network Task, for tasks that use the
network for processing.

4.3.1 Local Task

The local task is responsible for processing that should occur on
the device itself. This kind of task corresponds to the ones that
require fast feedback, making them unfeasible to being processed
over a network. In our architecture, there are three kinds of task
that fall into this category: AR Task, Physics Task, and AI Task.
The AR Task is responsible for the processing camera images by
recognizing image patterns (the targets) and placing virtual objects
on them, according to the targets positioning and orientation. The
Physics Task is responsible for simulating Newtonian physics in the
game, by checking and resolving collisions through Physics laws.
The AI Task simulates NPCs (non-player character) behavior using
artificial intelligence.

The game could also use cloud services to process those kind of
tasks, like previous works discuss in [ZAMITH et al. 2011]. How-
ever, this would require high data transfers over the network, which
is not ideal for mobile devices that often rely on 3G (or EDGE)
networks.

4.3.2 Network Task

The Network Task is responsible for all update tasks that needs to
access a network. For example, this includes connecting to social
networks, exchanging messages in multiplayer games, and using
cloud services. Here are some tasks derived from the base Network
Task:

• Social Task: The social task is responsible for connecting to
the main social networks to publish achievements and scores.
This class is abstract and has four children, one for each so-
cial client. The Facebook Task connects to the Facebook to
gather news from friends, which also played the game and to
publish achievements. The Game Center task is responsible
for connecting to the iOS game center, which controls player
achievements but could also be used for multiplayer games.
The OpenFeint Task has the same features as the Game Cen-
ter Task, but it is also available for platforms other than iOS.
The Twitter task is responsible for connecting to Twitter.

• Multiplayer Task: The multiplayer task is responsible for
connecting different players in the same game. In order to
fulfill this task, this class implements a protocol for message
exchanging, which is similar to the previous approach dis-
cussed in [ZAMITH et al. 2011].

• Cloud Task: The Cloud task is responsible for services the
mobile game can use, and are processed using cloud comput-
ing. For example, Speech Tasks, location based service tasks
and Image Recognition Task.

• Speech Task: The Speech task is responsible for the speech
processing recognition and synthesis. In our architecture this
has two main uses: to acquire voice and translate it to game
commands, and to synthesize speech to provide audio feed-
back to the player.

• Location Task: The location task is responsible for gathering
information from the cloud about the local context where the
device is. For example, this could be map data and informa-
tion about points of interest related to the device location (like
nearby shops, bars, other players).

• Image Recognition Task: The Image Recognition Task is
responsible for image processing and analyzing over a net-
work, using a cloud infrastructure. When an AR Task runs

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 11



Figure 7: Architecture UML Diagram.

locally, the number of image targets it is able to handle is
limited due to device constraints. However, when using the
Image Recognition Task the application is able to use a cloud
service, making it possible to use a virtually unlimited image
target database.

4.4 Performance Test Task

The Performance Test class is responsible for gathering and test-
ing all the resources that the game would use. This class has two
children, one for the hardware tests and another for network tests.

4.5 Hardware Test Task

The Hardware Check is responsible for gathering information about
hardware features available to the game. There is only one instance
of this class in the application. This class checks the available
hardware and keeps track of the configuration, like available inputs

mechanisms, the number of processing cores and the model of the
device.

By using this class, the Task Manager is able to get to know the
available hardware without previous knowledge. The Hardware
Test Check class instance is always created at the beginning of the
game execution.

4.6 Network Test Task

The Network Test Task is responsible for checking the network re-
sources available for the device. There is only one instance of this
class in the application. This class performs connectivity tests to es-
timate the network bandwidth available to services the game needs
to use.

For example, when using this class the architecture is able to query
the network about the available bandwidth, so the game is able to
determine which network services it can use. This class also pro-

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 12



vides an error handling mechanism for receiving messages about
network errors and failures. The unique Network Test Task class
instance is created at the beginning of the game execution.

4.7 Task Manager

The Task Manager (TM) is the core component of the proposed
architecture. It is responsible for instancing, managing, synchro-
nizing, and finalizing tasks. The Task Manager uses a XML config-
uration file to determine the ordering and dependencies among the
threads. In order to configure the execution of the tasks, each task
has control variables described as follows: UNIQUEID: the unique
id of the task. It is used to identify the tasks; TASKTYPE: the task
type. The following types are available: input, update, presenta-
tion, and manage; DEPENDENCY:a list of the tasks(ids)that this
task depends on to execute.

With that information, the TM creates the task and configures how
the task is going to execute. A task manager can also hold another
task manager, so it can use it to manage some distinct group of
tasks, which is the case of the Cloud Tasks Manager. The XML
bellow illustrates a speech-to-text task configured by the XML.

<Conf ig>
<Tasks>

<u n i q u e I d>
speechToTextTask
< / u n i q u e I d>
<t a s k T y p e>
Cloud
< / t a s k T y p e>
<Dependency>
MicTask
< / Dependency>

< / Tasks>
< / Conf ig>

4.8 The Cloud Task Manager

The purpose of this class is to manage all the tasks that uses cloud
computing. The class may change execution ordering of some task
services (like the speech recognition service) when the application
is running, which characterizes a dynamic task distribution. Figure
8 illustrates the process.

Figure 8: The Cloud Task Manager.

This class always keeps the current bandwidth of the services, in
order to evaluate if the service should be changed during execution.
The Cloud Task Manager acts as a server and the cloud tasks act
as its clients, as every time a task ends, it sends a message to the
Task Manager. The Task manager then checks which task it should
execute in the thread.

As the Cloud Task Manager uses a multi-thread loop model, it is
necessary to apply a parallel programming in order to identify the
shared and non-shared sections of the tasks, because they should
be treated differently. The independent sections compose tasks that
are processed in parallel, like the communication with the cloud.
The shared sections, like the update tasks, need to be synchronized

in order to guarantee mutual-exclusive access to shared data and to
preserve task execution ordering.

The processing of shared objects needs to use a synchronization
object (as a mutex), as it is common in concurrent programming.
Concurrent programming is a complex subject, because the tasks in
the application run alternately or simultaneously, but not linearly.
Hence, synchronization objects are tools for handling task depen-
dence and execution ordering. This measure should also be care-
fully applied in order to avoid thread starvation and deadlocks. The
Cloud Task Manager uses semaphores as the synchronization ob-
ject. Lastly, as in this case it is required to specify the execution
ordering, this constraint must be described in the XML configura-
tion file. .

5 Test Case: AlienQuiz Invader

The game prototype that uses the proposed architecture was imple-
mented with Objective-C in the iOS platform. The cloud services
this game uses are: a speech-to-text service, a text-to-speech service
(provided by iSpeech), and a custom-made location service that in-
dicates available locations for augmented reality objects. This loca-
tion service is used to guide the player to the location of the nearest
image targets.

The game uses the AudioToolbox framework from the iOS SDK to
implement audio features, and the Vuforia SDK to implement aug-
ment reality. The 3D model the game uses is a simple disc with
different textures applied. Figure 9 illustrates some game screen-
shots.

5.1 Game Design

The AlienQuiz Invaders is an augmented reality game inspired on
the classic Space Invaders. Besides being an action game (like the
original), this version also features a speech-based quiz game.

The game is simple, fun, and different from traditional games. The
player walks around using the mobile device camera, which dis-
plays on the device screen the location of ”portals”, where aliens
invade the Earth. Whenever the player points the camera to a place
where there is an image target, he/she sees a portal and aliens com-
ing out of it. In order to survive, the player must avoid hitting the
bullets and colliding with the aliens, as these events consume the
player’s energy. The player is able to eliminate the aliens by touch-
ing them on the device screen.

The portals have another feature: they are active entities that keep
asking math questions to the player, like ”How much is five times
six?”. This happens once every minute, using speech. If the player
answers the question correctly (through voice) , the portal dimin-
ishes its size and reduces the number of aliens spawn from it. If
the player misses the question, the portal increases its size and in-
creases the number of aliens spawn from it. The players mission
is to sustain his energy (not letting it become zero), while closing
game portals.

The AlienQuiz Invaders game uses the device camera (as the play-
ers aim), touch input to fire lasers (to eliminate the aliens) and
speech to both ask and answer questions.

6 Results

The test device is an Apple iPhone 4S, which is a mobile phone with
a dual-core 1 GHz Cortex-A9 processor, a PowerVR SGX543MP2
GPU, and 512 MB of RAM, running the iOS operation system ver-
sion 5.1.1.

6.1 Game Execution

This Section describes the execution flow of the proposed architec-
ture, so the reader is able to better understand it. Figure 10 illus-
trates this process.

Firstly, the architecture queries the mobile device about available
hardware. Next, the architecture queries the game about services

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 13



(a) (b)

Figure 9: ScreenShots of the game.

GameHardwareCheckMicCameraVuforiaCloud

Query Available
Hardware

Send Configuration

Query Network

Send Tests

Load
ResourcesInitialize

Initialize

Start
Game

Send Image 
for Recognition

Send Result

Send Speech 
for Recognition

Send Result

Figure 10: Sequence diagram of the Game.

that use the network, in order to estimate the required bandwidth.
After this procedure, the game starts loading resources and initial-
izing. The next step is starting the game loop, using Vuforia to
process augmented reality and the cloud module to process speech.

6.2 Image Targets

The game uses image targets to place portals and enemies in the
real world, creating an augmented reality layer. The image targets
correspond to patterns that the game recognizes in the video stream
coming from the device camera. The game uses the Vuforia SDK
to process image targets.

The AlienQuiz Invaders game uses two image targets: the
SBGames conference logo and a stone floor picture. Figure 11 il-
lustrates these two image targets. The Vuforia SDK works better
with visual elements with sharp edges and high contrast, which is
not the case of the SBGames conference logo image.

When Vuforia generates patterns on images, it calculates a numeri-
cal property known as effective. Images with a low effective value
will not track well and may not be robust to occlusions. The ef-
fective property for the SBGames conference logo is 40%, while
this property for the stone floor is 100%. Figure 11 illustrates the
images and the outlined patterns (represented as yellow crosses).

In order to test game architecture performance, this work has per-

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 14



(a) SBGames logo (b) SBGames logo with outlined patterns

(c) Stone floor (d) Stone floor with outlined patterns

Figure 11: The different image recognitions.

formed tests in three different stages. The first one occurs at the
beginning of a game session, before the portals are open, when the
player has not found yet image targets (this stage is referred to as
”game recognition”. The second stage occurs when the player has
found an image target, but there is no cloud connection in use (this
stage is referred to as ”in game, no cloud”. Finally, the third stage
occurs when the player has found an image target and there is a
cloud connection in use (this stage is referred to as ”in game, us-
ing cloud”. Table 1 illustrates these tests. To assure that results
are consistent, all tests of this work were repeated 10 times and the
standard deviation of the average times was confirmed to be within
5%.

Table 1: Numerical results from the game on different steps.

Test Game In game, In game,
recognition no cloud using cloud

Time 3.62 ms 1.61 ms 2.66 ms
CPU usage (%) 66% 38% 55%

The results describe that the ”game recognition” stage takes more
time to run than the other two stages. This happens mainly because
Vuforia spends a fair amount of time trying to recognize image tar-
gets when there are no image targets tracked. When the game uses a
cloud service, this request happens in a non-blocking thread, which
helps to minimize the negative impact in game performance.

Table 2 lists the time the game spent using cloud services for speech
synthesis (text-to-speech) and speech recognition, along with net-
work usage and CPU usage. These parameters were measured in
the mobile device. This measured time includes gathering input
(audio from the microphone for speech recognition and text for
speech synthesis), preparing this data to send over the network,
sending the data over the network, and receiving a response from
the service (a sound file from speech synthesis services, or text from
the speech recognition service). These results present an one time
operation, for each cloud service.

These results suggest that these services are time consuming and
could not be implemented in a single-threaded game loop, as they
use blocking operations (sending data over the network and waiting
for the response). These results also describe a low CPU usage that
is mainly regarded to audio processing. The network usage in Table

Table 2: Numerical results from the game on different steps.

Tests Speech synthesis Speech recognition
Time 2.2s 1.5s

CPU usage % 17% 13%
Network usage 2MB 1.2MB

2 regards the audio file transfers due to using the speech service.

Figure 12: Performance of the game.

Figure 12 illustrates the game performance (in FPS) for one minute
of game playing, which includes the three stages described in Table
1.

From this figure it can be seen that the performance of the game
ranges on an average of 30 frames per second (FPS), which is con-
sidered optimal in a game.This figure shows that the speech features
and the recognition tasks of the game do not affect the frame rate
(the speech feature was called one time during this test).

7 Conclusions

The development, evolution and use of cloud computing in mobile
applications is a trend. However, using this kind of service in mo-
bile games is still in the experimental stage.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 15



This work proposed a new architecture for mobile games that use
cloud services as a part of the game. Also this work presented a
game example that implements the proposed architecture - Alien-
Quiz Invader. This game uses AR and cloud services to provide a
better interactivity in the game.

This work also discussed the concept of game loops, a subject that
is not very often discussed in the literature. Our contribution lies on
extending a previous work, by providing an architecture for game
loops with a cloud module. This cloud module has a cloud task
manager to provide a layer to interact to the cloud services, without
affecting the main game loop (or keep the affect to a minimum).

References

ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D.,
KATZ, R. H., KONWINSKI, A., LEE, G., PATTERSON, D. A.,
RABKIN, A., STOICA, I., AND ZAHARIA, M. 2009. Above
the clouds: A berkeley view of cloud computing. Tech. Rep.
UCB/EECS-2009-28, EECS Department, University of Califor-
nia, Berkeley, Feb.

BARBOZA, D. C., JUNIOR, H. L., CLUA, E., AND REBELLO,
V. E. F. 2010. A simple architecture for digital games on de-
mand using low performance resources under a cloud computing
paradigm. Proceedings of the IX Brazilian Symposium on Com-
puter Games and Digital Entertainment, 38–45.

BARBOZA, D. C., JUNIOR, H. L., CLUA, E. W. G., AND RE-
BELLO, V. E. 2010. A simple architecture for digital games
on demand using low performance resources under a cloud com-
puting paradigm. Games and Digital Entertainment, Brazilian
Symposium on 0, 33–39.

CHEHIMI, F., AND COULTON, P. 2008. Motion controlled mobile
3d multiplayer gaming. In ACE ’08: Proceedings of the 2008 In-
ternational Conference on Advances in Computer Entertainment
Technology, ACM, New York, NY, USA, ACE, 267–270.

COCOS2D, 2011. Cocos2d. Avalible at:
http://www.cocos2d-iphone.org/games/.
30/09/2011.

DALMAU, D. S. C. 2003. Core Techniques and Algorithms in
Game Programming. New Riders Publishing.

DICKINSON, P., 2001. Instant replay: Building a
game engine with reproducible behavior. Available
at http://www.gamasutra.com/features/
20010713/dickinson 01.htm/ .

GABB, H., AND LAKE, A., 2005. Thread-
ing 3d game engine basics. Available at
http://www.gamasutra.com/features/
20051117/gabb 01.shtml/ .

ISPEECH, 2012. http://www.ispeech.org/.

JOSELLI, M., ZAMITH, M., CLUA, E., PAGLIOSA, P., CONCI,
A., MONTENEGRO, A., AND VALENTE, L. 2008. An adapta-
tive game loop architecture with automatic distribution of tasks
between cpu and gpu. Proceedings of the VII Brazilian Sympo-
sium on Computer Games and Digital Entertainment, 115–120.

JOSELLI, M., ZAMITH, M., VALENTE, L., CLUA, E. W. G.,
MONTENEGRO, A., CONCI, A., FEIJÓ, B., DORNELLAS, M.,
LEAL, R., AND POZZER, C. 2008. Automatic dynamic task
distribution between cpu and gpu for real-time systems. Pro-
ceedings of the VII Brazilian Symposium on Computer Games
and Digital, 48–55.

JOSELLI, M., CLUA, E., MONTENEGRO, A., CONCI, A., AND
PAGLIOSA, P. 2008. A new physics engine with automatic pro-
cess distribution between cpu-gpu. Sandbox 08: Proceedings of
the 2008 ACM SIGGRAPH symposium on Video games, 149–
156.

JOSELLI, M., ZAMITH, M., CLUA, E., LEAL-TOLEDO, R.,
MONTENEGRO, A., VALENTE, L., FEIJO, B., AND PAGLIOSA,

P. 2010. An architeture with automatic load balancing for real-
time simulation and visualization systems. JCIS - Journal of
Computational Interdisciplinary Sciences, 207–224.

M1NDLAB, 2007. Alien revolt: Location-based
massive-multiplayer online rpg. Avalible at:
http://www.alienrevolt.com.

MÖNKKÖNEN, V., 2006. Multithreaded game engine architectures.
Available at http://www.gamasutra.com/features/
20060906/monkkonen 01.shtml .

ONLIVE, 2012. http://www.onlive.com/.

PARK, A., AND JUNG, K. 2009. Flying cake: Augmented game
on mobile devices. Comput. Entertain. 7, 1, 1–19.

QUALCOMM, 2012. Vuforia
http://www.qualcomm.com/solutions/augmented-reality.

ROHS, M. 2007. Marker-Based Embodied Interaction for Hand-
held Augmented Reality Games. Journal of Virtual Reality
and Broadcasting 4, 5 (Mar.). urn:nbn:de:0009-6-7939,
ISSN 1860-2037.

VALENTE, L., CONCI, A., AND FEIJÓ, B. 2005. Real time game
loop models for single-player computer games. In Proceedings
of the IV Brazilian Symposium on Computer Games and Digital
Entertainment, 89–99.

VALENTE, L., DE SOUZA, C. S., AND FEIJÓ, B. 2008. An
exploratory study on non-visual mobile phone interfaces for
games. In Proceedings of the VIII Brazilian Symposium on
Human Factors in Computing Systems, Sociedade Brasileira de
Computa&#231;&#227;o, Porto Alegre, Brazil, Brazil, IHC ’08,
31–39.

VALENTE, L., DE SOUZA, C. S., AND FEIJÓ, B. 2009. Turn off
the graphics: designing non-visual interfaces for mobile phone
games. J. Braz. Comp. Soc. 15, 1, 45–58.

WATTE, J., 2005. Canonical game loop. Avail-
able at www.mindcontrol.org/h̃plus/
graphics/game loop.html/ .

ZAMITH, M., MONTENEGRO, A., CLUA, E. W. G.,
JOSELLI, M., FEIJO, B., LEAL, R., AND VALENTE, L.
2011. An distributed architecture for mobile digital games based
on cloud computing. In X Brazilian Symposium on Computer
Games and Digital Entertainment, SBGames 2011 - Computing
Track, 1–8.

ZYDA, M., THUKRAL, D., JAKATDAR, S., ENGELSMA, J., FER-
RANS, J., HANS, M., SHI, L., KITSON, F., AND VASUDEVAN,
V. 2007. Educating the next generation of mobile game de-
velopers. IEEE Computer Graphics and Applications 27, 2, 96,
92–95.

ZYDA, M. J., THUKRAL, D., FERRANS, J. C., ENGELSMA, J.,
AND HANS, M. 2008. Enabling a voice modality in mobile
games through voicexml. In Sandbox ’08: Proceedings of the
2008 ACM SIGGRAPH symposium on Video games, ACM, New
York, NY, USA, Sandbox, 143–147.

SBC - Proceedings of SBGames 2012 Computing Track – Full Papers

XI SBGames – Brasiĺia – DF – Brazil, November 2nd - 4th, 2012 16




