
Player Modeling: What is it? How to do it?
Marlos C. Machado and Eduardo P. C. Fantini and Luiz Chaimowicz

Department of Computer Science
Federal University of Minas Gerais

Belo Horizonte, Brazil

Figure 1: Screenshots of Civilization IV gameplay, used for some experiments in Player Modeling.

Abstract

Player Modeling is currently a very relevant topic in game AI re-
search. This tutorial presents the main topics related to the field,
intending to be a summary and a guide of some of the most relevant
works on this subject. This text starts discussing the importance of
Player Modeling and its applicability. We then define and present
a taxonomy of the field and discuss several application examples
and common techniques used in the area. Since we intend to help a
new researcher in the field to start its own work, we also list several
game platforms that are suitable for experimentation and present a
simple example that discusses important research topics.

Tutorial Level: Basic

Duration: 3 hours

Topics of Interests: Artificial Intelligence, Human-Computer In-
teraction, Development Process and Tools.

Keywords:: Player Modeling, Taxonomy, Game Platforms, Civi-
lization IV

Author’s Contact:

{marlos, fantini, chaimo}@dcc.ufmg.br

1 Introduction

The most important goal for almost every existing game is enter-
tainment [Nareyek 2004] and this is achieved with a combination
of items like graphics, story (in some game genres) and artificial
intelligence (AI). All these topics can be summarized in a unique
concept: immersion, that has already been suggested as a general
measure of entertainment by [Manovich 2002] and [Taylor 2002].

Bakkes et al. [2009] define immersion as “the state of consciousness
where an immersant’s awareness of physical self is diminished or
lost by being surrounded in an engrossing, often artificial environ-
ment [Nechvatal 1999]” and affirm that it is achieved with aesthetic
elements like graphics and audio and held by consistency during
the game.

The aesthetic elements were the industry’s main concern for a long
time since they are more attractive (its easier to convince a customer
to buy a game because it “looks good” than because it has a complex
AI that is much harder to be presented in marketing events) but
this scenario is starting to change. Game AI is receiving increasing
attention since it is helps keeping the player attached to the game.

Among the several AI techniques, Player Modeling is gaining im-
portance as an alternative for making games more adaptable and,

consequently, more challenging. Basically, Player Modeling con-
sists in modeling the player characteristics and behaviors during
the game in order to improve some game aspect. A more formal
definition, discussed in [Machado et al. 2011a] and [van den Herik
et al. 2005], considers Player Modeling “as an abstract description
of the current state of a player at a moment. This description can
be done in several ways like satisfaction, knowledge, position and
strategy”.

The above definition makes clear that a player model describes a
game aspect. Satisfaction, knowledge, position, etc are some of the
many levels of abstraction in a Player Modeling task. In the next
section we are going to discuss these different abstraction levels
aided by a taxonomy proposed by [Machado et al. 2011a].

This documents is organized as follows: in the next section, we dis-
cuss a Player Modeling taxonomy, presenting its main abstraction
levels. Subsequently we list several works which applied Player
Modeling. We discuss these works as examples of possible applica-
tions in different parts of games and instantiations of the discussed
taxonomy. In Section 4 we present some techniques that are gener-
ally used to implement the modeling process, most of them related
to machine learning. We also discuss, in Section 5, several game
platforms that are suitable for experimentation in Player Modeling
and game AI in general. We present some research possibilities in
Section 6 and conclude this tutorial in Section 7 briefly discussing
a simple example of Player Modeling, focusing on data extraction
and analysis.

2 Player Modeling Taxonomy

Two different taxonomies have been independently developed al-
most at the same time: [Machado et al. 2011a] and [Smith et al.
2011a]. We can interpret this parallel development as an evidence
of the necessity of an organization of the field after several pub-
lished works spread in the literature.

These two taxonomies are organized in different ways. The one
presented in [Smith et al. 2011a] and [Smith et al. 2011b] is an in-
clusive taxonomy that divides Player Modeling in four facets: “the
scope of application, the purpose of use, the domain of modeled de-
tails, and the source of a model’s derivation or motivation”. It has a
high level approach for classifying each research in these facets. On
the other hand, the taxonomy proposed in [Machado et al. 2011a] is
more specific, presenting more “dimensions” (“facets”) than [Smith
et al. 2011a]. In this tutorial we will focus on this last one.

The taxonomy presented in [Machado et al. 2011a] is summarized
in Table 1. We are going to use it as guide for this presentation be-
cause it presents several levels of abstraction that, once understood,
make a comprehension on the field easier.

This taxonomy can be explained through a set of questions related

SBC - Proceedings of SBGames 2011 Tutorials Track - Computing

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

Description Categories Goals Applications Methods Implementation
Knowledge Online Tracking Collaboration Speculation in Search Action Modeling Explicit
Position Online Strategy Recognition Adversarial Tutoring Preference Modeling Implicit
Strategy Off-line Review Storytelling Training Position Modeling
Satisfaction Substitution Knowledge Modeling

Table 1: Player Modeling Taxonomy Summary.

to a research in Player Modeling. We are going use these questions
as guideline for new researchers since answering them implies in
an advance in their own project.

1. What are you intending to generate with Player Modeling?
What is your main goal?

This first question is related to the Player Modeling goal.
Three different goals are presented in this taxonomy and en-
compass all possibilities: Collaboration, Adversarial and Sto-
rytelling. The first one is responsible for generating an AI that
cooperates with the players, it can be an ally non-player char-
acter (NPC) or a helper, for example. The adversarial goal
intends to generate a more challenging game. This can be
done with NPCs or specific challenges, for example. Finally,
the storytelling goal is related to generating characters that
help the plot unfold, not necessarily playing for or against the
player.

2. What do you want to describe with your model?

Once we defined the main goal of our modeling we may define
what we are going to describe with it. This decision is based
on the already defined goals. The description possibilities are
many but four main topics are: Knowledge, Position, Strategy
and Satisfaction. These are different abstraction levels but all
of them are applicable to different game genres.

Knowledge and Satisfaction are the two items that represent
a higher level description. The first one can be seen as the
attempt to model what the player knows, e.g. a researched
technology in a strategy game or how far it is from solving a
puzzle, while the satisfaction description may try to maximize
player entertainment, understanding which game characteris-
tics make him happy and which bother him. A knowledge
description is presented in [Cunha and Chaimowicz 2010] for
example and satisfaction description is shown in [Pedersen
et al. 2010].

A description in a lower abstraction level is directly related to
the players’ behavior once we may want to be able to define
his movement patterns or even his strategies during a match,
examples are: [Hladky and Bulitko 2008] and [Spronck and
den Teuling 2010], respectively.

3. What gameplay activity are you going to improve with your
model?

After defining your general goal and what you are intending to
describe, it is necessary to precisely define the game activity
that is going to be improved. While the previous discussions
were general, this one is specific. At this moment there are
several game possibilities and listing all of them would be im-
possible. We will only discuss the main four applications that
are presented in Table 1.

A first application listed in Table 1 is related to the first game
AI applications, mainly concerned with state-space search.
Speculation in search consists in focusing on some parts of
the game search tree and leaving others that your model pre-
dicts that are not going to be explored by the player. This
is very useful in situations where search is costly, even with
pruning techniques and an example is [Carmel et al. 1993],
that applied these techniques in chess, while it still was an
intractable problem.

Tutoring and Training are related to the game intention of im-
proving the player ability. Tutoring intends to teach players
(focusing on player preferences) and an example is [Iida and
Kotani 1998]. Training intends to present challenges suited to

each player, e.g. related to his weakness, style or strategy. Fi-
nally, substitution consists in replacing human players by the
AI NPCs without other players noticing. Certainly this is the
hardest task since it is related to a Turing’s Test for games.

4. What models are you intending to use to generate an under-
standing about the agent?

To describe the agents characteristics, it is necessary to ob-
serve some data to generate specific models. We need to base
ourselves in something to generate these descriptions and this
is the main objective of this taxonomy category. A useful
method to understand this category is to use Table 1 to com-
plete the phrase: “based on its [methods] we may describe its
[description]”. For example: Based on its actions we may
describe its knowledge.

We listed some common inputs that are useful to generate
models. Observing players actions is the most common ac-
tivity [Spronck and den Teuling 2010] but we can also make
questionnaires trying to obtain the player preferences [Peder-
sen et al. 2010], observe his positions to model his movement
[Hladky and Bulitko 2008] (this is a harder task in environ-
ments with partially observable environments) or his knowl-
edge.

5. When are you going to process the data? Do you have enough
time for doing this online?

After all the previous questions we have a very good idea of
our intentions and now we are able to start thinking in a more
practical way. Based on this, our first concern must be with
the data collection and processing. We can do these during or
after the game.

The moment data is collected is not necessarily important
since it is generally a light operation, but the moment the data
is processed is important. If we process data and try to pre-
dict actions all the time, this is called online tracking. If we
process the data in batches during the game, observing a set of
actions we are doing an online strategy recognition. Finally, if
we process the whole game data afterwards we will be doing
an off-line review.

It is necessary to assure that the platform being used to vali-
date the research allows the desired processing and Section 5
discusses this. Examples of online tracking can be found in
[Houlette 2003], of online strategy recognition in [Laviers
et al. 2009] and [Ponsen et al. 2010] and of off-line review in
[Spronck and den Teuling 2010] and [Pedersen et al. 2010].

6. What is the interface between your algorithms and the game
in which your model is going to be used?

Finally, it is important to check what are the platforms that
will be used to validate our model and how we are going to do
it. If its source code is available we may do it explicitly, if it
does not, if the platform only offers us scripting languages or
other interfaces we would be doing it implicitly.

This last question involves much more than scientific knowl-
edge: it demands also a knowledge related to the suitable
game platforms for experimentation. We discuss this on the
Section 5. Civilization IV, for example, allows implicit mod-
eling [Pedersen et al. 2010] while Infinite Mario Bros allows
explicit [Pedersen et al. 2010].

A concern that is not encompassed in the above questions is about
the techniques that may be used. Obviously this shall also be stud-
ied and decided. We discuss some AI techniques in Section 4.

SBC - Proceedings of SBGames 2011 Tutorials Track - Computing

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

We firmly believe that a successful research in this topic shall be
able to easily answer these questions. We are able to exemplify
this answering process with many published papers. We will use
[Spronck and den Teuling 2010] as example. In [Spronck and den
Teuling 2010] several Civilization IV matches are analyzed with
machine learning algorithms trying to model a human player in
terms of his strategy during the game, i.e., his preferences.

We may answer all the questions we previously formulated: the
authors intended to generate models that would benefit player op-
ponents (adversarial goal) and they wanted to describe the player
strategy to improve the opponent’s AI (application). They based
their description in the player preferences and analyzed the data
after complete matches, characterizing an off-line review. The data
collection was done with scripts running with the game Civiliza-
tion IV, so their implementation was an implicit one.

3 Application of Player Modeling

As we previously discussed, Player Modeling can improve several
game aspects. In this section we present works that improved differ-
ent game characteristics showing the applicability of Player Mod-
eling.

3.1 Game Design

The main idea of Player Modeling related to Game Design is to
generate environments that are best suited to each player, who is
unique and has unique requirements.

An interesting work that used Player Modeling to assist game de-
signers is [Drachen et al. 2009]. In this paper, authors used tools to
extract gameplay information (implicit implementation) from the
game Tomb Raider: Underworld and processed these data with
neural networks (off-line review) to obtain playing styles (Pacifist,
Runner, Veteran and Solver). During this process the authors ex-
tracted several information to make this classification, like cause
of death, completion time and number of deaths. This information
is applicable to the optimization of game design features [Drachen
et al. 2009].

Another recent work that studied game design improvement based
on adaptive analysis is [Pedersen et al. 2010]. They looked for cor-
relations between players satisfaction and level characteristics of
the game Infinite Mario Bros, such as presence of gaps, blocks and
enemies. This allowed the authors to maximize player satisfaction.
The implementation was explicit and it was an off-line review.

3.2 Interactive Storytelling

Interactive Storytelling is “a story-based experience in which the se-
quence of events that unfolds is determined while the player plays”
[Thue et al. 2007]. This feature explicitly demands adaptive behav-
ior since it is interactive, but not necessarily implements a person-
alization for player preferences.

Thue et al. [2007] proposed PaSSAGE, a method that models inter-
active storytelling as a decision process that is influenced by differ-
ent weights that characterize each player. The authors define their
own method as “an interactive storytelling system that uses player
modeling to automatically learn a model of the player’s preferred
style of play, and then uses that model to dynamically select the
content of an interactive story” [Thue et al. 2007]. The used plat-
form was Neverwinter Nights. Besides the applicability of Player
Modeling in Interactive Storytelling, [Thue et al. 2007] affirmed
that there were not many works with this combination and this sce-
nario still holds nowadays.

3.3 Game Artificial Intelligence

This is a very general topic but we intend to discuss here the ap-
plication of improving opponents’ AI during a game. The great
majority of works related to Player Modeling are in this topic. One
of them is [Charles and Black 2004] that proposed a framework for
player-centered games and [Ponsen et al. 2010] that created a Poker

player with Monte-Carlo Tree Search and used Player Modeling to
focus on relevant parts of the tree.

A very important paper is [Houlette 2003], one of the first works
to really describe a Player Modeling approach in digital games that
were not board games. In this paper the author presents a general
approach for player modeling, more specifically how to character-
ize player behaviors and implement one.

A more recent paper is [Laviers et al. 2009], that “evaluates the
competitive advantage of executing a play switch based on the po-
tential of other plays to increase the yardage gained and the sim-
ilarity of the candidate plays to the current play” in the game
Rush 2008.

3.4 Mimicking Human Players

Finally, this last topic, as we already said, is the most difficult since
it implies computers passing on a simpler version of the Turing Test.
As far as we know no paper was successful on this task.

An interesting approach was [Spronck and den Teuling 2010] and
[den Teuling 2010] where the authors tried to fit humans in a group
of NPCs, characterizing their preferences expecting that, after cor-
rectly classifying them, they would be able to select an appropriate
preprogrammed behavior in the game Civilization IV.

Since this is a very hard task, there are not many works on this
topic. Despite the very attractive application, to be able to replace
human players by artificial agents, most of research is focused on
improving game AI, not in mimicking human players. But we truly
believe this is a very promising research topic.

4 Common Techniques

Several techniques may be used to generate player models and a
large number of them are discussed in [van den Herik et al. 2005].
In this text we are going to focus our discussion in the techniques
that were already used, listing the papers which used them.

4.1 Kernel Machines

This technique was used by [Spronck and den Teuling 2010] and
[den Teuling 2010] to predict human player preferences based on
several observations of NPCs playing. The authors tried to clas-
sify the player’s preference using data extracted on each turn of the
game Civilization IV. The authors did not use “pure” SVM1 but an
optimization called SMO – Sequential Minimal Optimization.

Laviers et al. [2009] used SVMs in the Rush 2008 game to “recog-
nize the defensive play as quickly as possible in order to maximize
our [their] team’s ability to intelligently respond with the best of-
fense”.

4.2 Evolutionary Algorithms

A recent work that used artificial evolution to achieve learning in the
preference modeling task is [Martı́nez et al. 2010]. The technique
that really did the classification was a neural network but artificial
evolution was used to relate “the difference between the subject’s
reported affective preferences and the relative magnitude of the cor-
responding model (ANN) output” [Martı́nez et al. 2010]. The plat-
form they used was developed by them and is called MazeBall. The
combination of evolutionary algorithms and neural networks is not
uncommon, e.g. [Pedersen et al. 2010] also used it.

Another recent work that applied these techniques to adaptive be-
havior though modeling players is [Tan et al. 2011] with ideas of
evolutionary computation and reinforcement learning in a car rac-
ing game. The authors implemented several game strategies and
encoded these strategies in chromosomes as binary numbers where
each chromosome is responsible for its activation (1) or not (0).
They also trained neural networks as a controller.

1Support Vector Machine

SBC - Proceedings of SBGames 2011 Tutorials Track - Computing

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

Togelius et al. [2007] also worked on a similar problem using “evo-
lutionary algorithms to evolve racing tracks that maximized the en-
tertainment value to particular human players” [Tan et al. 2011].

4.3 Neural Networks

Neural Networks and evolutionary algorithms are not an unusual
combination. Tan et al. [2011] focused on evolutionary algorithms
but they also trained neural networks as a controller for the car rac-
ing game to generate adaptive behavior. Martı́nez et al. [2010]
also used neural networks, more specifically self-organization maps
(SOM) and emergent SOMs (ESOM), to identify player types on a
prey/predator game called MazeBall, while Drachen et al. [2009]
used ESOM networks to cluster players intending to distinguish dif-
ferent behaviors in the game Tomb Raider: Underworld.

Neural networks applications different from clustering are predic-
tion and classification, and the techniques used are also different.
An example of prediction with neural networks is [Pedersen et al.
2010] who used multi-layer perceptrons to predict players’ satisfac-
tion in the game Infinite Mario Bros.

Clustering and prediction/classification are not exclusive ap-
proaches, Thurau et al. [2003] used multi-layer perceptrons and
self organizing maps in the Quake II game, for example.

The application of these techniques to each research problem is not
simple to be explained since it involves a specific modeling, we
invite the interested readers to consult the original papers.

4.4 Overview

Research in game AI is a relatively new and multidisciplinary topic.
Because of it several researchers who actually work on computer
games had already worked on other fields and may apply unusual
techniques to games. We have not covered all the most common
AI techniques not discussing Hidden Markov Models or Evalua-
tion Functions, neither papers with “innovative” techniques as the
application of compiler principles to game AI [Orkin et al. 2010].

Based on this superficial covering and our previous experience we
were able to observe that most learning techniques used in these
researches are from natural computing, i.e. evolutionary algorithms
and neural networks. We believe the main reason for this is the
fact that these are older techniques, more widespread in the whole
computing community.

5 Suitable Game Platforms

This section is derived from our previous work [Machado et al.
2011a] and is also available in our research group website2. In
this previous work we listed several available game platforms and
Player Modeling research opportunities in each game genre. We
will present a summary of this discussion here.

There are three conventional ways to access game mechanics to use
them as testbed platforms: open source game, game modification
tools and game emulators. We discuss each one below.

• Open Source Game is a video game in which its source code
is open source. They are often freely distributed and some-
times cross-platform compatible. As consequence, many are
included in Linux distributions. Open source games which are
free software and contain exclusively free content are called
free games. Most free games are open source, but not all
open source games are free software; some open source games
contain proprietary non-free content. This class (open source
game) generally generates explicit player models.

• Game Mod is a term applied to personal computer games and
are more common in first-person shooters, role-playing games
and real-time strategy games. Mods are not standalone soft-
ware and require the original release in order to run them.
They may be created by the general public or developers and

2http://www.j.dcc.ufmg.br/platforms.html

offer limited control of the game, generally allowing the in-
clusion of new items, weapons, characters, enemies, artifi-
cial intelligence, models, textures, levels, story lines, music,
game modes, among others. Mods that add new content to the
underlying game are often called partial conversions, mods
that create an entirely new game are called total conversions
and mods that fix bugs are called unofficial patches. Because
of their nature they are more common in commercial games.
Nowadays we can find tools and documentation to assist mod
makers for games developed by Valve Software, id Software,
Bethesda Softworks, Firaxis, Crytek, The Creative Assembly
and Epic Games. This approach generates implicit or explicit
player models as it depends on the interface offered by the
game.

• Game Emulator is a software that duplicates (or emulates)
the functions of an original game in a second system, intend-
ing to generate a behavior that closely resembles the behavior
of the original system. They are generally used to play older
video games on personal computers or modern video game
consoles, but they are also used to translate games into other
languages, to modify existing games, and to develop home
brew demos and new games for older systems. Generally this
also generates an explicit player modeling.

We divided the games listed here by its genre, intending to generate
a better organization.

5.1 Action Games

5.1.1 Valve Software SDKs

Valve Software is the developer with most support for game modi-
fications, providing complete documentation and official tools. The
Source Engine and its associated SDK provide one of the most ef-
ficient, complete, and powerful action game development package
on the market. The games cited below are all first-person shooters.

The Source SDK [Valve d] includes: Half-Life 2 C++ source code,
Softimage XSI—EXP (for model building), The Hammer (level
editor), FacePoser (facial expressions and lip-syncing) and Half-
Life Model Viewer. It allows directly edition of the following
action/first-person shooter games: Half-Life: Source, Half-Life 2,
Counter-Strike: Source, Day of Defeat: Source, Team Fortress 2
and Portal.

Alien Swarm [Valve a] has exclusive tools, called Alien Swarm Au-
thoring Tools, that allow developers to create their own missions,
weapons, enemies and other gameplay elements. This tool pack
includes: Updated Hammer (level editor), suite of command line
compiling utilities (such as studiomdl and map compiling tools),
Particle editor, Faceposer (facial expressions and lip-syncing), Ex-
ample campaign, Tutorial maps and C++ source code to the Alien
Swarm client and server dlls.

Valve also made available a set of software utilities that allows de-
velopers to create their own levels, campaigns, common enemies,
and other gameplay elements in the games Left 4 Dead [Valve b]
and Left 4 Dead 2 [Valve c].

There is also a SDK for older Valve Games, like Half-Life and
Counter-Strike, but no technical support is available.

5.1.2 Id Software open source games

Id Software is a traditional action/first-person shooter game devel-
oper that released the world famous Doom and Quake game se-
ries. Id Software does not provide support for game mods, but the
complete C/C++ source-code of Doom, Quake, Quake 2, Quake 3,
Quake Wars and Wolfstein 3D is available on the FTP link [id Soft-
ware] of the company. This initiative eliminates problems like plat-
form restrictions since we are able to completely alter the game AI
by having the source code.

SBC - Proceedings of SBGames 2011 Tutorials Track - Computing

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

5.1.3 Unreal Tournament Game Bots

GameBots is an Unreal Tournament (first-person shooter game)
modification that allows software agents to play the game. The Un-
real Tournament game server feeds the player’s sensory information
to the agent and it feeds actions back to the game. A JavaBot API
[JavaBot] can be used to provide a higher-level interface to Unreal
protocol. This is clearly an implicit modeling possibility that not
necessarily reduces the game usefulness.

5.2 Platform Games

5.2.1 Infinite Mario Bros

Infinite Mario Bros [Persson] is an open-source 2D game written
in Java that mimics the classical action/platform game Super Mario
Bros. It was made for programming contests, like Mario AI Cham-
pionship [Championship]. A similar open-source project is Secret
Maryo Chronicles [Secretmaryo.org], written in C++. Both allow
complete game modification and the research possibilities are only
restricted by the game genre, not by the game platform.

5.2.2 Open Sonic

Open Sonic [Martins] [Sonic] is an open-source 2D ac-
tion/platform game which emulates and enhances the experience of
the “Sonic the Hedgehog” universe. It introduces a different style
of gameplay called cooperative play in which it’s possible to simul-
taneously control three different characters.

Open Sonic provides a map editor to create new levels. New items,
enemies and bosses can be created or modified by Object Scripts
based on finite state machines. The game mechanics can be mod-
ified only by source code, written in C. This set of possibilities
allows game modifications ranging from level design alterations
through game AI.

5.3 Simulation Games

5.3.1 Flight Gear

Flight Gear [Solutions] is an open-source multi platform project
which offers a sophisticated framework for realistic 3D flight sim-
ulations. It runs on Windows, Mac and Linux and was developed
by skilled volunteers around the world. The source code in C++ is
available and licensed under the GNU License. Customizations can
be done by source code or 3rd party extensions.

5.3.2 The Open Racing Car Simulator (TORCS)

TORCS [Bernhard] is a multi platform 3D car racing simulation.
It can be used as an ordinary car racing game, as an AI racing game
or as a research platform. It runs on Linux, FreeBSD, MacOSX and
Windows. Its source code is written in C/C++ and is licensed under
the GPL License.

5.4 Sports Games

5.4.1 Super Tux Kart

Super Tux Kart [Jenkins] is a multi platform and open-source rac-
ing game, similar to Super Mario Kart. It runs under Linux and
Windows. New vehicles configurations can be inserted from XML
add-ons, new levels can be made in Blender and the AI customiza-
tion can be done by source code modification, written in C++. As
most of the previous discussed game this combination allows level
design modifications, AI research and consequently, player model-
ing research.

5.5 Strategy Games

5.5.1 Civilization IV SDK

Civilization IV [Games] is a turn-based strategy game developed
by Firaxis Games. The XML interface offers the possibility to con-
figure several of its parameters. Another possibility is to use the
Civ4 SDK, that allows developers to completely rewrite or modify
(by C++ code) their game, recompiling DLLs [Firaxis] that replace
the original one.

While the first possibility generates an implicit modeling the sec-
ond one generates an explicit modeling. The XML interface does
not offer AI programming possibilities but the other approaches do
and, since Civilization IV is an extremely complex game, it is very
attractive for research due to the simplicity of changing its AI.

5.5.2 Open Real-Time Strategy (ORTS)

ORTS [Buro] is a real-time strategy engine implemented in a
client/server architecture with 2D or 3D graphics. It was created
for the study of real-time AI problems such as path finding, imper-
fect information problems, scheduling and planning in the domain
of RTS games. ORTS runs on Windows, Linux and Mac. The
server side loads scene configurations and waits for clients connec-
tions. The units AI shall be written in C++ in the client side. This
platform was used from 2006 to 2009 in the ORTS Game AI Com-
petition promoted by the AIIDE Conference.

5.5.3 StarCraft: Brood War API

StarCraft Brood War is a real-time strategy game developed by
Blizzard Entertainment. There is an unofficial C++ API for Star-
Craft, called Brood War API [bwapi], that allows AI modules cre-
ation which has been used in StarCraft AI Competitions3 4.

5.5.4 Wargus

Wargus [Pali b] is a cross-platform open source project which al-
lows unofficial modifications of Warcraft II, a real-time strategy
game released by Blizzard Entertainment. Wargus runs on Win-
dows and Linux and is organized in two levels: the Stratagus En-
gine [Pali a] (an emulator of Warcraft II core engine) and a higher
layer for game logics implemented in Lua Script [Rio].

5.6 Role-Playing Games

5.6.1 Baldur’s Gate and Icewind Dale series

Baldur’s Gate and Icewind Dale series are role-playing games re-
leased by BioWare. These games were developed with the Infin-
ity Game Engine. There is an unofficial tool called Near Infinity
[Hauglid] which combines browsing and editing to allow games
modification based on BioWare’s Infinity Engine. It supports both
Baldur’s Gate 1 & 2 and Icewind Dale 1 & 2. Another tool to mod-
ify Baldur’s Gate is Weidu [Weimer].

5.6.2 Neverwinter Nights series

Neverwinter Nights series are role-playing games developed by
BioWare. For game modding there is an official tool called Au-
rora Neverwinter Toolset that allows the modification of several
game aspects. The tools include a visual tile-based terrain editor,
a script editor (NWScripts [Nwn2Scripting] [Gaming a] [Gaming
b] [BioWare]), a conversation editor and an object editor.

6 Research Possibilities

Game AI is a fantastic research field because it is the perfect plat-
form to seek for an AI in a human level [Laird and Lent 2000].

3http://skat.dnsalias.net/mburo/sc2011/
4http://ls11-www.cs.uni-dortmund.de/

rts-competition/starcraft-cig2011

SBC - Proceedings of SBGames 2011 Tutorials Track - Computing

X SBGames - Salvador - BA, November 7th - 9th, 2011 5

Player modeling is an attractive sub area and presents several re-
search possibilities – if we combine Description, Goals and Meth-
ods possibilities discussed in Section 2 we already generate more
than forty possibilities of research in this subject, while [Smith et al.
2011b] mention 64 possibilities in their taxonomy, evidencing how
promising is this field.

We have discussed several research possibilities during this text but
we will condensate it on this section. An interesting and immedi-
ately applicable-to-industry research topic is the personalized pro-
cedural generation of scenes, defining types, quantities and posi-
tions of units in a terrain.

In a lower level it would be interesting to generate artificial agents
that “mimics” the player’s gameplay. This activity requires a game-
play identification (with, at least, pattern recognition techniques).
Reducing game granularity we could also look for an agent’s action
predictor, ranging from immediate actions to movement or strategy.

It is certainly impossible to discuss all research topics, even topics
we already mentioned during the text as interactive storytelling and
opponents AI improvement could be better explored.

Player Modeling is not restricted to general computer games as RTS
or FPS, but could also be used in more “traditional” games as chess
[Carmel et al. 1993] or Go. A final research topic that could be
interesting is the application of Player Modeling techniques in Go,
where machines are not able to defeat the best human players be-
cause of the size of its search space. The focus on some parts of it
may be promising.

7 Player Modeling in Civilization IV

In this section we will briefly discuss a research in Player Modeling
applied to the game Civilization IV. This section aims to show that
we can clearly see behavior differences between distinct agents in
this game. These differences are shown comparing data gathered
from several matches of agents with different preferences. This
section is a summary of [Machado et al. 2011b].

Civilization IV is a turn based strategy game that has six different
victory conditions and dozens of agents with different predefined
preferences that directly infer on their behavior. The different vic-
tory conditions, that can be “pacific” or not, created a very rich
environment for experimentation since agents have very distinct be-
haviors.

There is an interface in the game Civilization IV that allows play-
ers to generate scripts for the game. We used AIAutoPlay, a script
generated by [Spronck and den Teuling 2010] that allows human
beings to generate games that are going to be played only by the
game AI and to collect data of these matches each turn.

The intuition of our previous research was that different prefer-
ences would generate different behaviors during the game, to val-
idate it we collected information of 40 matches of each agent (see
[Machado et al. 2011b] for details) and analyzed several game met-
rics for agents with high preference and no preference on some
game aspects.

Figure 2 contains two different curves that are the analysis of the
culture generated by each agent. We extracted its 5th root because
we modeled culture as a polynomial of degree five [Machado et al.
2011b].

The two analyzed agents are Alexander, the Great, and Hatshepsut.
The first agent has no preference for culture while the second has
a high preference on this attribute. As expected, we can observe
that Hatshepsut’s average curve is bigger than Alexander’s curve,
characterizing different agents (with a confidence of 99%).

To conclude this discussion we can answer the questions proposed
on the second section: We intended to generate models that could
imply in better opponents for human players (adversarial) and we
were able to describe agent’s strategy with our modeling. As al-
ready discussed, these models are the first step for mimicking hu-
man players (substitution) and our models were derived from play-
ers’ actions and status. We did it offline and implicitly.

 0

 2

 4

 6

 8

 10

 0 100 200 300 400

5
th

-R
o

o
t

C
u

lt
u

re

Turn

Avg. Culture Alexander
Avg. Culture Hatshepsut

Figure 2: Comparison of Culture between different agents

This was a very brief discussion just presenting one of the several
results of our most recent work on player modeling [Machado et al.
2011b], we invite interested readers to read the original paper, that
contains a much deeper discussion.

Acknowledgments

We would like to thank Dr. Pieter Spronck who kindly shared with
us the AIAutoPlay script discussed on Section 7.

This work is partially supported by CAPES, CNPq and Fapemig.

References

BAKKES, S., SPRONCK, P., AND VAN DEN HERIK, J. 2009. Rapid
and Reliable Adaptation of Video Game AI. IEEE Transactions
on Computational Intelligence and AI in Games 1, 2 (june), 93
–104.

BERNHARD. Torcs. http://torcs.sourceforge.net/.

BIOWARE. Neverwinter Nights 2 - NwN2 Builders - Scripting
— BioWare Social Network. http://social.bioware.
com/forum/1/category/164/index.

BURO, M. ORTS Homepage. http://skatgame.net/
mburo/orts/.

BWAPI. bwapi - An API for interacting with Starcraft: Broodwar.
http://code.google.com/p/bwapi/.

CARMEL, D., CARMEL, D., MARKOVITCH, S., AND
MARKOVITCH, S. 1993. Learning Models of Opponent’s
Strategy in Game Playing. In In Proceedings of the AAAI Fall
Symposium on Games: Planning and Learning, The AAAI
Press, 140–147.

CHAMPIONSHIP, M. A. Mario AI Championship. http://www.
marioai.org/.

CHARLES, D., AND BLACK, M. 2004. Dynamic Player Mod-
elling: A Framework for Player-centred Digital Games. In In-
ternational Conference on Computer Games: Artificial Intelli-
gence, Design and Education, 29–35.

CUNHA, R. L. D. F., AND CHAIMOWICZ, L. 2010. An Artifi-
cial Intelligence System to Help the Player of Real-Time Strat-
egy Games. In Proceedings of the 2010 Brazilian Symposium
on Games and Digital Entertainment, IEEE Computer Society,
Washington, DC, USA, SBGAMES ’10, 71–81.

DEN TEULING, F. 2010. Player Modelling in Civilization IV.
Master’s thesis, Faculty of Humanities of Tilburg University, the
Netherlands.

DRACHEN, A., CANOSSA, A., AND YANNAKAKIS, G. N. 2009.
Player Modeling using Self-Organization in Tomb Raider: Un-

SBC - Proceedings of SBGames 2011 Tutorials Track - Computing

X SBGames - Salvador - BA, November 7th - 9th, 2011 6

derworld. In Proceedings of the 5th international conference on
Computational Intelligence and Games, IEEE Press, Piscataway,
NJ, USA, CIG’09, 1–8.

FIRAXIS. CvGameCoreDLL. http://www.firaxis.com/
downloads/Patch/CvGameCoreDLL_v161.zip.

GAMES, K. Civilization IV. http://www.2kgames.com/
civ4/.

GAMING, W. Neverwinter Script directory - NWNWiki, the
Neverwinter Nights Wiki - your guide to the game of NWN.
http://nwn.wikia.com/wiki/Neverwinter_
Script_directory.

GAMING, W. Neverwinter2 Script directory - NWN2Wiki, the
Neverwinter Nights 2 wiki - Races, classes, skills and more.
http://nwn2.wikia.com/wiki/Neverwinter2_
Script_directory.

HAUGLID, J. O. Near Infinity - An Infinity Engine Browser &
Editor. http://www.idi.ntnu.no/˜joh/ni/.

HLADKY, S., AND BULITKO, V. 2008. An Evaluation of Models
for Predicting Opponent Positions in First-Person Shooter Video
Games. In Proceedings of IEEE 2008 Symposium on Computa-
tional Intelligence and Games (CIG), 39–46.

HOULETTE, R. 2003. Player Modeling for Adaptive Games.
Charles River Media, Dec.

ID SOFTWARE. Índice de /idstuff/source/. ftp://ftp.
idsoftware.com/idstuff/source/.

IIDA, H., AND KOTANI, Y. 1998. Tutoring Strategies in Game-
Tree Search. Games of no chance: combinatorial games at MSRI
18, 4, 433–435.

JAVABOT. JavaBot for Unreal Tournament. http://utbot.
sourceforge.net/.

JENKINS, T. Main Page - Supertuxkart. http://
supertuxkart.sourceforge.net/.

LAIRD, J. E., AND LENT, M. V. 2000. Human-Level AI’s Killer
Application: Interactive Computer Games. In Proceedings of
the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial
Intelligence, AAAI Press, 1171–1178.

LAVIERS, K., SUKTHANKAR, G., MOLINEAUX, M., AND AHA,
D. 2009. Improving Offensive Performance through Opponent
Modeling. In Proceedings of the AAAI Conference on Artificial
Intelligence for Interactive Digital Entertainment, 58–63.

MACHADO, M. C., FANTINI, E. P. C., AND CHAIMOWICZ, L.
2011. Player Modeling: Towards a Common Taxonomy. In Pro-
ceedings of 16th International Conference on Computer Games,
CGAMES 2011 USA, 50–57.

MACHADO, M. C., ROCHA, B. S. L., AND CHAIMOWICZ, L.
2011. Agents Behavior and Preferences Characterization in Civ-
ilization IV. In Proceedings of the 2011 Brazilian Symposium
on Games and Digital Entertainment, IEEE Computer Society,
Salvador, Brazil, SBGAMES ’11.

MANOVICH, L. 2002. The Language of New Media (Leonardo
Books). The MIT Press, Mar.

MARTÍNEZ, H. P., HULLETT, K., AND YANNAKAKIS, G. N.
2010. Extending Neuro-evolutionary Preference Learning
through Player Modeling. In Proceedings of IEEE 2010 Sym-
posium on Computational Intelligence and Games CIG’10.

MARTINS, A. Open Sonic The Hedgehog. http://opensnc.
sourceforge.net/.

NAREYEK, A. 2004. AI in Computer Games. Queue 1 (February),
58–65.

NECHVATAL, J. 1999. Immersive ideals/critical distances. A study
of the affinity between artistic ideologies based in virtual reality
and previous immersive idioms. PhD dissertation, Centre Adv.

Inquiry Interactive Arts (CAiiA), Univ. Wales College, Wales,
U.K.

NWN2SCRIPTING. Nwn2 Scripting - Home. http://www.
nwn2scripting.com/.

ORKIN, J., SMITH, T., AND ROY, D., 2010. Behavior Compilation
for AI in Games.

PALI. Stratagus. https://launchpad.net/stratagus.

PALI. Wargus - Warcraft II. https://launchpad.net/
wargus.

PEDERSEN, C., TOGELIUS, J., AND YANNAKAKIS, G. N. 2010.
Modeling player experience for content creation. IEEE Trans-
actions on Computational Intelligence and AI in Games 2, 1,
54–67.

PERSSON, M. Infinite Mario Bros! http://www.mojang.
com/notch/mario/.

PONSEN, M., GERRITSEN, G., AND CHASLOT, G., 2010. In-
tegrating Opponent Models with Monte-Carlo Tree Search in
Poker.

RIO, P. The Programming Language Lua. http://www.lua.
org/.

SECRETMARYO.ORG. Secret Maryo Chronicles. http://www.
secretmaryo.org/.

SMITH, A. M., LEWIS, C., HULLETT, K., SMITH, G., AND SUL-
LIVAN, A. 2011. An Inclusive View of Player Modeling. In
Proceedings of the 6th International Conference on the Founda-
tions of Digital Games, ACM, New York, NY, USA, FDG ’11.

SMITH, A., LEWIS, C., HULLETT, K., AND SMITH, G. 2011. An
Inclusive Taxonomy of Player Modeling. Tech. rep.

SOLUTIONS, S. Home - Flight Gear. http://www.
flightgear.org/.

SONIC, A. R. O. API Reference. http://opensnc.
sourceforge.net/wiki/index.php/API_
Reference.

SPRONCK, P., AND DEN TEULING, F. 2010. Player Modeling in
Civilization IV. In Proceedings of the 6th Artificial Intelligence
and Interactive Digital Entertainment Conference (AIIDE), 180–
185.

TAN, C., TAN, K., AND TAY, A. 2011. Dynamic Game Diffi-
culty Scaling using Adaptive Behavioural Based AI. Computa-
tional Intelligence and AI in Games, IEEE Transactions on PP
Issue:99, 99, 1–1.

TAYLOR, L. N. 2002. Video games: Perspective, point-of-view,
and immersion. M.S. thesis, Grad. Art School, Univ. Florida,
Gainesville, FL.

THUE, D., BULITKO, V., SPETCH, M., AND WASYLISHEN, E.
2007. Interactive Storytelling: A Player Modelling Approach. In
In Proceedings of the third Artificial Intelligence and Interactive
Digital Entertainment conference (AIIDE’ 07).

THURAU, C., BAUCKHAGE, C., AND SAGERER, G. 2003. Com-
bining self organizing maps and multilayer perceptrons to learn
bot-behaviour for a commercial game. In GAME-ON.

TOGELIUS, J., DE NARDI, R., AND LUCAS, S. 2007. Towards
Automatic Personalised Content Creation for Racing Games.
In IEEE Symposium on Computational Intelligence and Games
(CIG) 2007, IEEE, 252–259.

VALVE. Authoring Tools/SDK (Alien Swarm). http:
//developer.valvesoftware.com/wiki/Alien_
Swarm_SDK.

VALVE. Authoring Tools/SDK (Left 4 Dead). http:
//developer.valvesoftware.com/wiki/
Authoring_Tools/SDK_(Left_4_Dead).

SBC - Proceedings of SBGames 2011 Tutorials Track - Computing

X SBGames - Salvador - BA, November 7th - 9th, 2011 7

VALVE. Authoring Tools/SDK (Left 4 Dead 2).
http://developer.valvesoftware.com/wiki/
Authoring_Tools/SDK_(Left_4_Dead_2).

VALVE. Valve Developer Community. http://developer.
valvesoftware.com/wiki/Main_Page.

VAN DEN HERIK, H. J., DONKERS, H. H. L. M., AND SPRONCK,
P. H. M. 2005. Opponent Modelling and Commercial Games.
In Proceedings of IEEE 2005 Symposium on Computational In-
telligence and Games (CIG’05), G. Kendall and S. Lucas, Eds.,
15–25.

WEIMER, W. WeiDU.org: Infinity Engine Utilities and Mods .
http://www.weidu.org/.

Marlos C. Machado is a graduate student in the Computer Sci-
ence Department at Federal University of Minas Gerais. His re-
search interests include machine learning and artificial intelligence
for games, in particular player modeling. The work described in
this paper is related with his Master’s research.

Eduardo P. C. Fantini is a graduate student in the Computer Sci-
ence Department at Federal University of Minas Gerais. His re-
search interests include multi-agent coordination, chatterbots and
general artificial intelligence for games.

Luiz Chaimowicz is an assistant professor in the Department of
Computer Science and has a CNPq Productivity Grant (level 2). His
PhD and postdoctoral were developed in the robotics field, more
specifically in the development of artificial intelligence algorithms
for multiple robots coordination. Since 2005 he is also working
in the games field. He was one of the SBGames08 general co-
ordinators and committee coordinator of the Computing Track in
SBGames09. He is a committee member of the SBGames editions
from 2007 to 2011. He was also one of the project coordinators
of the game “Estrada Real Digital”, funded by Finep in the Educa-
tional Games Edict.

SBC - Proceedings of SBGames 2011 Tutorials Track - Computing

X SBGames - Salvador - BA, November 7th - 9th, 2011 8

