Planning with Dynamic Noise for Emergent Storytelling

David B. Carvalho
Erick B. Passos
Esteban G. Clua
Computer Science Institute
UFF - Federal Fluminense University

Abstract

Since the inclusion of stories in games, developers have been work-
ing on making them respond in accord to the player’s options. How-
ever, make dynamical stories is not a trivial task. Applied to the
context of games, it is necessary to control the characters and the
environment without binding them to a single development and at
the same time assuring interesting ends. This paper presents a work
in the field of emergent stories with the objective of create more al-
ternative developments and make the characters act more naturally
by inserting and controlling errors, here called noise, in their be-
liefs of the state of the world. Here we make the characters loose
or change some information and take wrong decisions. This work
utilized one act of the Little Red Riding Hood story in a turn-based
fashion as test case, and obtained interesting results in the story
generation step.

Keywords:: Noise, Storytelling, Planning, Story Generation

Author’s Contact:

{dbatista,epassos,esteban } @ic.uff.br

1 Introduction

Stories, commonly modeled as a finite state machine paradigm in
games, are beginning to be worked as a more participating and dy-
namic component by reacting and adapting to the interventions of
the player. However, these interventions not necessarily lead one
story to a desired end. The answers to how much one player should
interfere with the events of a story and how much the story should
respond to the player’s actions divided the study of storytelling in
two approaches. The plot-based approach [Pozzer 2005] works
with pre-built plots that guide the events into predetermined sit-
uations, giving fewer possibilities of interventions but ensuring a
full developed story. The character-based approach [Cavazza et al.
2002] is modeled in order to give more freedom to the characters,
enabling a story to emerge from their actions. This may lead to
stories that respond better to the player’s actions, but with no guar-
antees that they will reach a predefined conclusion.

The characters’ freedom is related to the possibility to choose what
actions to take towards their own particular goals. Some approaches
[Charles and Cavazza 2004; Porteous et al. 2010] use these two key
features (actions and goals) to make the same story take different
courses. The characters may lead one story to more than one end if
they can perform different sets of actions in a given situation. The
handling of goals may also influence one story by giving a chance
to one character to reach his own set of goals in any order. In any
case, the generation process will be limited to the combinations of
all actions and/or all goals. Also, for one character to act more
naturally, it is necessary to reduce his options to the ones coherent
with his behavior. As more options are interesting to enable a sto-
rytelling system react properly to the player, we believe that more
techniques are needed to give alternatives to the generation process
and make the characters act realistically.

The simulation and treatment of errors is a common study in the
field of Artificial Intelligence [Klein and Dellarocas 1999; Brover-
man and Croft 1987], because the use of agents in real situations
require them to consider fails in their sensors and actions. The story
generation process could also benefit from the use of errors by in-
serting them into the characters’ knowledge and leading to wrong
actions on purpose. The occurrence of unequal errors in different

executions of the same story can make one character choose differ-
ent actions. This increases the number of development possibilities.
Some stories even utilize this resort to lead their characters to create
a problem and then make the rest of the events a series of attempts
to solve it.

This work proposes the modeling and insertion of noises in the
knowledge base of the characters, with some control over what
changes are done. Work with noises draws at least one problem:
how to control them without compromising the knowledge neces-
sary to make the story happen. The solution of this problem in a
general way is not in the scope of this work, but we describe how it
was treated in our test and how it can be done in similar cases.

This paper is organized as follows: section 2 relates this research to
previous ones in the field; Section 3 explains the architecture of the
system created for this work; Section 4 details the noise insertion
technique dividing it in two main approaches; Section 5 describes
one test case scenario and its results; and finally in section 6 we
conclude this paper with an analysis of the outcome of the generated
stories and propose some future work.

2 Related Work

Planning techniques have been developed and used together with
several approaches in the context of storytelling [Cavazza et al.
2002; Kruizinga 2007; da Silva 2007]. The use of each technique
is directly related to the specific requirements of the system, to the
level of user interaction and control over development possibilities.
For this work, we choose a GraphPlan algorithm for the planning
step (details about the Graph planning can be found in [Russell and
Norvig 2010]), but it would be interesting to test the use of noise
with different techniques and see what kind of variations they would
generate with this feature.

Cavazza [2002] describes a system which utilizes characters whose
actions are planned through their own HTN networks. Each net-
work disassembles the characters’ goals in a set of smaller ones
to which are given different ways to achieve. In [da Silva 2007],
the author also worked with HTN networks, but in a plot-based
approach and inserting non-deterministic effects in the characters’
actions. In this approach, even different effects must lead to prede-
termined ends, so the number of alternatives is given by the num-
ber of acceptable stories these consequences may generate. Mateas
and Stern [2005] developed FACADE, a game that uses a hybrid
of the character and plot approaches. The characters are controlled
by a drama manager that selects pre-built situations, called beats,
to make them act in accord of their personalities and goals. The
generation step creates stories that are tied to the combination of
these beats. Our work tries to generate different developments for
stories not by giving options of actions or alternative events for the
same situations, but by the management of errors in the characters
knowledge, which can be considered a supplementary feature for
those works.

Even with the generation of alternatives events as the main objective
of the application of noise, this technique also lead the characters
to act more naturally, because it simulates knowledge errors, that
may be considered a common problem with characters. In this field
there are several works such as [Damiano and Lombardo 2009; Su
et al. 2007] that simulates the emotions and values to guide the
characters’ actions, and [Bosse et al. 2007] that works with the use
of knowledge of one character about the others to, for example,
make him influence them to reach his own goal. We consider these
approaches useful to make stories more credible and consequently
more immersive.



World

Environment

Planner

L
a0

Problem Definition

Problem Domain

Figure 1: Representation of the system architecture. It works with
a planner and a world state composed of an environment, a set of
characters and their goals.

3 System Architecture

The proposed system works with a set of characters, an environ-
ment and a planning algorithm. The characters are described with a
collection of attributes that compose their state and the environment
with a set of locations and paths between them. These descriptions
together form the world state. Each character, to guide his actions
also has his particular goal. The planning algorithm receives as
input the world state and the goal of one character at a time, gen-
erating a plan for every character in a turn-based fashion. Every
character in his own turn executes the first action of his plan, then
the system follows with the next character. Figure 1 shows this
architecture.

Every character has its own unique goal which may interfere with
the others’, like kill another character or may only concern his own
state like obtain a determined item. As the characters are not able
to assume new goals, the conflicting ones are the criterion for the
end of the system execution. If there are no conflicting goals, the
system may cease its execution when they are all resolved.

To support independent characters that follow their own goals based
in what they know about the environment, the planning algorithm is
used to generate a plan for each character at a time, in a turn based
fashion, by taking his goal as the state to be reached. The plan
generated in every turn only represents one solution for the current
state of the world. Taking into account that every character, in its
turn, make one action towards the goal, the world state changes in
every turn, so the characters must replan their actions every time
they make one move. The system proceeds following the described
cycle: the first character plans its actions and executes the first one
returned in the plan, the second one makes its own plan already
considering the changes done by the first, and so on until all the
characters make one action. Code 1 shows the turn-based fashion.

Input: A set of characters and an environment.
Output: A story composed of a set of actions.

planner.characters = characters;
planner.map = map;
end = false;
while (!end)
for each char in characters

planner.character = char;
plan = planner.makePlan();
action = first action of char in plan;

updateWorldState (action) ;
story.add(action);
if (reached end condition of story)
end = true;
break;
return story;

Code 1: Turn-based Story Generation

The goals used by the planning algorithm, given the world state and
the possibilities of state changes of the environment, must be reach-
able or at least it must be possible for the algorithm to consider a
goal as unreachable, otherwise the system will execute indefinitely.
The only case in which it is acceptable for a goal to become un-
reachable is when its conditions are made intangibles by the fulfill-
ing of a conflicting goal, which will lead to the end of execution.
One goal may not be made impossible by the use of noises.

The use of a turn-based planning has the disadvantage of not being
able to execute more than one action in parallel. However, the char-
acters do not need to consider changes in the ambient while they
are acting in one cycle.

The system uses PDDL (Planning Domain Definition Language)
version 3.0 together with Saigol’s [2007] implementation of the
GraphPlan algorithm.

4 Noise

The character-based approach works with the development of
events without a pre-built plot, based only in the description of
the world and of the characters. This description must be detailed
enough to enable one character to make decisions, express his per-
sonality and show possibilities of story variations. The problem
with this approach is that increasing the complexity of the envi-
ronment and the amount of actions per characters not necessarily
generates all the interesting types of situations in which a charac-
ter may be and it not necessarily will make the same character, in
two different executions, take different decisions at the same point
of story, because of the determinism intrinsic to a formal agent de-
scription.

Another way to insert new possibilities for the development of a
character-based story is to make the characters receive the infor-
mation from the environment with some noise. The noises may be
an interesting font of changes because they can make a character
take wrong decisions and follow them until realizing that the con-
sequence of his actions are not coherent with his goals, allowing
the occurrence of unexpected events that may accumulate and lead
to interesting ends. Even this approach alone may not be enough to
generate considerable changes in stories, but combined with other
factors (such as the usage of different actions), can increase the
number of different developments.

In our system, the noise is inserted in the characters perceptions
of the world and can make some information disappear (omission
noise) or change its content (divergence noise).

4.1 Omission Noise

The omission noise is characterized by the removal of some of the
information that was received by a character. It may be removed
from the perceptions of an agent at the moment it uses its sensors,
or from the current knowledge-base. In this system case, the omis-
sion noise is used in the environment description to remove some
information from the original graph. The planning algorithm re-
ceives a character and the environment, in each turn, modified with
the removal of some information. This way a character is forced to
replan its actions because of the movements done by the others and
because information used to make the current plan may be missing.

Considering, as example, a world composed of interconnected
rooms that may or may not have some items, the omission noise
algorithm could make some items or edges disappear from the prob-
lem description. A character that has to collect some of these items
may become obligated to walk through a greater number of rooms
just because some edges disappeared. Also, for every action taken
by him, a new noise is made and other edges and items are ignored,
so the character needs to make new plans.

The PDDL problem description file is made with: a section that
defines the domain of the problem, a section with the instances of
the objects that compose the particular problem, and a section ini-
tializing these objects with a collection of predicates. In the system
developed in this work, the information to be removed is chosen



randomly and to not be considered by the planner, it is just ignored
as the problem description file is created. The removal of a node
itself may be a challenging task depending on the problem to be
solved. This operation is done by the removal of some predicates
that compose the objects initialization, but only the ones with infor-
mation that do not compromise the story basic structure. In the ex-
ample above, it corresponds to leave in the world at least the items
the character needs to collect and maintain the graph connected.

The use of an omission noise algorithm at first sight, appears to, at
most, increase the size of the original story by disturbing the char-
acters, but these noises also can make longer and/or more dangerous
paths disappear helping the characters to reach their goals quickly.

4.2 Divergence Noise

The other type of noise to be considered in generating new possi-
bilities for the development of stories is the divergence noise. As in
the omission case, it may act in the characters’ perceptions sensors
or in the knowledge-base, but this time changing the information,
once more forcing the characters to make new plans for each action
they take.

In the example described above, the use of divergence noise could
make changes in the edges of the graph or in the positions of the
items. Different from the omission case which would still permit
one character to make coherent plans, in other words, it still would
be able to make a route using paths that do exist, with the diver-
gence noise the character would try to use paths that lead to rooms
that were not considered in the planning step or even use paths that
do not exist. The errors in the position of the items would lead the
character to wrong rooms too. As can be noticed, the use of diver-
gence noise in the edges of a graph requires the management of the
choices made by the character in his point-of-view and their real
consequences.

While the omission noise may lead a character to have fewer action
choices or make a correct, but not optimal plan because of removed
information, the divergence noise may lead principally to wrong
plans, because if a character is created being able to respond to
every situation with a set of actions and if the information he uses
to choose between actions is wrong, he necessarily makes wrong
actions.

5 Tests

5.1 Scenario

For this work we used as test case the generation of a story inspired
from one segment of Little Red Riding Hood. This act is performed
by two characters: the protagonist and the wolf, and it takes place
in a forest that the first character has to go through to reach her
grandma’s.

In our scenario, this forest is represented with a map, composed of
paths that lead the protagonist to her goal. It has a set of nodes,
each one with a name, a collection of neighbors and a danger value,
which represents how problematic it is to pass through the place
it represents. This danger value is used with one of the characters
attributes, called tension, to monitor the level of excitement of the
story development. Little red riding hood initiates the story in her
house with the goal of reaching her grandma’s with a bunch of flow-
ers. The wolf begins the story with the objective of killing the other
character. As the protagonist will not be able to walk after being
killed, the goals are conflicting, so the story is programmed to end
if any of the characters reach his own.

The available actions are: move between locations, with the effect
of increasing the tension value of the executioner by the danger
level of the destination, kill another character, and pick up object.

With the description given up until now, it is possible to generate
different stories based in what paths the characters choose to take.
This problem description alone would lead to variations based in
the map and in the distribution of the flowers. To make different
developments, the omission noise is inserted in the map description

to remove some of the paths. This leads to a reduction of move-
ment options, but considering that, in every turn different paths are
removed, the plans the characters do in a first iteration may not be
valid in a second one. To maintain possible the fulfilling of the
protagonist goal, the omission noise is controlled to keep the map
connected. The divergence noise is also used in the map descrip-
tion, but to change the locations of the flowers. The control over
the divergence algorithm is used to allow the little red riding hood
to pick the quantity of flowers it was assigned to. To evaluate the
use of these two types of noise, the story generation process was
done first without them, then with the insertion of only the omis-
sion noise, followed by the insertion of only the divergence noise
and finally with both. For each case with noise, the system was
executed 30 times.

5.2 Results

As a deterministic algorithm, the GraphPlan generated only one
story for the test case that did not utilize any noise. This story is
shown in code 2, it is composed of 6 actions, in which the wolf’s
and the Little Red Riding Hood’s tension was raised to 5 units and
the wolf ended successful.

[move (lrrh, house, woods)
move (wolf, bridge, woods)
move (lrrh, woods, church)
move(wolf woods, church)
pick (lrrh, church, flower)
kill(wolf church, lrrh)]

Code 2: Action sequence representing the story generated without
the use of noise

With the omission noise it was possible to obtain 10 different de-
velopments, in which 4 resulted in the death of the protagonist and
6 in the arrival at the grandma’s. 24 story instances created those
first 4 ends, and 6 instances the remaining 6 ends. In code 3, it is
shown the generated story with higher tension development for this
case.

[move (lrrh, house, woods)

move (wolf, bridge, woods)

move (wolf, woods, church)

(
(
move (lrrh, woods, bridge)
(
pick (lrrh, bridge, flower)
move (wolf, church, bridge)

move (lrrh, bridge, grandma-house) ]

Code 3: Action sequence representing one story generated with the
use of omission noise

For the third case, the generated process created 8 different devel-
opments, 5 of them ending with the victory of the wolf and 3 of
them with the victory of the protagonist. 24 instances were respon-
sible for the first 5 ends and 6 instances for the other 3 ends. The
story created with only the divergence noise with higher tension
development is shown in code 4.

[move (lrrh, house, woods)
move (wolf, bridge, woods)
move (lrrh, woods, church)
move (wolf, woods, church)

move (1lrrh, church, woods)

pick (1lrr woods, flower)

(
(
move(wolf church, woods)
(
kill(wolf woods, lrrh)]

Code 4: Action sequence representing one story generated with the
use of divergence noise

In the final test case, the system was able to find 15 different devel-
opments, 6 of them ending with the death of the Little Red Riding
Hood and 9 endings with the fulfilling of her goal. 18 instances
reached the first 6 endings and the 12 remaining instances the other
9 endings. This case was able to create an alternative story consid-
erable higher than the others, this story can be seen in code 5.



Average story size Hmmm
Average Little Red Riding Rood Tension mmsm
Average Molf Tengion mmmm

values

Mithout noise Onission Moise Divergence Noise Both Noises
Test Cases

Figure 2: Comparison of story size and characters’ tensions.

[move (1lrrh, house, woods)
move (wolf, bridge, church)
move (lrrh, woods, marsh)
move (wolf, church, woods
move
move (wolf, woods, bridge
move (lrrh, bridge, marsh

(

(

(

(lrrh, marsh, bridge

(

(
move (wolf, bridge, woods

(

(

(

(

(

(

)
)
)
)
)
)

move (lrrh, marsh, bridge
move (wolf, woods, bridge)
move (lrrh, bridge, church)
move (wolf, bridge, church)
pick (lrrh, church, flower)

kill(wolf, church, lrrh)]

Code 5: Action sequence representing one story generated with the
use of both noises

Tension development, in those test cases, is directly related to the
path each character uses to complete his goals, in result it shows
how in execution it was possible to make the character take different
courses. In Figure 2 it is possible to see the average story sizes and
average tension values.

6 Conclusion

The similarities in the final tension values for the two characters
is a direct result of the behavior of the wolf and the map. While
the protagonist has to reach a place with flowers and then proceed
to the grandma house, the wolf needs to chase her (making him
repeat her movements). Also, the size of the map and the wolf’s
initial position allow him to stay, at most, one node away from the
other character. Moreover, this explains why the stories tend to end
with the death of the protagonist (including the one without noises),
because the wolf only has to chase her until she finds a field of
flowers, and then while she uses her last turn to pick some, the wolf
utilizes his last to attack.

The omission noise was able to aid the Little Red Riding Hood by
removing some options that would lead the characters to an early
encounter, so she had a safe distance to pick the flowers and proceed
with her goals. In one story, this removal did the opposite effect:
the protagonist moved directly to the wolf, whose only two actions
were a move to a place without danger and the killing of the other
character. The divergence noise, in some cases, put the flowers in
the protagonist’s house, which led her to pick them immediately,
leaving the wolf with two options as initial movement and clearing
the path to the gradma’s house. In other cases, the flowers were
put in the protagonist goal position, so it was possible to reach it
and finish the story without giving chance to the wolf. In some sto-
ries the positions of the flowers changed in the same turn they were
meant to be picked. Finally, with the two noises different situations
emerged, like the positioning of flowers in nodes to which the char-
acters “forgot” the path, sometimes combined with the removal of
some path that would lead the wolf to the protagonist. In short, the
use of more corrective actions led to stories with different sizes and
tension levels.

The modeling of noises in the characters’ visions of the world
turned possible to generate interesting variations of stories for the
same scenario. For our test cases it mostly increased the size of
stories, but it also created smaller ones. Some combinations led
to exceptional situations in which the tension of the characters suf-
fered considerable variations. However it brought the necessity to
treat all the new problems that a character may confront when it
takes a wrong action, like dead-ends.

As a work in progress, we consider important to continue this re-
search the use of noise with different planning algorithms to see
how much impact it would cause in story development. Another
direct evolution of this paper is the insertion of noises in the ac-
tions. This idea would repeat some proposes of this paper: increase
the development possibilities, simulate characters that do not know
exactly what are the consequences of their actions and make the
generation process more realistic.

References

BOSSE, T., MEMON, Z., AND TREUR, J. 2007. Emergent sto-
rylines based on autonomous characters with mindreading capa-
bilities. In Proceedings of the 2007 IEEE/WIC/ACM Interna-
tional Conference on Intelligent Agent Technology, IEEE Com-
puter Society, 207-214.

BROVERMAN, C., AND CROFT, W. 1987. Reasoning about excep-
tions during plan execution monitoring. In Proceedings of the
National Conference on Artificial Intelligence (AAAI-87).

CAVAZZA, M., CHARLES, F., AND MEAD, S. 2002. Character-
based interactive storytelling. /EEE Intelligent Systems,, 17-24.

CHARLES, F., AND CAVAZZA, M. 2004. Exploring the scalabil-
ity of character-based storytelling. In Proceedings of the Third
International Joint Conference on Autonomous Agents and Mul-
tiagent Systems-Volume 2, IEEE Computer Society, 872—-879.

DA SILVA, F. A. G. 2007. Geragdo de Enredos com Planejamento
Ndo-Deterministico em Storytelling para TV Interativa. Master’s
thesis, Universidade Federal do Estado do Rio de Janeiro.

DAMIANO, R., AND LOMBARDO, V. 2009. Value-driven charac-
ters for storytelling and drama. Al* IA 2009: Emergent Perspec-
tives in Artificial Intelligence, 436—445.

KLEIN, M., AND DELLAROCAS, C. 1999. Exception handling in
agent systems. In Proceedings of the third annual conference on
Autonomous Agents, ACM, 62-68.

KRUIZINGA, E. 2007. Planning for character agents in automated
storytelling. Master’s thesis, University of Twente.

MATEAS, M., AND STERN, A. 2005. Structuring content in the
facade interactive drama architecture. Proceedings of Artificial
Intelligence and Interactive Digital Entertainment, 93-98.

PORTEOUS, J., CAVAZZA, M., AND CHARLES, F. 2010. Narra-
tive generation through characters’ point of view. In Proceedings
of the 9th International Conference on Autonomous Agents and
Multiagent Systems: volume 1-Volume 1, International Founda-
tion for Autonomous Agents and Multiagent Systems, 1297—
1304.

PozzER, C. 2005. Um sistema para geracao, interacao e visual-
izacao 3D de historias para TV interativa. PhD thesis, Pontificia
Universidade Catdlica do Rio de Janeiro.

RUSSELL, S., AND NORVIG, P. 2010. Artificial intelligence: a
modern approach, 3 ed. Prentice hall.

SAIGOL, Z. 2007. Intelligent planning for autonomous underwa-
ter vehicles: Rsmg report 2. Tech. rep., School of Computer
Science, University of Birmingham.

Su, W., PHAM, B., AND WARDHANI, A. 2007. Personality
and emotion-based high-level control of affective story charac-

ters. IEEE Transactions on Visualization and Computer Graph-
ics, 281-293.



