




Algoritm 2 Agent’s Movement on the map

Require: Map: m× n Bidimensional Map.
Require: Pos: Agent’s Position.
Require: Checkpoint: Agent’s Goal.

1: Path←A∗(Map, Pos, Checkpoint);
2: Wait();
3: while Path 6= {φ} do
4: NewPos← NextPosition(Path);
5: if The position NewPos is empty then
6: MoveAgent(NewPos);
7: else
8: Wait();
9: end if

10: end while

was hard because of CUDA’s restrictions. Since CUDA do not al-
low dynamic structures, it is necessary to calculate the maximum of
memory of each execution and alocate it to prevent memory issues.
Another restriction was the sorting function. The algorithm use in
JADE was the Quicksort. By its recursive approach, it cannot be
fully implemented in GPU, so we’ve used the Buble Sort instead.

Syncing in JADE is provide by the syncronized directive, that is
used to create a monitor in the methods. Every time one agent
wants to change its position, it will call a restricted method, that
provides only one agent at time. CUDA has something similar, at
each attempt to move, the function __sync() syncs all the threads
during the execution.

5 Analysis

In this work we evaluated two multithread implementations, one us-
ing JADE and another using CUDA. The tests were performed on
a Intel Core 2 Duo 2.26GHz CPU, 4GB of RAM and in a NVIDIA
Geforce 9400M GPU with 256MB of memory. We’ve tested four
instances that can be seen in Table 1, where Scn is the scenario
identification, #Agents is the number of agents used in the experi-
ment, and #Map represents the dimension of the map used at each
execution. The time is measured in miliseconds.

Scn # Agents #Map
1 3 6× 6
2 5 10× 10
3 10 20× 20
4 43 40× 40

Table 1: Test Cases

At each execution we calculate the speed-up between JADE and
CUDA, the mean and the standard deviation. Figure 1 shows the
evolution among the scenarios. Vertical bars are the standard devi-
ation and the points are the mean times. The table 2 also presents
the execution times and standard deviations of each execution.

Figure 1: Speed-Up Evolution Graphic

Scn Mean SD
1 22, 5 8, 02
2 37, 9 4, 65
3 86, 9 21, 83
4 179, 5 31, 84

Scn Mean SD
1 6, 51 0, 06
2 32, 47 0, 05
3 302, 18 0, 94
4 994, 61 6, 65

Table 2: Jade’s(left) and CUDA’s(right) Execution Times

We noticed that JADE beats CUDA from the third scenario on. This
phenomena can be explained because of the A∗’s complexity, mak-
ing the GPU inefficient to deal with many threads. Another relevant
issue was the restriction on dynamic structures in this GPU, which
required to an excessive use of memory in GPU. Nowadays, the
most powerful GPU’s solve some of these problems with the new
Fermi Architecture[NVIDIA 2011].

These result was not conclusive though, since we need to verify
we’re is the bottleneck of CUDA’s execution and provide a solution
that does not unfollow FIPA’s standards.

6 Conclusion and Future Work

In this work we’ve showed and overall of the main concepts of an
Multi Agent System, and its evolution over the time. This evolution
brigs is to the necessity of a standardization called FIPA, followed
by a new paradigm, that is called Agent Oriented Paradigm. In
parallel, we’ve seen the possibility to use graphic architectures for
general purpose, which is called GPU Computing.

We’ve continue our previous work, showing study cases to map an
AOP paradigm to a GPU Architecture, using JADE framework and
CUDA to AOP and GPU Computing respectively. It was shown its
differences, similarities, advantages and disadvantages of each one.
In the future, this works aims to determinate in which cases it is bet-
ter to use CUDA rather than AOP, and with these information create
an abstraction layer that will be possible to create agents directly in
GPU, so the developer won’t have to learn GPU’s architecture, in-
creasing the learning process.

Although the performance test does not represent an efficient al-
gorithm right now, we could investigate why CUDA is losing, and
this will serve to find better approaches following FIPA specifica-
tions. These will help us to specify patterns to be followed when
programming agents in GPUs. In parallel, we’ll test our approaches
with more powerful and newer GPU’s architectures to obtain better
results. We’ve already indentified some of the bottlenecks, and we
shall work on it.

We believe that CUDA is more useful when we have many similar
agents with less communication, although JADE has a huge set of
tools and is better to map when we have many different types of
agents and it is not necessary to simulate a huge number of agents.
However, we need to evaluate our beliefs, and this is the next step
of our work.
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