
Evaluating the visibility algorithm of point-based graphics for real-time
applications

Rodrigo Braga
Alexandre Valdetaro

Gustavo Nunes
Alberto Raposo

Bruno Feijó
Pontifical Catholic University of Rio de Janeiro (PUC-Rio) - Department of Informatics

Abstract

In this paper we present a detailed study and some improvements
of the technique "Direct Visibility of Point Sets" [Katz et al. 2007],
which proposes an operator that can distinguish visible points from
occluded points in a point cloud. The operator is not originally in-
tended for real-time usage due to its computational complexity, so
we present an improvement that maintains the visual quality and
allows it to be used in real-time. We also expose a problem that
is not evident in the original work, the operator requires the com-
putation of a convex hull with a set of points. This convex hull is
calculated with QuickHull algorithm [Barber et al. 1996], but the
point set generated into the operator causes a worst case entry for
QuickHull, making it slower than expected. We also provide some
options for speeding the convex hull algorithm that trade off visual
quality for performance.

Keywords:: Point-based graphics, Visibility, Point Cloud, Point
Rendering, Real-time, QuickHull

Author’s Contact:

{rodrigo,alexandre,gustavo}@xtunt.com
{bfeijo,abraposo}@inf.puc-rio.br

1 Introduction

Although point-based rendering has been receiveing increasing at-
tention since the last decade, treating points as primitives is still
a challenge. Despite the recent research, point based graphics is
still non mainstream, and is current applied only to specific niches.
Nevertheless, it may be a very promising area. Two factors can be
considered as a motivativation for the current usage of point primi-
tives, procedural shape definition and automated shape acquisition.
The inherent scale and complexity of these shapes can make great
use of a simple representation such as points. However, proper ren-
dering of points requires at least a proper acquisition technique and
an understanding of a correct rendering process.

Also, if one looks more carefully into the possiblities for the fu-
ture of mainstream rendering pipeline, a comparison between the
current polygon based graphics and point based graphics may show
some clear advantages to the latter. The polygonal complexity of
triangle based models increases with each passing year. Moreover,
the processing of these models is getting more and more complex,
and the granularity of the triangles is so great that it may even be-
come unnecessary to fill a polygon as it is already in a sub-pixel
size. In such scenario a point based rendering can be used as a
similar representation, however with a set of clear advantages: Un-
limited level of detail, smoother animation, no self-collision and
discontinuities among others.

The point based graphics area can be coarsely subdivided in two
main areas, surface reconstruction and direct point rendering. Most
of the techniques in current point-based graphics area are dedicated
to surface reconstruction, where the actual point cloud is used only
in a pre-processing stage to build a polygon-based mesh. Then the
generated mesh can be rendered via regular polygon pipeline.

The direct point rendering area is where the point cloud is rendered
as point primitives. It is still a rather unexplored area, due to inher-
ent problems of using points as primitives. One of these problems

is self occlusion. As a point can never be an occluder, and there is
no counter-clockwise/clockwise culling for it, the occluded parts of
a point model are always visible. The technique "Direct Visibility
of Point Sets" [Katz et al. 2007] proposes an operator, that can be
applied to a point set, based on a view, to determine which points
should be visible and which should be occluded.

In this paper we present a careful analysis of Katz’s operator us-
age. We propose a simple method of using the operator in real-time
without compromising visual quality. Also, we expose some in-
herent problems of the operator that makes it fall into worst case
scenarios of convex hull algorithms, which are necessary for the
selection of visible points.

2 Related Work

Determination of the geometry visibility and occlusion is often an
overlooked problem in general computer graphics, as both z-buffer
for polygonal models and ray tracing rendering pipelines provides
simple ways to cull the occluded geometry. However, when dealing
with point primitives, there is no such straightforward approach for
detection of visible points based on a point of view.

During ray tracing, since points are discrete primitives and rays
have no volume, there is no simple collision. [Schaufler and Jensen
2000] give a "volume" to rays, [Rusinkiewicz and Levoy 2000],
[Dutré et al. 2000], [Zwicker et al. 2001], [Wu and Kobbelt 2004],
[Guennebaud et al. 2004] treats the points as an "area" with the
normals pointing to the observer. So there may be collision and
visibility can be determined. However, ray tracing approaches gen-
erally require some acceleration structures such as patial hierarchies
[Gross and Pfister 2007].

If dealing with a unstructured raw point set, z-buffer algorithms can
be a better option than ray tracing. Splatting is a forward-projection
approach that determines visibility with the z-buffer, [Sainz and Pa-
jarola 2004] and [Dachsbacher et al. 2003]. Although efficient and
simpler, z-buffer splatting can suffer in the visual quality if com-
pared to ray tracing solutions.

Also, the normal of a point can determine if it belongs to a self-
occluded part of a model. However, a simple normal estimation
can be complicated, [Hoppe et al. 1992] introduced an approach of
finding the k-nearest neighbours of a point and taking the normal of
the total least squares best-fitting plane of the neighbourhood as the
normal at the point. [Mitra et al. 2004] approach was to take only
points in a certain adaptative radius around a point.

These cited approaches all determine the visibility during render-
ing. [Katz et al. 2007] proposes an operator HPR (Hidden Point
Removal) to solve visibility regardless of rendering. Also, there is
no surface continuity and sampling regularity requirements, and no
requisition for points to be associated with normals. The HPR, how-
ever, requires a computation of a convex hull for the whole point set
at every frame, limiting its real-time applicability.

This paper proposes a method to enable HPR operator to be used to
calculate visibility in real-time. There is also a section that exposes
a problem with the Quickhull algorithm when used to calculate the
convex hull of the point-set output by the HPR.

SBC - Proceedings of SBGames 2011 Computing Track - Short Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1



3 The HPR Operator

The HPR operator is composed by a viewpoint (camera position)
C and a set of points P. Each point pi is considered a sampling of
a surface S. The operator is responsible to determine which points
are visible from C. The identification of these visible points is made
through two steps, discussed below:

3.1 Inversion

There are various ways to perform the inversion. In the origi-
nal paper, the HPR author focus on spherical flipping. To realize
the inversion by spherical flipping, it’s necessary to define a D-
dimensional sphere that contains a radius R and a center C. The
value of C is easy to define because it’s the camera position. How-
ever, to automatically define the radius R is not immediate, because
it’s necessary to evaluate the density and ε-visible, described in
[Katz et al. 2007]. To simplify this definition, the alternative so-
lution is define the radius, manually. In other words, set a value for
radius that includes all points.

Figure 1: Spherical flipping

Intuitively, spherical flipping reflects every point pi internal to the
sphere along the ray from C to pi to its image outside the sphere by
applying the following equation:

p̂i = f(pi) = pi + 2(R− ‖pi‖)
pi
‖pi‖

3.2 Convex Hull

The convex hull of a set Q of points is the smallest convex polygon
P for which each point Q is either on the boundary of P or in its
interiors. The Figure 2 illustrates the concept.

Figure 2: Illustration of Convex Hull in 2D

To construct the convex hull, it is important to consider all reflected
points of P: P̂ = {p̂i = f(pi)|pi ∈ P} and the camera position C.
The inclusion of C is important since points on the back side of the
object may otherwise lie on the convex hull, when C is external to
P.

After the execution of convex hull algorithm, a new set of elements
is created. This set is composed by all reflected points of P̂ that
reside on the convex hull and by the camera position. Each point,
excepted for camera position, are considered visible from C.

In Figure 3, the black line represents the convex hull and the red line
represents the visible points. For this example, only the dorse and
tail of cat contains visible points from C. For the complete proof
please refer to [Katz et al. 2007].

Figure 3: Illustration of visible points

4 QuickHull

HPR author is not concerned with real-time application of the HPR,
so there is no detailed performance analysis. In the original work,
the QuickHull [Barber et al. 1996] algorithm is used to calculate
the convex hull of the output points from HPR. The algorithm is an
efficient divide and conquer strategy that recursively subdivides the
space in tetrahedrons eliminating points that do not belong to the
convex hull. For any general case convex hull the Quickhull can
be an appropriate choice, whereas the expected complexity for an
average case is O(n.logn). However, if the recursive splits are not
well balanced, the time complexity can easily get to a prohibitive
O(n2)[Mucke2009].

The HPR output points unfortunately do not compose a well bal-
anced space for an input to the Quickhull algorithm. The points
are concentrated on a thin outer layer of a semi-sphere, and the
semi-sphere comprises a very small portion of the whole sphere. In
such arrangement, every split executed by the Quickhull can only
eliminate few points. As shown at Figure 4, the points after the
HPR operator are almost at the same plane, through the steps of the
Quickhull algorithm a thin layer is selected and only few points are
discarded as not being at the convex hull of the flipped point cloud.
In that way, many steps of Quickhull algorithm has to be made in
order to resolve the final convex hull.

By producing a small perturbation in the points positions, a random
addition of +-0.01 of sphere radius to each coordinate, we were able
to enhance the calculating speed of the convex hull by an order of
magnitude. See the table 1 for actual values.

Stanford Models Without Perturbation With Perturbation
Bunny 4.5 0.9
Dragon 150 70

Table 1: Execution time of QuickHull (in seconds)

The PC setup that held the tests was an Intel Core i7 920 2.66Ghz
with 6GB RAM and a NVIDIA Geforce 480GTX video card.

5 Multithreading

Even though the visible points must be rendered at every frame,
they may not need to be calculated at every frame. In our implemen-
tation, we decided to maintain two separate buffers for the points:
the points backbuffer and the points frontbuffer. The work of these
buffers is analogous to the Graphics APIs buffers. The frontbuffer
is the buffer that contains the last calculated with the HPR visible
points and these are the points passed to the GPU for rendering.
The backbuffer is constantly used by an auxiliary thread that keeps
calculating the HPR and Convex Hull for all the points. Whenever
the auxiliary thread is done calculating, it raises a flag. This flag
is watched by the main thread and means that the backbuffer needs
to be copied to the frontbuffer, so the to-be-rendered points are up-
dated. We used this multi-threaded approach with a model of a size
that the auxiliary thread can calculate HPR and convex hull every
30 frames in a 60 fps ratio. There was no visible difference even
with a camera speed of half the model bounding sphere’s radius per
second. Although it can’t still be considered an efficient approach
for real-time direct point visibility calculation, with our approach it
can already be used for models that are not massive.

SBC - Proceedings of SBGames 2011 Computing Track - Short Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2



6 The Algorithm

Before using the HPR operator and its optimizations, it’s neces-
sary to load a point cloud that represents a specific 3D model. Af-
ter loading this model, ie., after obtaining at least, the information
about of each point position, it’s possible to use the HPR operator.
The implementation of this operator is very simple, composed of
the next three steps:

1. Perform the inversion of model’s points, ie, apply the inver-
sion described in Section 3. To do this, it is necessary to de-
fine a value to radius R as it is required for spherical flipping
implementation. For this paper, the value of R will be set man-
ually based on these facts: high values of R are utilized for a
dense point cloud and low values of R are utilized for sparse
point cloud. It’s important to highlight that for high values of
R, some points that should be occluded pass in the threshold
of convexhull and eventually become visible.

2. Applies the Quickhull algorithm on the reflected points to de-
fine which are the visible points for the camera. The cam-
era position must be considered on the computation of the
Quickhull. The visible points are all the points that lies on
the Quickhull.

3. At this moment, all points considered visible by the camera
are known. However, these points are still transformed by
spherical flipping. So, they cannot be rendered because they
are not points of the original model. To solve this problem,
is necessary to create a mapping between the original points
of the model with the transformed spherical flippled points.
Once this mapping is done, it’s easy to know what are the
transformed and visible points in the original model. Now,
with the information about the original and visible points, just
send these points to be rendered

The algorithm is executed using the multithreading concept, de-
scribed in Section 5.

Algorithm 1 HPR Algorithm

points[], f lippedPoints[], quickhullPoints[];

points[] := loadPointsFromModel();

CreateThread();
InitializeThread(DoWork);

proc DoWork() ≡
flippedPoints[] := sphericalF lipping(points, radius);
quickhullPoints[] := quickhull(flippedPoints);
mappingPoints();

.

DrawPoints();

7 Conclusion and Future Works

The optimizations made to the HPR operator algorithm improved
the performance and interactivity in point-based graphics applica-
tions. The use of threads for computing the visibility of points al-
lowed a real-time rendering for not complex models.

Another important factor was the gain obtained by performing a
perturbation on the position of each point in the original model.
This modification allowed a reduction of 80% on the time execution
of Quickhull’s algorithm for the Stanford Bunny’s model (69451
points) and a reduction of 53% on time execution for the Stanford
Dragon’s model (871414 points) - see Figures 5 and 6.

As future work we intend to make feasible to use the HPR op-
erator for massive models. An alternative is the implementation
of the Quickhull 3D algorithm using a full parallel approach with
GPGPU. With the completion of this improvement, there is the pos-
sibility that the performance gain of this approach allows a greater
degree of interactivity for more complex models.

Acknowledgment

The authors would like to thank CNPq, CAPES, FAPERJ, Tecgraf,
ICAD/VisionLab and Petrobras for the financing support.

References

BARBER, C. B., DOBKIN, D. P., AND HUHDANPAA, H. 1996.
The quickhull algorithm for convex hulls. ACM TRANSAC-
TIONS ON MATHEMATICAL SOFTWARE 22, 4, 469–483.

DACHSBACHER, C., VOGELGSANG, C., AND STAMMINGER, M.
2003. Sequential point trees. In ACM SIGGRAPH 2003 Papers,
ACM, New York, NY, USA, SIGGRAPH ’03, 657–662.

DUTRÉ, P., TOLE, P., AND GREENBERG, D. P. 2000. Approxi-
mate visibility for illumination computations using point clouds.
Tech. rep.

GROSS, M., AND PFISTER, H. 2007. Point-Based Graphics
(The Morgan Kaufmann Series in Computer Graphics). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

GUENNEBAUD, BARTHE, L., AND PAULIN, M. 2004. Deferred
splatting. Computer Graphics Forum 23, 653–660.

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND
STUETZLE, W. 1992. Surface reconstruction from unorganized
points. In Proceedings of the 19th annual conference on Com-
puter graphics and interactive techniques, ACM, New York, NY,
USA, SIGGRAPH ’92, 71–78.

KATZ, S., TAL, A., AND BASRI, R. 2007. Direct visibility of
point sets. ACM Trans. Graph. 26 (July).

MITRA, N. J., NGUYEN, A., AND GUIBAS, L. 2004. Estimating
surface normals in noisy point cloud data. In special issue of
International Journal of Computational Geometry and Applica-
tions, vol. 14, 261–276.

MUCKE, E. P. 2009. Quickhull: Computing convex hulls quickly.
Computing in Science and Engineering 11, 5, 54–57. Generated
by Odysci - http://www.odysci.com/article/1010112990070929.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. QSplat: A multireso-
lution point rendering system for large meshes. In Proceedings
of ACM SIGGRAPH 2000, 343–352.

SAINZ, M., AND PAJAROLA, R. 2004. Point-based rendering
techniques. Computers and Graphics 28, 869–879.

SCHAUFLER, G., AND JENSEN, H. W. 2000. Ray tracing point
sampled geometry. In In Rendering Techniques 2000: 11th Eu-
rographics Workshop on Rendering, 319–328.

WU, J., AND KOBBELT, L. 2004. Optimized sub-sampling of point
sets for surface splatting. Comput. Graph. Forum, 643–652.

ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M. H.
2001. Surface splatting. In SIGGRAPH’01, 371–378.

SBC - Proceedings of SBGames 2011 Computing Track - Short Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3



Figure 4: Quickhull optimization schema

(a) Bunny with no occlussion (b) Bunny with occlussion

Figure 5: Bunny mesh

(a) Dragon with no occlussion (b) Dragon with occlussion

Figure 6: Dragon mesh

SBC - Proceedings of SBGames 2011 Computing Track - Short Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4




