
A Web Player for Ogre3D

Maylson Gonçalves Leonardo de Aguiar Werson Araújo Jairo Oliveira

Waveit Technology, Belém, Brazil

Abstract

This paper presents the architecture of an open-source

framework, created for the development of browser-

based applications that use Ogre3D as rendering

engine. Currently, many games and 3D interactive

applications have been distributed on the Internet to

run via a browser through plugins like Unity Web

Player. This work allows Ogre3D-based applications to

run in the browser without requiring the user to install

any Ogre3D exclusive plugin, using Java plugins

through Java Native Interface to communicate directly

with the native code of Ogre3D. At the end, two case

studies developed with the framework are shown.

Keywords: Web Player, Web Games, Ogre3D

Authors’ contact:
{maylson,leonardo}@waveit.com.br

{werson,jairo}@waveit.com.br

1. Introduction

Currently, many games and 3D applications are
distributed on the Internet as webgames or browser-
based games. Several game engines and authoring tools
have provided web players to execute their content in
various browsers. We can highlight the 3D applications
and games developed with Unity3D, and deployed on
the web through Unity Web Player [Unity 2011]. Flash
games are another example of browser-based games
[Flash 2011].

 The Ogre3D graphics engine has been widely used
in the development of electronic games, virtual reality
applications and computer graphics in general [Ogre
2008], but it lacks any kind of tool that enables these
applications to run in the browser. Thus, it is important
to develop tools that enable web deployment of
Ogre3D-based applications.

 In this context, this paper presents an open-source
framework for developing browser-based applications
that use Ogre3D as rendering engine. This proposed
framework uses Java Plugin technology for the
deployment of the application on the web, taking
advantage of Java Native Interface (JNI), which allows
a Java application to access native code of another
application. The great advantage of using Java Plugins
is the fact that the Java Runtime Environment (JRE) has
great penetration in today's computers [Adobe 2011].

 This paper is divided as follows: Section II

discusses the related work. Section III presents a brief

summary of tools used in developing the proposed

framework. Section IV shows the definitions of the

proposed architecture. Section V illustrates how the

application is deployed on the web. Section VI shows

some case studies and, finally, conclusions and

perspectives for future work are made.

2. Related Work

Regarding Ogre3D for web, this work divided them in
two most relevant categories: "own plugins" and "Java-
based plugins." Most solutions are proprietary code, not
allowing other developers to use them. For the item
"own plugins" the work developed by NeoAxis Group
to the NeoAxis Engine, an Ogre3D-based engine, can
be exemplified. NeoAxis based applications can be
deployed to web browsers by means of additional
closed-source plugin called NeoAxis Web Player. This
web player supports all major web browsers including
FireFox, Internet Explorer, Google Chrome, Opera and
Safari. It is necessary to install the plugin and restart the
browser to use the Web Player [NeoAxis 2011].

 A similar web player was developed by I-Maginer
for the project OpenSpace3D. Both [OpenSpace3D
2011] and [NeoAxis 2011] require that the application
is developed in their respective tools, which makes
them impractical for applications developed directly
with the Ogre3D.

 For the item "Java-based plugins", we can highlight
the strategy online game Dynastica, released by
Straycat Studios. According to reports of the developer
in [Dynastica 2010], the solution adopted by Straycat
Studios is the closest to the solution proposed in this
paper, however, it is closed-source.

 The framework presented in this paper differs from

related work because it is open- source and uses Java, a

widely known plugin and with a large user base,

instead of using an own plugin. Furthermore, this work

allows that any application based on Ogre3D can be

ported to the Web Player, not being restricted to third-

party tools.

3. Tools

A. Ogre3D

 The Ogre3D (Object-Oriented Graphics Rendering
Engine) is a 3D rendering engine developed in C++,
object-oriented, cross-platform and open source, widely
used in the development of electronic games. The

SBC - Proceedings of SBGames 2011 Computing Track - Short Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

graphics capabilities of Ogre3D include support for
OpenGL, OpenGL ES and DirectX [Junker 2006].

B. Java Plugins

 Java Plug-in technology, included as part of the Java

Runtime Environment Standard Edition, establishes the

connection between the browser and the Java platform.

This connection allows Java Applets to run on the

desktop, with or without the browser. [Oracle 2007]

C. Java Native Interfaces

 JNI is a powerful framework developed by Sun that
dipped to meet the need of re-use of native code written
in other programming languages (C, C + +), allowing
them to be invoked by Java Virtual Machine [Liang
1999].

In order to circumvent the restrictions imposed by Java
Virtual Machine, one can write classes in Java with JNI
methods that access these libraries from other languages
and native applications [Liang 1999].

Initially, the JNI design took into account only C/C++
programming languages, but researchers interested in
this tool facilitated communication with other
programming languages such as Assembler and Delphi,
for example [JNI 2005].

 Figure 1 represents the layers of communication
applications with Java libraries, JNI and functions from
other programming languages.

Figure 1: JNI communication layers

4. Framework Architecture

The framework’s architecture aims at simplicity and
modularity, and its understanding is quite simple. It is
very familiar to the Ogre users, because it is based on
the architecture of the Ogre3D sample applications.
Each module of the framework has a specific and well
defined function that helps the programmer to develop
the application quickly.

 Figure 2 shows the architecture of the framework.

Figure 2: Framework Architecture

 The modules of the framework are:

A. Manager

 Manager is one of the most important parts of the
framework, although it should be hidden from the
developer. This module is responsible for managing the
entire life cycle of the application, from its startup to
the control of the game loop. Also, it sends to the
Application class the received input from mouse and
keyboard through Java.

B. Application

 This class is the interface between the Manager and
the user application. The Application class has the basic
methods for creating and controlling a scene, such as
loading of media files, game loop and the controls of
mouse and keyboard, camera control, among others.
The developer can also add his own methods.

C. Java Native

 Java Native module is responsible for

implementing the interface of communication with

Java, exposing some methods of Manager, allowing the

application to be initialized, updated on each frame and

closed through Java. In addition, this module also

implements some methods responsible for injecting

input received from Java to the Manager.

D. Java Applet Launcher

 Once the application has been developed, the code

generated from application is accessed by the

Launcher, which is a simple Java Applet responsible

for sending the input commands to the framework and

receive the rendering done by this one on each frame.

5. Deploying the Web Application

Deploy the application on the Internet becomes quite
simple. It is need to put the JAR packages on the web
server, digitally signed, set some parameters in JNLP
file and put the small JavaScript code on the website,
responsible for loading the Java Applet [Oracle n.d.].
This entire process is described below.

SBC - Proceedings of SBGames 2011 Computing Track - Short Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

A. JAR packages

 Java Plugin technology requires that all needed files
to run the application are packaged in JAR format.
Thus, it is necessary to compress all media of
application and all required binaries.

 For example, if a particular application uses the files
"Models.zip" and "Textures.zip" as a source of media,
just put them in the same folder, open a terminal and
run the command:

jar.exe cfv media.jar Models.zip Textures.zip

 This command generates the "media.jar" file, which
contains all the media necessary for correct execution
of application. Similarly, to generate the JAR file that
will contain the binaries of application, it is necessary to
put the binary of Launcher (Launcher.class) and the
DLL generated by the framework (framework.dll) in
the same folder. The following command generates the
“bin.jar” file.

jar.exe cfv bin.jar framework.dll Launcher.class

 The next step is to sign the JAR files.

B. Digital signature of JAR files

Because using JNI, the Launcher loses secure and
managed environment of Java and break, at first, the
portability of the application, since the native code can
only be executed on the platform for which it was
compiled. Thus, in order to impose greater security for
Applets, it is need to digitally sign the JAR files, so that
the user will be alerted to the execution of the
application and will be asked if desires to run it in his
browser.

 It is possible to create a digital signature to the JAR
files using tools provided by Java itself, like keytool and
jarsigner.

C. JNLP file

Applications developed using Java Plugin are
initialized using the Java Network Launch Protocol
(JNLP), which consists in simple XML text file
containing instructions for Java to download the
required JAR files and launch the application, besides
passing other useful parameters to the Launcher, like
the dimensions of the Applet, for example.

D. Website

To publish the application on a website, it is
necessary to place the JAR files on the server and load
the Applet using JavaScript, like the example below.

6. Case Studies

In order to evaluate the potential of this framework,
some 3D applications were developed and made
available on the web. The developed examples include
techniques developed as skeleton animation, hardware
skinning and character controller, based on examples of
Ogre3D.

 When testing these applications, they proved to be
very efficient, running flawlessly on Windows XP,
Vista and Seven, in browsers Internet Explorer, Firefox,
Opera, Safari and Chrome.

 Figure 3 shows a demo of Ogre3D running in the
browser. This demo uses Skeletal Animation and
Hardware Skinning.

 This demo can be accessed at:
www.waveit.com.br/webplayer.

Figure 3. Skeletal Animations e Hardware Skinning demo

<script

 src="http://www.java.com/js/deployJava.js">

</script>

<script>

 var attributes = {code: 'Launcher.class',

 width: 1024,

 height: 480,

 archive: 'bin.jar'};

 var params = {jnlp_href: aplicativo.jnlp',

 separate_jvm: 'true'} ;

 deployJava.runApplet(attributes, params, '1.6');

</script>

SBC - Proceedings of SBGames 2011 Computing Track - Short Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

 Figure 4 shows another Ogre3D demo running in

the browser. In this application, the user can control the

avatar using the arrow keys to move, space to jump,

and the left mouse button to look around. Additionally,

some sound effects were included using the

OgreOggSound library [OgreOggSound 2011].

Figure 4. Character Controller demo

 This demo is also available at:

www.waveit.com.br/webplayer2.

3. Conclusion

The applications developed for the case studies were
very efficient without loss of performance or problems
that prevent their execution. The tests were performed
on a Pentium IV 3.0 GHz with 1 GB of RAM and a
generic onboard video card. We found some problems
with video cards with generic drivers, which prevents
the proper execution of the application in the browser.

 This work allows that 3D applications like games
and simulators, for example, are deployed on the
Internet in a simple way and can use all the Ogre3D
graphics capability, like access to the GPU, shaders,
Skeletal Animations, Scene Graph etc.

 As future work, we intend to use the Ogre3D
plugins structure, facilitating the integration of Web
Player with future and ongoing Ogre3D-based projects.
Another objective is to expand the framework by
adding support for streaming of media files. In current
version, applications developed with the framework still
need to download all JAR packages that contain the
media files and binaries, before starting the application.
Furthermore, the launcher needs to be improved to be
completely independent of the application that’s being
developed, so that the necessary attributes to be passed
as parameters in JNLP file, avoiding the need to change
them in code. Also, the framework needs to be ported to
other platforms such as Linux and Mac, because the use
of Java with JNI depends on the target platform.

 The framework implementation is public and can
be found in: https://github.com/maylson/Waveit-Web-
Player.

References

UNITY. Unity3D. [Online]. Available from:

 http://www.unity3d.com/ [Accessed 25 July 2011].

FLASH. Adobe Flash Player. [Online]. Available from:

 http://www.adobe.com/products/flashplayer/ [Accessed

25 July 2011].

OGRE. OGRE User Survey 2008 Results. [Online]. Available

from:

 http://www.ogre3d.org/downloads/OGREUserSurvey200

8_Results.pdf [Accessed 25 July 2011].

ADOBE. Flash Player Penetration. [Online]. Available from:

http://www.adobe.com/products/player_census/flashplay

er [Accessed 25 July 2011].

NEOAXIS. NeoAxis Engine. [Online]. Available from:

 http://www.neoaxis.com/ [Accessed 25 July 2011].

OPENSPACE3D. OpenSpace3D. [Online]. Available from:

 http://www.openspace3d.com/ [Accessed 25 July 2011].

DYNASTICA. Dynastica. [Online]. Available from:

 http://www.dynastica.com/ [Accessed 25 July 2011].

DYNASTICA. Dynastica – an online strategy game. [Online].

Available from:

 http://www.ogre3d.org/forums/viewtopic.php?f=11&t=6

0857 [Accessed 25 July 2011].

JUNKER, G., 2006. Pro Ogre 3D Programming. Apress.

ORACLE. Java Plugin Technology. [Online]. Available from:

http://www.oracle.com/technetwork/java/index-jsp-

141438.html [Accessed 25 July 2011].

LIANG, S., 1999. Java Native Interface: Programmer's Guide

and Specification. Prentice Hall.

SEMAAN, G., Interação Java e outras linguagens. [Online].

Available from:

http://www.linhadecodigo.com.br/Artigo.aspx?id=747

[Accessed 25 July 2011].

ORACLE. Deploying a Java Web Start Application. [Online].

Available from:

 http://download.oracle.com/javase/tutorial/deployment/w

ebstart/deploying.html [Accessed 25 July 2011].

OGREOGGSOUND. OgreOggSound Project. [Online].

Available from:

http://sourceforge.net/projects/ogreoggsound/ [Accessed

25 July 2011].

SBC - Proceedings of SBGames 2011 Computing Track - Short Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

