
A Rigid Body Physics Engine for Interactive Applications
Marco Santos Souza
The Cyclops Group

Tiago de H. C. Nobrega
The Cyclops Group

André Ferreira Bem Silva
The Cyclops Group

Diego D. B. Carvalho
The Cyclops Group

Aldo von Wangenheim
The Cyclops Group

Figure 1: Simulation of different scenarios using the presented engine

Abstract

We have conceived and implemented a software library to be em-
ployed in speeding up the development of animations or applica-
tions that make use of interactive physics simulation. This paper
focuses on the discussion of some of the algorithms and techniques
that were used on its basic implementation, and also on expansions
and optimizations that were applied to specific parts of the devel-
oped simulator aiming faster and more stable results. We conclude
presenting some results along with a brief discussion of specific
topics and possibilities for a future work. Our goal is to end up
with a fast, stable and useful engine.

Keywords:: GJK, Rigid Body, Collision Detection, Collision Re-
sponse

Author’s Contact:

sms.cpp@gmail.com
{tigarmo, dedefbs, diegodbc, awangenh}@inf.ufsc.br

1 Introduction

Rigid body simulation has many applications such as in video
games, movies and robotics. In games, for example, rigid bodies
have become widely used to build interactive and more realistic en-
vironments. Therefore, there is a constant desire to have more and
more objects being simulated faster and faster. Due to computa-
tional limitations, however, fast enough results are achieved only
at the cost of a number of techniques and simplifications of math-
ematical and physical models. The use of these simplifications are
justified by the fact that we are interested in visually plausible an-
imations, i.e., our results must at least look correct. Our goal is
to adjust the trade-off between accuracy and a visually appealing
interactive simulation.

By “rigid body simulation” we mean the simulation of multiple
rigid bodies, with possibly all in mutual contact [Erleben 2004;
Millington 2007; Eberly 2010]. Basically, to resolve these multi-
ple contacts it is necessary to calculate and apply forces to ensure
that objects do not interpenetrate. In a realistic simulation, however,
this can not be made in an arbitrary manner [Baraff 1992]. The im-
plementation of a technique to accomplish this task properly is far
from being trivial, specially when considering articulated rigid bod-
ies (connected by joints) [Erleben 2004]. For this reason, most of
the recent researches in rigid body simulation have been related to
collision response.

The task preceding the collision response is called collision detec-
tion. Its purpose is to obtain the necessary information about a
probable collision between two or more objects so that the collision

response can be applied. Collision detection by itself is a consider-
ably big topic—much more related to geometry than to physics—
having numerous applications beyond physics simulation. It is also
an active area of research.

Rigid body simulation is a highly-interdisciplinary field, and the
necessary background to build a physics engine relates to a vast
subject. Hence, in this paper, which has the purpose of presenting
our software, we intend to provide a general overview of the en-
gine operation and its basics components (section 3). We comment
on some topics with further details (sections 4, 5 and 6), present
some results (section 7) and then we make a brief discussion of top-
ics whose exploration we believe to be of highest priority in future
work (section 8).

2 Related Work

The most recent breakthroughs in rigid body simulation—results
of which are visible in large commercial productions—are usually
not published, since they are kept as “business secrets”. Moreover,
there are very few works that provide a “big picture” view of a
practical implementation [Bourg 2001; Millington 2007]. Most of
them are quite theoretical [Erleben 2004; Eberly 2010], or related
exclusively to some specific part of the simulation process (e.g.,
collision detection [van den Bergen 2003; Ericson 2005], collision
response [Catto 2005], or even just more specific algorithms such
as GJK [van den Bergen 1999], SAP [Terdiman 2007], etc.).

Due to the way collisions are treated, our engine can be classified as
an impulse-based simulator. Hahn [Hahn 1988] was the first to use
a series of collision impulses (sometimes called micro-collisions)
to prevent penetrations of resting objects. Based on Hahn’s results,
Mirtich [Mirtich and Canny 1995; Mirtich 1996] has proposed the
impulse-based paradigm. Erleben [Erleben 2004] makes a good
distinction between the different approaches and also presents a hy-
brid simulator. In an instructive way, Millington [Millington 2007]
presents a rigid body simulator that produces not so stable results,
but is still highly functional and suitable for many applications.

In relation to collision detection, the books of Bergen [van den
Bergen 2003] and Ericson [Ericson 2005] are the most complete
references that we have found. About the GJK algorithm, Bergen’s
paper [van den Bergen 1999] is quite valuable, as well the original
paper where this algorithm was first suggested [Gilbert et al. 1988].

3 Engine Overview

Figure 2 shows a high-level view of the simulation pipeline. At this
level of abstraction the engine operation seems quite simple. In the
stage called integration, the movement of each object is simply in-
tegrated by a chosen time step. Then, the collision detection stage
calculates the required information about the way objects possibly



touch or penetrate each other. As an impulse-based simulator, all
interaction between different objects are modeled only through con-
tact points and impulses are applied at these points in the collision
response stage.

Figure 2: High-level view of the simulation pipeline.

3.1 Integration

Since all interactions between different objects are treated only at
the collision response stage, the integration process is quite simple:
each object is integrated in time without any concern about other
objects around. In other words, collisions are totally ignored here
and objects are allowed to be interpenetrating after this process.

We provide two options for integration: a simple Euler based
method and a more expensive fourth order Runge-Kutta (also
known as RK4) based method. The desired method can be chosen
offline through configuration parameters. We could observe that the
accuracy provided by Euler method is usually sufficient for games
as well as for most applications. An in-depth explanation about
integration methods can be found in Eberly’s book [Eberly 2010].

3.2 Collision Detection

We have adopted the common approach of separating the collision
detection process in an initial broad phase followed by a narrow
phase.

3.2.1 Broad phase

In a scene with n objects, a brute-force approach for broad phase
would result always in n(n−1)

2
≈ O(n2) tests. Fortunately, for

most frames, we can do a lot better. The best option we have found
was a technique first named “sort and sweep” by Baraff [Baraff
1992] and later popularized by Cohen [Cohen et al. 1995] with the
name of “sweep and prune” (SAP). Since it can exploit frame coher-
ence, SAP has proved being very suitable for rigid body simulation
and similar applications. For comparison purposes, we have also
implemented a spatial partition technique using an uniform grid.
A known problem with spatial partition approaches is the overhead
caused by the necessity to maintain complex data structures updated
in very dynamic scenes.

Figure 3: Screenshots of the application used to perform compari-
son tests of broad phase techniques.

All of our tests for the broad phase were performed on an applica-
tion that consists of a scene with 1024 objects (boxes and spheres)
initially suspended in the air. Subject only to gravity, objects may
collide with each other and also with the floor and walls of a box-
shaped virtual scenario, as shown in the upper left image of figure 3.
Also in this figure, the upper right image shows the structure used
by the uniform grid approach to subdivide space by many cells.
In the bottom images only the cells that contain some object are
shown.

Figure 4: For each approach, percentage of profiler samples taken
only in broad phase routines.

To compare the performance of each broad phase approach we per-
formed a sampling test provided by a profiling tool of our integrated
development environment (Microsoft Visual Studio 2010). The re-
sults are illustrated by figure 4. When using brute-force, 97 percent
of samples were taken in routines related to broad phase. When
using SAP, however, this number drops to only 16 percent.

3.2.2 Narrow phase

In order to obtain contact data, we have implemented some specific
routines which are correctly called according to the type of the ge-
ometry involved. This is easily achieved through a double dispatch
technique. We have also provided a more generic solution (section
4), which works for any two convex shapes.

3.3 Collision Response

The greatest difficulty in the collision response stage is to produce
an appropriate behavior when, in a certain frame, there are mul-
tiple contacts involving the same objects. Unfortunately, such a
situation is quite common in most practical scenarios; therefore, a
proper technique to handle this case is of crucial importance. The
approach that was implemented in our engine is an iterative tech-
nique that is simple to understand and implement, being explained
in detail by Millington [Millington 2007]. Each contact is sepa-
rately resolved and the effects of each resolution have to be spread
along all other contacts in the same group or island (see section 6).
At each iteration, the most severe contact needs to be found and
resolved. An appropriate result is achieved usually at the cost of a
few iterations. Although not being suitable for handle high stacks
of objects, this approach is quite adequate to simulate very dynamic
scenarios, like explosions, for example. It is interesting to note that
by using the technique explained in section 5, our engine can pro-
duce considerably more stable results than Millington’s simulator.

4 Collision Detection with GJK

The Gilbert-Johnson-Keerthi distance algorithm, also known as
GJK, is an extremely versatile method since it does not need to
know much about the input objects. The only requirement is that
the objects can return a most extreme point for a given direction,
which is called a “support point”. The original purpose of this al-
gorithm is to calculate the shortest distance between two convex ob-
jects. However, it can be easily adapted to perform intersection tests
and also can be extended to calculate all information necessary at
narrow phase collision detection. Another feature that makes GJK
interesting is that, like SAP (subsection 3.2.1), it can exploit frame
coherence, providing extremely fast results. A good introductory



explanation of GJK algorithm is given by Souza [Souza 2011], and
a more in-depth discussion can be found in Bergen’s works [van den
Bergen 1999; van den Bergen 2003].

To calculate the penetration depth in our engine, another algorithm,
called “Expanding Polytope Algorithm” (EPA), is used in conjunc-
tion with GJK, as proposed by Bergen. The input for EPA is a
simplex that contains the origin, which is exactly the output of
GJK when objects are intersecting. Therefore, GJK and EPA are
complementary algorithms. Unfortunately, EPA is very susceptible
to numerical errors when dealing with small penetrations. Hence,
Bergen suggests a hybrid technique that combines the use of GJK
and EPA in a clever manner, where EPA is used only for large pen-
etrations. Due to the way such technique is implemented, it is also
possible to easily calculate the contact normal vector and the con-
tact point. Additionally, frame coherence can still be exploited by
using the separation vector found in one frame as a starting vector
for the next frame.

The GJK algorithm by itself is quite simple to understand and im-
plement. However, there is an internal problem that is not so trivial
to address properly, and has been receiving some attention in recent
works [Ericson 2005]. The problem is as following: given a sim-
plex represented by a finite set of vertices W , we have to calculate
the point v such that v is the closest point to the origin in the region
of simplex W . Thus, if simplex W contains the origin, v will be
the origin itself, otherwise v will be on the surface of simplex W .
In addition, we have to determine the smallest X ⊆ W such that v
can be described as a convex combination of X .

In the original paper of GJK [Gilbert et al. 1988] as well in Bergen’s
works [van den Bergen 1999; van den Bergen 2003], the described
problem is handled by a routine called Johnson’s distance sub-
algorithm. It is a purely analytical approach that is not so simple
to understand and implement properly. Moreover, in practice, due
to the finiteness of floating point representation, the technique is
very susceptible to numerical problems. Fortunately, today there
is a more adequate approach, which addresses the problem geo-
metrically, being easier to implement and not running in the same
numerical issues. A good explanation is provided by Ericson [Eric-
son 2005]. In our engine, we have provided both approaches, and
the desired one can be chosen offline.

There is an interesting and very simple optimization of this geomet-
rical approach, which apparently was not yet explicitly explored by
any other published work. This optimization was informally sug-
gested by Casey Muratori in a video posted by himself on the Web
in 20061. The geometrical approach needs to test the features of
the current simplex to find which one has the Voronoi region that
contains the origin. Then, the suggested optimization says that, due
to the incremental nature of current simplex set, it is not necessary
to test all features, but only the ones related to the last vertex added
to the set. This way, many tests can be avoided.

5 Contact Region Approximation

Millington [Millington 2007] uses only one contact point to approx-
imate the region of intersection between colliding objects regardless
of the geometries involved. This is the most practical solution since
collision detection works faster and is easier to implement. More-
over, collision response also runs quite fast. For many cases, how-
ever, a single point represents a too poor approximation, resulting
in very unstable simulations.

Figure 5 shows a good approximation for the contact region be-
tween two colliding boxes, which, in this particular example, is
composed by four points. The set of points is composed by the
vertices of a polygon that fits properly inside the intersection area.
To generate this point set, there are roughly two different ways: at
once or incrementally.

In its version 2.78, Bullet engine has implemented the “at once”
approach using a polyhedral clipping algorithm. This technique
has the advantage of being precise, however it has the drawback
of requiring more processing time. In our engine we have used

1https://mollyrocket.com/849

the incrementally approach, which has the advantage that we can
keep simple our collision algorithms: per frame, they have to find
out only one contact point. For most applications, the instability
caused by this approach is completely negligible.

Figure 5: Four contact points to approximate the contact region
between two boxes.

The idea is to maintain the points calculated in one frame and try
to gather new ones in the next frames. Points are saved in a contact
cache, and this cache must be updated during the simulation. An
algorithm to accomplish this task was informally described by Er-
win Coumans more than once in the Bullet discussion forum on the
Web2. A similar approach is discussed by Mirtich [Mirtich 1998]
under the name of "contact tracking".

6 Contacts Groups

In subsection 3.3 we said that the greatest difficult at the collision
response stage is to cope with the interdependence between mul-
tiple contacts in a certain frame. It is interesting to note that the
scope of such interdependence is limited. Some objects break the
contact dependency chain because they are completely ignored at
the collision response stage: the floor, the walls, or any other ob-
ject that can be classified as a “static object”. They must not have
their speeds and positions corrected. Thus, for a certain frame, the
contacts found during collision detection can be grouped into in-
dependent sets. These sets or groups of contacts are also called
“contact islands” in some simulators (e.g., in the Open Dynamics
Engine). The task of calculating such groups is a typical graphs
problem. The algorithms that we have used to accomplish this task
are better explained in Souza’s work [Souza 2011].

64 128 256 512 1024

0

2000

4000

6000

8000

10000

12000

14000

16000

Sem grupos

Com grupos

Número de objetos

T
e

m
p

o
 (

m
s

)
Ti

m
e 

(m
s)

Number of objects

With groups
Without groups

Figure 6: The total amount of time required to execute the test
simulation, with different amounts of objects.

In order to measure the potential gain of performance achieved by
using this technique, we have performed some tests over the same
application described in subsection 3.2.1. The results are illustrated
by figure 6. A significant performance improvement can be ob-
served in the cases with 512 or more objects when using contacts
groups. Although there is no noticeable gain in the cases with 256
objects or less, we note that there was no loss due to the possible
overhead caused by the additional task of generating the groups.

2http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?p=&f=&t=226



7 Implementation and Results

We have used the C++ language for all implementations. The en-
gine was separated in three distinct modules. The “Core” module
implements mathematical functions and other routines that are use-
ful to the other modules. It does not have any external dependency,
except for the C++ standard template library. The “ColD” mod-
ule is responsible for all tasks related to collision detection, and it
depends only on the “Core”. The “Dym” module implements the
integration and the collision response stages (see figure 2). In at-
tempts to abstract the engine’s internal workings, it also provides
classes with a friendly interface which perform higher-level opera-
tions. The “Dym” module depends both on “Core” and “ColD”.

Scene # of frames Min FPS Max FPS Avg FPS
Fig. 7 (A) 14867 938 1522 991
Fig. 7 (B) 7521 345 645 501
Fig. 7 (C) 1574 101 107 104
Fig. 7 (D) 2552 141 188 170

Table 1: Number of rendered frames, minimum, maximum and av-
erage FPS for each scene after 15 seconds of simulation.

We have developed an application to test out our engine using dif-
ferent scenarios. Some screenshots with a brief description are
shown in this section. The 3D model that appears in some images
is the popular Stanford Bunny, which is composed by 69,451 tri-
angles. Collision detection is performed over a much simpler ge-
ometry, though (see the third picture in figure 1). The applications
use the OpenGL API to draw the scenes. The test machine is a
PC with an Intel Core 2 Duo E6600 (2.40 GHz), 2 GB of RAM
memory and a NVIDIA GeForce 9600 GT with 512 MB of DDR3
dedicated memory. The operating system is Microsoft Windows
7 Professional (32 bits). Table 1 presents a benchmark result for
the scenes illustrated by the screenshots in this section. The total
number of rendered frames, the minimum, the maximum and the
average FPS (frames per second) that were achieved for each scene
after 15 seconds of simulation are shown.

Figure 7: (A) A Stanford bunny is thrown into the air with a see-
saw, hitting a row of dominoes. (B) Three Stanford bunnies are cat-
apulted into a wall of blocks, knocking it down. (C) Plenty of Stan-
ford bunnies interacting with each other and with other objects. (D)
20,000 particles released into the air (no collision detection and re-
sponse, only integration).

8 Conclusions and Future Works

We can say that we have reached our goal of producing a fast, stable
and useful engine. Different scenarios can be quickly generated
and the developer is free to create and configure a new simulation
according to his needs. However, there are some points that deserve
attention.

The inability of properly simulating stacks with many objects is a
meaningful limitation. Another issue is that we have not covered

the simulation of objects attached to each other by joints. A com-
mon approach is to handle contacts and joints in an unified way,
where a joint is seen as a permanent movement constraint and a
contact as a temporary one. Stacks and joints are two topics that
have caused a lot of headache in a recent past, but which nowadays
most of modern simulators are able to handle. In this way, the im-
provement and expansion of our collision response method is seen
as a very interesting first future work.

Another promising topic to be explored is GPU parallelization. In-
ternal algorithms or even whole sections of our engine could be
redesigned in order to perform tasks in parallel. With the advent of
GPGPU languages—such as NVIDIA’s CUDA or OpenCL—and
their growing support and popularization, optimizations of this kind
have became massively explored by recent works in physics simu-
lation.

References

BARAFF, D. 1992. Dynamic simulation of nonpenetrating rigid
bodies. PhD thesis, Ithaca, NY, USA. UMI Order No. GAX92-
36100.

BOURG, D. 2001. Physics for Game Developers, 1st ed. O’Reilly
Media, Inc., November.

CATTO, E. 2005. Iterative dynamics with temporal coherence.

COHEN, J. D., LIN, M. C., MANOCHA, D., AND PONAMGI,
M. K. 1995. I-collide: An interactive and exact collision de-
tection system for large-scale environments. In Symposium on
Interactive 3D Graphics, 189–196, 218.

EBERLY, D. H. 2010. Game Physics, Second Edition, book &
cd-rom 2st ed. Morgan Kaufmann.

ERICSON, C. 2005. Real-Time Collision Detection. Morgan Kauf-
mann, January.

ERLEBEN, K. 2004. Stable, Robust, and Versatile Multibody Dy-
namics Animation. PhD thesis, University of Copenhagen, Den-
mark.

GILBERT, E. G., JOHNSON, D. W., AND KEERTHI, S. S. 1988.
A fast procedure for computing the distance between complex
objects in three-dimensional space. Robotics and Automation,
IEEE Journal of 4, 2, 193–203.

HAHN, J. K. 1988. Realistic animation of rigid bodies. In SIG-
GRAPH ’88: Proceedings of the 15th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 299–308.

MILLINGTON, I. 2007. Game Physics Engine Development, book
& cd-rom 1st ed. Morgan Kaufmann.

MIRTICH, B., AND CANNY, J. F. 1995. Impulse-based simulation
of rigid bodies. In Symposium on Interactive 3D Graphics, 181–
188, 217.

MIRTICH, B. V. 1996. Impulse-based Dynamic Simulation of Rigid
Body Systems. PhD thesis, University of California at Berkeley.

MIRTICH, B. 1998. Rigid body contact: Collision detection to
force computation. Tech. rep., IEEE International Conference
on Robotics and Automation.

SOUZA, M. S. 2011. Animação Baseada em Física: Desenvolvi-
mento de um Simulador de Corpos Rígidos para Aplicações In-
terativas.

TERDIMAN, P. 2007. Sweep-and-prune.

VAN DEN BERGEN, G. 1999. A fast and robust gjk implementation
for collision detection of convex objects. J. Graph. Tools 4, 2,
7–25.

VAN DEN BERGEN, G. 2003. Collision Detection in Interactive
3D Environments (The Morgan Kaufmann Series in Interactive
3D Technology). Morgan Kaufmann, October.


