
Turning Real-World Software Development into a Game
Erick B. Passos

IFPI Lims
Danilo B. Medeiros

Infoway Sol. Inf.
Pedro A. S. Neto

UFPI
Esteban W. G. Clua

UFF Media Lab

Challenge

Punishment

Reward

Rules

User
Action

A B C

 0

 2

 4

 6

 8

 10

I II III IV

Team medals
On-time iterations

Total clockwork dev.

Figure 1: Game design elements applied to software engineering processes and results: a) game mechanics explained in a challenge-
punishment-reward loop; b) achievement medals awarded to software developers; c) comparison of team achievements earned by the projects
in our case study.

Abstract

Software development is a challenging, but seldom amusing activ-
ity. At the same time, gamification, a recent trend that brings game
mechanics to websites and interactive media, together with many
past works that propose the use of serious games to teach software
engineering in a fun way, show evidence that this type of real-world
activity can also incorporate game design elements. In this work,
we propose a novel approach: incorporating game mechanics di-
rectly into a software development process, effectively turning it
into a live game. We show interesting results from a case study
with a production team of a software house, and firmly believe it is
important that the game academic community spreads this type of
knowledge to influence other research areas.

Keywords:: Serious Games, Software Engineering, Game Design

Author’s Contact:

{epassos,esteban}@ic.uff.br
danilomedeiros@infoway-pi.com.br
pasn@ufpi.edu.br

1 Introduction

Developing software is a challenging activity that is seldom re-
garded as fun. Just like many other types of activities, it can be
organized as a set of hierarchical and partially ordered challenges
that must be overcome, often requiring several different skills from
developers, and lots of teamwork effort. Surprisingly, this is very
similar to an abstract definition for games: activities in which a
player must learn new skills, use and combine them to overcome
challenges, getting rewards or punishments, depending on success
or failure, respectively. Furthermore, key concepts of games such
as goals, rules, challenge, and interaction are also present in sev-
eral real-world activities, for example a structured software devel-
opment process.

Many previous works have proposed simulations and serious games
as learning or training tools for software engineering [Navarro
2006; Baker et al. 2005; Claypool and Claypool 2005; Sweedyk
and Keller 2005]. These edutainment applications resemble a game
for their use of virtual environments and animated characters, but
many times they lack the fun factor. One reason for this is that they

are not built as games from scratch, rather being governed by com-
plicated rules that have nothing to do with time-tested game design
mechanics.

At the same time, incorporating game mechanics into websites and
other types of software that include human interaction, an approach
known as gamification [Takahashi 2010; Corcoran 2010], has be-
come a trend. We believe that one can generalize the gamification
concept to other activities apart from software interaction, which is
something that we haven’t found in the literature.

In this work, we propose a novel approach which is exactly the
opposite of a serious game. Instead of creating a virtual simulation
of a real-world human activity to help people learn, we propose the
inclusion of game design concepts into the software engineering
process itself. We show that software development is closely related
to a game when the governing rules of both activities are concerned.

We also present results from a case study with an actual software
development team, and a prototype of a tool to incorporate immedi-
ate feedback and game design features to task management in soft-
ware engineering. We understand that knowledge from the game
academic community can contribute to other areas of applied re-
search, and expect this work can inspire others to try this approach
with different types of activities.

1.1 Contributions of the Paper

The main contribution of the paper is to show that game design
theory can be applied to other important real-world problems, such
as software engineering. After a small survey about the important
concepts related to this work, we present the original contributions
of this work, which are summarized bellow:

• A gamification approach to software engineering: going be-
yond websites and interactive software tools, applying game
design to software development activity;

• A mapping of game mechanics to software development con-
cepts: modeling the iterative software development cycle as a
hierarchical challenge graph;

• Results from a case study: we designed and evaluated individ-
ual and group achievements against historical data of a real-
world development team from a software house;

• A proposal for a tool that incorporates game design elements,

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

such as immediate feedback and achievements, to task man-
agement.

1.2 Related Work

According to [Takahashi 2010], gamification is a trend nowadays.
The technique can encourage people to perform chores that they or-
dinarily consider boring, such as completing surveys, shopping, or
reading web sites. Corcoran [Corcoran 2010] considers that the ed-
ucational systems of all activities will somehow be strongly influ-
enced and conceptualized following video-game paradigms. This
trend is already spawning product developments, such as the Cloud-
Captive framework [Captive 2011]. In this paper, we propose go-
ing beyond with the gamification concept, applying it not only to
interactive media, but to real-world activities, in this particular case
software engineering processes.

In parallel to the gamification approach, creating a serious game to
simulate and teach a real-world activity is the most straightforward
approach to include game mechanics in other contexts. Baker et.
al. [Baker et al. 2003; Baker et al. 2005] designed a card game to
augment a traditional software engineering course. We remark that
our approach is opposite to this, since we are not trying to simulate
or teach an activity, but rather incorporating game design elements
and the fun factor into the real world.

Other interesting works [Navarro 2006; Claypool and Claypool
2005; Sweedyk and Keller 2005] also follow the teaching path by
incorporating game design elements as subject of a software engi-
neering syllabus. Students are challenged to design games, learning
software engineering concepts with this hands-on approach, hope-
fully in a more fun way. Our proposal is not intended for classroom
use, and we actually experimented our ideas with a production soft-
ware development team.

Some recent works surveyed the potential use of games in software
engineering courses [Fernandes and Werner 2009], or analyzed how
the actual impact of this use is evaluated in the classroom [von Wan-
genheim et al. 2009].

An example of gamification in the software development context is
the RedCritter Tracker1 system. It is a software development task
management tool that applies some mechanisms, like rewards and
skill badges, after task accomplishments are achieved. Our proposal
goes beyond the gamification of a tool, aiming to transforming the
actual software development process into a game.

To summarize this section, we reinforce that previous work either
propose the creation of simulations/serious games, or the gamifica-
tion of other kinds of media, which are already interactive anyway.
Compared to these, our work consists of the opposite of the first,
and a novel approach for the second, applying a similar concept to
a real-world activity instead of an interactive software.

2 Software Engineering Primer

The main goal of Software Engineering is to produce software prod-
ucts with quality, respecting time and budget constraints. The soft-
ware development activity usually follows a Software Process, that
defines a set of tasks to be executed, indicating what must be done,
when, how, by whom, what must be used as input and produced as
result. All of these tasks must be planned considering the available
resources [Humphrey 1995].

The development is usually performed through repeated cycles (it-
erative) and in smaller portions at a time (incremental), allowing
software developers to take advantage of what was learned during
development of earlier parts or versions of the system. This kind
of development is based on the iterative and incremental life cycle
model. At each iteration, design modifications can be made and
new functional capabilities are added.

Each iteration results in an increment, which is a release of the sys-
tem that contains added or improved functionality compared with
the previous release. A software release is the distribution, whether

1http://www.redcrittertracker.com

public or private, of an initial or new and upgraded version of a
computer software product during one or more iterations [Jacob-
son et al. 1999].

Requirements

Planning
Initial
Planning

Evaluation
Testing

Deployment

Implementation

Analysis & Design

Figure 2: Iterative development.

There are several disciplines that can be used in an iteration, since it
is possible to elicit requirements, refactor the architecture, manage
the quality, and validate the software behavior by using automated
tests. This is shown in Figure 2. In summary, the software develop-
ment can be thought as a cycle, similar to PDCA (plan, do, check,
act), where many of the tasks are repetitive.

Developers normally do not consider software development as a
funny activity, since they do not have chance to choose a project
to work: they have to develop what is relevant for the organiza-
tion, and current software processes tend not to include leisure dis-
ciplines.

3 Game Design Concepts

The ultimate goal while transforming an activity into a game is to
make it challenging and fun at the same time. Well designed game
mechanics are the atoms that differentiate a fun game from other
leisure activities such as reading. There are many definitions for
game mechanics, but we’ll use the one proposed by game designer
Daniel Cook [Cook 2006], which is in turn based on Raph Koster’s
Theory of Fun [Koster and Wright 2004], for the scope of this work:

”Game mechanics are rule based systems / simulations that facili-
tate and encourage a user to explore and learn the properties of their
possibility space through the use of feedback mechanisms.”

Many real-world activities, when governed by gameplay rules or
mechanics, may become fun. Kicking a ball while running in a
field may become boring quite fast, but when there are rules, ad-
versaries and rewards, this activity is rather enjoyable and we call
it soccer. When designing gameplay rules, one has to consider that
the challenges must be well balanced, since the brain stops enjoying
challenges that are either too difficult or too easy to surpass.

In this context, another element of game design that we wanted to
bring to software engineering is the challenge-punishment-reward
loop, which is closely related to the aforementioned definition of
game mechanics. Games are constantly challenging the user to
pass obstacles (or solve puzzles), which he tries to do by using
known/learned skills, which in turn models his possibility space.
When he doesn’t succeed in the challenge, he faces the punish-
ment defined by the game rules, while when he does succeed, a
reward (either direct or indirect) is earned. In both cases, however,
is mandatory that the system gives the player immediate feedback
of the outcome, which increases the chances that the user fixes the
learned rules. Figure 3 illustrates how these elements are put to-
gether.

3.1 An Example Game Framework

Fundamentally, games are based on the fact that humans are hard-
wired to like challenges, and chemically rewarded when they use
skills (or learn new ones) to surpass these challenges. The following

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

Challenge

Punishment

Reward

Rules

User
Action

Figure 3: Elements of game design arranged in the challenge-
punishment-reward loop

assumptions about a game design skill-set are desirable (adapted
from [Cook 2008]):

• Decomposable - to make the process of learning and using
a skill fun, complex skills must be decomposable into less
complex ones;

• Chain-able - this decomposition process should create chal-
lenges that progressively rely on more and more complex
skills, forming an increasingly difficult learning curve;

• Combinable - furthermore, challenges should depend on the
combination of mastered and new skills, avoiding the creation
of a loose set of isolated challenges.

Given these properties, a structure for organizing a set of challenges
into a game design can be a hierarchical directed graph, where
nodes represent challenges, and edges indicate the precedence rela-
tion. Each node/challenge can be either immediate, or decomposed
into a more detailed graph. For instance, in the highest layer, nodes
represent the set of levels on a game, while in the second-highest
layer nodes represent quests/missions in a level, and in the lowest
one nodes are immediate challenges that the player must surpass
using his current set of skills, or by combining them with a new
one. Figure 4 illustrates this hierarchical structure.

Many times in games, a challenge-graph does not need to use any
edge, since the set of sub-challenges can be accomplished in any
order. However, most of the times, a hybrid approach is used, with
both connected and disconnected sub-graphs composing a higher
level challenge. We define challenge succeed as a binary function
that outputs 1 (true) for challenge complete, and 0 (false) challenge
incomplete.

For immediate challenges, this function takes as input the game
state corresponding to that particular game setting, and its imple-
mentation is specific to each game. For decomposable challenges,
the result is given by either a logical or mathematical expression on
the recursive set of values of the succeed function for all component
sub-challenges. Eq. 1 and Eq. 2 formalize the domain for these two
functions respectively. S denotes the space of game state variables,
whereas F is the value of the succeed function for each component
sub-challenges, and n represents the set of sub-challenges. For both
equations, a result of 1 means the challenge as successfully passed,
whereas 0 means the opposite.

f : S → (1, 0) (1)

f : Fn → (1, 0) (2)

Game rules are the elements that implement these functions in any
game, and are independent of the type of referee used to compute
them: human referees, game masters, interactive software or the
players themselves.

Game (main challenge)

Level 1

Level 3 Level 4

Level 2

Level 4 (detailed)

Quest 1

Quest 3 Quest 4

Quest 2

Figure 4: Hierarchical challenge graph

3.2 Achievements

Achievements are a concept that is orthogonal to the challenge
graphs, and works as a secondary scoring mechanism that measures
the use of skills to solve the same type of challenge (normally a
low level one). Often, achievements are computed using two ap-
proaches: repetition or rate.

Repetition achievements are defined as the number of times the
player uses a certain skill to solve the same type of challenge such
as killing a certain type of enemy. Eq 3 shows a formula for this
type of achievement, where n denotes the total number of times
challenge c was tried, and f(c) is the value for its succeed function.
Rate achievements are constrained to a scope, either the container
challenge or a defined time slice, and normally measure the rate be-
tween succeeded against total attempts for a particular challenge.
Eq 4 defines a formula for computing rate achievements.

rep =

n∑
i=1

f(c) (3)

rate =

∑n
i=1 f(c)

n
(4)

Repetition achievements are often awarded based on an approxi-
mate logarithmic scale, rendering each subsequent level increas-
ingly more difficult to earn. For rate achievements, there are mul-
tiple levels as well, normally following a linear scale of thresholds,
often rewarding the player with a medal: either a bronze, silver or
gold, depending on the threshold reached. They are also cumula-
tive, meaning that the player can collect more medals for subse-
quent scopes.

3.3 Immediate Feedback

A key aspect of (specially electronic) games is the use of immedi-
ate feedback to keep the player aware of his progress (or failures)
through the challenges. It is desirable that this feedback is given

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

Project (main challenge)

Release 1

Release 3 (detailed)

Iteration 1

Iteration 4

Iteration 3

Iteration 2

Release 2

Release 4 Release 3

T1
T2 T3

T4
T5

Figure 5: Mapping of software engineering build blocks into a hi-
erarchical challenge graph

in real-time, increasing the feeling of immersion and also the per-
ception that the player is the sole responsible for the outcome. Ide-
ally, any activity that is suitable to using game design ideas should
consider incorporating immediate feedback, as it is mandatory to
maintain the sense of urge.

4 Mapping Game Mechanics to Software
Development

When trying to design game-like mechanics/rules to real-world hu-
man activities, the first concept one needs to map is the challenge-
graph. The fundamental goals of the activity will be adapted as
challenges to compose the nodes in the graph. It is important to
remember that these challenges/goals must be decomposable, com-
binable and chained to create a compelling game-like activity.

In software engineering, the main goal is to create production-grade
software, normally an iterative process that is structured in a project
composed of several subsequent releases, which are in turn made
of a series of iterations. Mapping these concepts into a challenge-
graph is straightforward, as illustrated in Figure 5.

The leaf-nodes in this graph are the immediate tasks appointed to
developers, who must use their skills in systems analysis, design,
programming and testing to succeed. The evaluation of the com-
pletion for these tasks is normally made by a project-manager, and
often logs for this are kept stored in task-management database soft-
ware. The evaluation of all higher-level challenges (iteration, re-
lease and project), however, is well defined and may be formalized
by a single completion function, described in Eq. 5, where C is the
challenge to be evaluated, and c are its component sub-challenges;

f(C) =

{
1, if g(c) = 1, ∀c ∈ C

0, otherwise
(5)

This means that complex challenges in software development are
only considered complete when all sub-challenges are also evalu-
ated as complete. Sometimes, these sub-challenges have a prece-

dence ordering, such as dependent programming tasks or the itera-
tions sequence of a release, or can be completed in any order, such
as independent tasks inside an iteration, as illustrated by Tasks 1
and 3 of Iteration 3 in Figure 5.

4.1 Metrics to Achievements

Besides the straightforward mapping of a software development
project hierarchy into a challenge-graph, many companies also de-
fine and use a fairly large set of numeric metrics to either measure or
even reward the best developers and teams. These metrics are com-
monly based on the developers performance in task planning and
execution, programming, testing or other activities. Examples of
software engineering numeric metrics commonly available in task-
management and source code analysis software:

• Number of tasks completed;

• Average time to complete a task (estimated and actual);

• Duration of each iteration (planned and actual);

• Test code coverage;

• Code complexity;

Each of these metrics have specific meanings in the software en-
gineering context, but simply measuring and exposing them is not
compelling because they lack reference goals and sense of compe-
tition. In order to convert metrics into desirable challenge, we pro-
pose the design of solo and collective achievements. Solo achieve-
ments can be based in any individual metric, even if it includes tasks
from more than one project. Collective achievements are bounded
to projects, and ideally should be based in team-grade metrics.

Any of these metrics can be converted in achievements, either rep-
etition or rate based. However, it is important to carefully design
and balance the levels (for repetition achievements) and thresholds
(rate ones), in order to make them interesting. The first level and
lowest grade medal (bronze) must be very easy to achieve, while
the others must be rendered increasingly challenging. In Section 5
we show a case study of both solo and collective achievements.

4.2 Burnout

Software development relies on many disciplines, each one having
its own learning curve. When one is learning how to program, every
new homework, such as ordering an array, is challenging, and this
skill-learning phase may be amusing by its own. However, differ-
ently than in a game, an experienced developer already has the set
of skills needed to complete the assigned tasks. Many times, this
fact may render the underlying challenges rather boring. In games,
when this occurs, we refer to it as burnout, meaning that the skill is
mastered to the point that it becomes annoying to use it.

In order to avoid this burnout effect, game designers normally rely
on storytelling, setting and other distractions to keep the player im-
mersed and interested in the game. We propose to map the soft-
ware development process as a real-life RPG, where the skills and
challenges are real, but the red herrings are still present as popular
concepts such as:

• Experience points - the completion of tasks/challenges should
give experience points to the developers who solve them;

• Character attributes - since the skills are real, and the tasks
given to a developer will normally follow his skill-set, char-
acter attributes must evolve according to the type of tasks the
developer completes (attribute levels will be inferred, instead
of chosen);

• Classes - similar to character attributes, classes must be auto-
matically inferred, based on the overall attribute balance of a
developer.

One may argue that in RPGs the player normally have the choice of
how to evolve his characters, something that is basically inferred in
our proposal. However, this choice still exists, it just happens in the
real-world when the team plans the type of tasks each developer will

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

do, and many times this is actually his own choice. In Section 6,
we propose the integration of a complete set of these RPG features
into existing task-management software.

5 Case Study

We evaluated the applicability of our approach with a case study
involving a real-world software development team. Company In-
foway 2 is a medium-sized software house with 28 developers,
which has been successfully using agile processes for 10 years, and
keeping a fine-grained data base for all project-related tasks. Their
task-tracking system includes information from planning and ex-
ecution phases, also recording estimated and actual time spent to
accomplish tasks, grouped by iterations and project. We used their
extensive log of source-control transactions to augment the experi-
ment as well.

The case study consisted of the design and evaluation of 4 game
achievements based on measured metrics: 2 achievements for in-
dividual developers (one based on repetition and one based on
rate); and 2 team-oriented ones, also repetition and rate-based re-
spectively. For this case study, we used historical data to com-
pute the aforementioned achievements and award a selection of 4
teams, comprising a total of 13 developers, during a time frame
of 4 months, which encompasses 7 iterations from these 4 projects.
Firstly, we’ll describe the achievements designed for the case study,
and then present and analyze the results. Later on, in section 6, we
discuss the integration of these achievements and other game de-
sign elements into a task management tool and the use of real-time
feedback.

5.1 Achievements

We tried to design achievements that cover different aspects of task
execution, such as amount of work done and rewarding developers
and teams who keep up-to-date with deadlines. We also included an
achievement to reward excellence in automated testing. This sec-
tion describes first the individual achievements, and then the team-
based ones.

5.1.1 Individual Achievements

Clockwork developer: its a rate achievement that accounts for the
number of tasks a developer finished inside the planed time frame,
compared to his total number of tasks, during an iteration. For this
achievement, three thresholds/medals were defined:

• Bronze : 50%

• Silver : 75%

• Gold : 100%

Marathonist: its a repetition achievement that accounts for the to-
tal number of tasks a developer successfully completed during his
time inside the company. For this achievement, three levels were
defined:

• level 1 : 5 tasks

• level 2 : 50 tasks

• level 3 : 500 tasks

5.1.2 Team Achievements

Tester team: its a rate achievement that awards the team based on
test code coverage. The team earns medals for the percentage of the
project’s code that is covered by automated tests at the end of each
iteration, according to the following thresholds:

• Bronze : 50%

• Silver : 75%

• Gold : 100%

2http://www.infoway-pi.com.br

Clockwork team: its a repetition achievement that accounts for the
number of iterations a team finished inside the planed time frame.
For this achievement, again three levels were defined:

• level 1: 1 iteration

• level 2: 3 iterations

• level 3: 10 iterations

5.2 Results and Analysis

The result of the clockwork developer achievement award, as
showed in Table 1, shows the number of medals earned by each
developer grouped by project. Summing the seven iterations con-
sidered for each project, developers could have achieved up to 7
gold medals, however, no developer had more than two medals in
total. Despite the low number of medals won, only three developers
did not earn any medal, and all developers from Project IV earned
two medals.

Clockwork Developer
Project Developer Medals

Project I Developer A
Project I Developer B -
Project I Developer C
Project II Developer D
Project II Developer E -
Project II Developer F
Project III Developer G
Project III Developer H
Project III Developer I -
Project IV Developer J
Project IV Developer K
Project IV Developer L
Project IV Developer M

Table 1: Individual results for the clockwork developer achieve-
ment, grouped by project: total medals earned by each developer
during the iterations considered in the case study.

For the marathonist achievement, no developer failed to achieve at
least the first level, as shown in Table 2. Unfortunately, only one
of them (Developer M from Project IV), achieved the second level.
However, the developers, A, H and I, are very close to reach the
50 tasks mark and earn the next level. The progress of tasks com-
pleteness of developers from project IV is showed in the Figure 6.
As we see, the level 2 of Developer M was earned only at the sixth
iteration.

Marathonist
Project Developer Level Tasks Completed

Project I Developer A Level 1 44
Project I Developer B Level 1 29
Project I Developer C Level 1 28
Project II Developer D Level 1 21
Project II Developer E Level 1 25
Project II Developer F Level 1 13
Project III Developer G Level 1 37
Project III Developer H Level 1 43
Project III Developer I Level 1 43
Project IV Developer J Level 1 25
Project IV Developer K Level 1 20
Project IV Developer L Level 1 13
Project IV Developer M Level 2 53

Table 2: Individual results for the marathonist achievement,
grouped by project: level achieved for each developer, followed by
the total number of tasks completed during the time-frame consid-
ered for the case study.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5

As shown in Table 3, only Project IV failed to reach level 1 at the
Clockwork Team achievement, meaning its team never finished an
iteration in time. Projects II and III reached the first level by having
one iteration finished in time, and only Project I is close to reaching
level 2. As for the Tester Team achievement, Project I earned 4
medals, being 2 silver and 2 bronze, based on its test code coverage
metric. No one other team earned any medal during the time-frame
considered, as shown in Table 4.

Clockwork Team
Project Level
Project I Level 1 (2 Iterations)
Project II Level 1 (1 Iteration)
Project III Level 1 (1 Iteration)
Project IV -

Table 3: Team results for the clockwork team achievement: levels
achieved for each project and total number of iterations finished in
time.

Tester Team
Project Medals
Project I
Project II -
Project III -
Project IV -

Table 4: Team results for the Tester Team achievement: medals
achieved for each project team during the iterations considered in
the case study.

 1 2 3 4 5 6 7

T
as

ks
 c

on
cl

ud
ed

Time (iterations)

Marathonist progress

Level 1

Level 2

Developer J
Developer K
Developer L
Developer M

Figure 6: Marathonist achievement progress chart for developers
of Project I, showing different rhythms, probably due to disparate
levels of experience and other factors.

Figure 7 shows a comparison of projects, considering the team
achievements and also the total number of individual medals earned
by all developers of the team for the Clockwork Developer achieve-
ment. As one can see, Project I seems to be more consistent then the
others, while Project IV hasn’t earned a single team achievement,
but its developers shane at the Clockwork Developer medals.

Interestingly, due to this apparent inconsistency, the company de-
cided to do further investigations to understand the reasons behind
this behavior. This investigation lead to the conclusion that the use
of achievements not only may help engage developers into doing
their work, but can also help monitor and control the development
process as a whole. Given the results obtained, all team managers
and supervisors that we talked to became interested in further de-
velopments of this work.

 0

 2

 4

 6

 8

 10

I II III IV

A
ch

ie
ve

m
en

ts

Project

Project comparison

Team medals
On-time iterations

Total clockwork dev.

Figure 7: Comparison of projects using both collective and total
individual achievements for the team.

6 DevRPG: Integration with a Task-
management Tool

Having mapped game design concepts to software engineering and
evaluated achievements in a case study, we are convinced that our
approach can also be useful in everyday software development pro-
cesses. For this to happen, we propose a set of RPG-like features
to be integrated into a task-management tool. The standard require-
ments for this tool are fairly basic, which makes our approach ap-
plicable to many existing software, as long as there is source code
available.

The goal is to include the game design features as an add-on, im-
plementing as many feedback mechanisms as possible, making the
developers always aware of these mechanics. Firstly, we will list
the standard features required from a task-management software
to make it eligible to incorporate the DevRPG elements. In Sub-
section 6.2, we suggest how the RPG concepts and features may be
implemented and added to such software.

6.1 Standard Task-management Features Re-
quired

In this section we present only requirements related to a task man-
agement tool commonly used in software houses. The main goal
of this tool is normally to record the time spent in the several soft-
ware development tasks, in order to keep a historical database. Be-
sides tracking progress and reporting productivity, the goal is also
to facilitate the estimation of the resources needed by subsequent
projects and iterations, based on the resources that have already
needed in past projects.

Requirements are presented as a simple list of loose expressions,
illustrating the concepts required, followed by an explanation that
details the requirement and its use.

• Project, release, iteration, and task containers. A soft-
ware house must keep in touch all the information about the
projects in execution. A project has several iterations, each
one composed of several tasks. At the end of one or more
iterations, it is possible to deliver a release to the client. All
these relationships among the project, release, iteration and
tasks must be recorded, since the achievements proposed in
this work require the analysis of them in their own scope and
branches to give immediate feedback.

• Fine-grained logs for tasks (developer, time, requirement,
discipline). In a software development project, a task rep-
resents the registry of a work performed by one developer in
order to reach a specific goal. A task is always related to some
software engineering discipline, e.g. requirements, design,
testing, project management or quality assurance. In order
to allow the analysis of the achievements proposed here, it is
fundamental to record the developer assigned to each task, the

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6

time spent for this execution, associated requirements, and the
nature of the task (discipline). Notice that logging in to record
work-time is considered a very boring action, so it is impor-
tant to create mechanisms to simplify this task. It must be easy
to start, stop, pause and finish a task. Additionally, it is also
important to create functions to help the developers remember
doing this actions;

• Source-code metrics. The main artifact of a software project
is the software source code. Due to this, it is fundamental to
register metrics related to source code evolution at the version
control level. There are several measures that can mine the
source code and report summaries such as amount of lines,
test coverage, complexity, package tangle, duplications, com-
ments. Normally, the goal of a task management tool does
not include directly gathering these software metrics, but this
information is required to introduce game mechanics in a
software project. Thus, a task-management tool must track
this information, directly or indirectly, by using other tools.
Nowadays, there are free development tools that can do this
work. An useful example is Sonar3, which is an open plat-
form to manage code quality. Several achievements can be
generated using the code quality attributes generated by such
tool.

6.2 DevRPG Proposed Features

DevRPG is a proposal to incorporate RPG-like mechanics to the
everyday software development activity. The goal is to make the
developer more aware of his programming character, creating emo-
tional bonds with this virtual persona, and thus better engaging in
his daily duties. Differently than a proper game, this character re-
flects the player very own skills and actions, whose consequences
are real. In this section we list the desired features for DevRPG.

• Character Attributes Engine. In DevRPG, the skills used to
solve challenges are the software engineering disciplines, and
since each task is related to one of these, the goal is to have
the system compute the amount of experience the developer
gains after finishing his assigned task. Ideally, the character
attributes should be directly named after the disciplines used
in the software development process, plus a master one, to
control the character leveling. It is also interesting to have
the software allow for the team managers to give different ex-
perience points to tasks. Another important feature of this
attribute engine is to implement a decay algorithm to reduce
the amount of experience points earned when the task is not
completed in time.

• Class Engine. Given that attributes are not chosen, but rather
inferred by the attribute engine, the character class must also
be automatically inferred based on the most used disciplines
for each developer. For instance, a developer who have many
test tasks assigned to will end up escalating the levels of a
master-tester class. Similar to repetition achievements, each
class must have a threshold scale of minimum experience
point to reach different levels.

• Achievements Engine. In our case study, we mined the
achievements directly onto the task database. For the De-
vRPG tool, this feature must be automated, in order to
give immediate feedback whenever an achievement is earned.
However, achievements may be based in different aspects/data
from the task-management tool, which asks for a flexible way
to define and model the formulas to compute them. Ideally,
the tool should use a production rule engine to implement this.

• Immediate Feedback. Developers update the state of their
tasks all the time. Sometimes, an update generate a status
change in the related task, or even project. An example of
this is the conclusion of a task, which can finish an iteration,
a release, or even the project, since all of these concepts are
linked together. Even when the status change is only for the
task, it is possible that this change renders a new achievement
or makes the character leveling up, based on the experience

3http://www.sonarsource.org

points earned. The system should give immediate feedback,
both visual and audible, of this changes in the character at-
tributes, level and achievements. Thus, every action executed
must invoke the attribute, class and achievement engines in
order to update the character status.

• Character Profile Screen. The aforementioned character
data must be available to the developer in a character profile
screen, with historical information in graphical form. This
character profile must be kept in the database, since achieve-
ments earned will linger even in case the developer change
projects. This avoids the continuos execution of a snoop func-
tion, which would need to analyze too much data from all the
project.

This is a simple list of desired features for an augmented task-
management tool that includes the game mechanics we devised for
an RPG-like software engineering process. Some of these features
are straightforward to implement, while some may need further de-
sign an the use of state of the art frameworks such as a production
rule engine. We are implementing these DevPRG features for the
in-house task-management tool at company XPTO, and plan to run
a long term study on the impact its use will have in their software
development process.

7 Conclusion

In this paper, we fundamentally showed that game mechanics can
be applied to any activity that includes challenges and the use of
skills to succeed in them. We proposed this approach to turn soft-
ware development processes into a game. For this, we presented a
mapping for the challenge-graph from games to software engineer-
ing concepts, and suggested a method to incorporate achievements.

We also presented a case study in which we designed a set of
achievements that were evaluated against historical data from a
real-world, medium-sized software development team. The results
from this experiments showed that achievements can be an inter-
esting metric to measure performance in this context, also helping
to stimulate competition among developers. The feedback obtained
from the team was encouraging, as everybody was impressed with
the results and enthusiastic about the idea of incorporate even more
mechanics into their activity.

The inclusion of such ideas into a task-management tool is the next
natural step, so we already proposed how this should be done for an
example RPG-like game. We expect to have it implemented soon,
and run a long term experiment with even more development teams.
The main goal of the tool is to give developers real-time feedback
of the game elements and general progress, helping to engage them
in the underlying challenge, also introducing bits of competition
among different teams.

Compared to previous research, we position our work as similar to
the concept of gamification, but instead of going the straightforward
path by incorporating game mechanics into other typer of interac-
tive media (websites, for example), we showed that this concept can
be incorporated into real-world activities. There are also many pro-
posals of simulations and serious games to help teach/train software
engineering, but we wanted to go the opposite direction, making an
already trained team get more engaged into software development
because of the use of game mechanics.

This work was also a mind-opener for both the researchers, and the
team that took part in the experiment. Many of us were skeptical at
the beginning, but now are convinced that game design, a centuries-
old craft, can be effectively applied to other activities. We remark
that the goal of the games academic community should also be to
spread knowledge to other research areas, spawning novel applica-
tions such as this.

Acknowledgements

The authors would like to acknowledge the Infoway company by
the important contributions to the research.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7

References

BAKER, A., NAVARRO, E. O., AND HOEK, A. V. D. 2003. Prob-
lems and programmers: An educational software engineering
card game. In In ICSE ’03: Proceedings of the 25th International
Conference on Software Engineering, IEEE Computer Society,
614–619.

BAKER, A., NAVARRO, E. O., AND VAN DER HOEK, A. 2005.
An experimental card game for teaching software engineering
processes. Journal of Systems and Software 75, 1-2, 3 – 16.
Software Engineering Education and Training.

CAPTIVE, C., 2011. Cloud captive: gamification made easy.
http://www.cloudcaptive.com/, July.

CLAYPOOL, K., AND CLAYPOOL, M. 2005. Teaching software
engineering through game design. SIGCSE Bull. 37 (June), 123–
127.

COOK, D., 2006. What are game mechanics?
http://www.lostgarden.com/2006/10/
what-are-game-mechanics.html, October.

COOK, D., 2008. What activities can be turned into
games? http://www.lostgarden.com/2008/06/
what-actitivies-that-can-be-turned-into.
html, June.

CORCORAN, E., 2010. Gaming education. http://radar.
oreilly.com/2010/10/gaming-education.html,
October.

FERNANDES, L., AND WERNER, C. M. L. 2009. Sobre o uso
de jogos digitais para o ensino de engenharia de software. In In
FEES ’09: Proceedings of the Software Engineering Education
Forum, XXIII SBES, vol. 1, SBC: Brazilian Computing Society,
17–24.

HUMPHREY, W. 1995. A Discipline for Software Engineering.
Addison-Wesley.

JACOBSON, I., BOOCH, G., AND RUMBAUGH, J. 1999. The Uni-
fied Software Development Process. Addison-Wesley.

KOSTER, R., AND WRIGHT, W. 2004. A Theory of Fun for Game
Design. Paraglyph Press.

NAVARRO, E. 2006. SimSE: a software engineering simulation
environment for software process education. PhD thesis, Cali-
fornia State University at Long Beach, Long Beach, CA, USA.
AAI3243955.

SWEEDYK, E., AND KELLER, R. M. 2005. Fun and games: a new
software engineering course. SIGCSE Bull. 37 (June), 138–142.

TAKAHASHI, D., 2010. Gamification gets its own confer-
ence. http://venturebeat.com/2010/09/30/
gamification-gets-its-own-conference/,
September.

VON WANGENHEIM, C. G., KOCHANSKI, D., AND SAVI, R.
2009. Revisão sistemática sobre avaliação de jogos voltados para
aprendizagem de engenharia de software no brasil. In In FEES
’09: Proceedings of the Software Engineering Education Forum,
XXIII SBES, vol. 1, SBC: Brazilian Computing Society, 1–8.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 8

