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Fig 1: Two examples of obstacles adapting with Real Time Pathfinding with Genetic Algorithm (RTP-GA). 

 

Abstract 
 

This paper presents a method to optimize the process 

of finding paths using a model based on genetic 

algorithms and A * for real time systems, such as video 

games, virtual reality environments. The proposed 

solution uses obstacle pattern detection based on online 

training  system that is generally used in systems with 

real time requirements  and in dynamic environments. 

The architecture, named Real Time  Pathfinding with 

Genetic Algorithm (RTP-GA), uses a Genetic 

Algorithm in order to create an agent adapted to the 

environment that is able to optimize the search for  

paths even in the presence of obstacles. In specific 

cases, the RTP-GA architecture presents a complexity 

that is better than A* algorithm. 
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1. Introduction 
 

The real-time search of the shortest paths between two 

points is a fundamental problem for the area of 

electronic games, but it is also relevant for other areas 

[Stodola and Mazal, 2010]. The A * algorithm [Hart, 

Nillson and Raphael, 1968] (and its variations 

[Bjornsson et al., 2005]) is one of the key methods for 

finding such shortest paths. The A* combines dynamic 

programming and an admissible heuristic for pruning 

the search space. However, due to  its complexity, the 

available computing power available in the game cycle 

may not be enough for running the A*. Moreover,  the 

environments are dynamic, meaning that changes in 

the positions of the obstacles may occur.  In such 

dynamic environments high time demanding 

algorithms, such the A*, may not be a suitable option. 

 Since such algorithms may require many seconds to 

end, changes in the environment may occur while the 

algorithms are still running. As a result, the problem 

solved by the algorithm is no longer the same and 

consequently the solution found  may no longer apply. 

Also, using the A* in multi-agent games may not be 

possible, especially in very constrained resources 

platforms such as tablets and cellphones. 

 

This paper proposes an algorithm based in Genetic 

Algorithms [Mitchell, 1996] and in the A * to optimize 

the search for shortest paths in dynamic environments 

with real-time requirements. With this technique, the 

agent is able to adapt yourself in an homogeneous  

maze, using an heuristic that let the agent calculates an 

path thought a considerable number of open nodes, in a 

single step, without having to check the neighbors for 

each node visited. 

 

This paper, first presents an survey about the 

related works in path finding. After that, the RTP-GA 

algorithm idea is presented, followed by the algorithm 

specifications and features. In the end an 

implementation is presented with testing and 

comparative analysis between the RTP-GA and A* 

algorithm. 
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2. Related Work 
 

Searching for patterns in maps in order to optimize the 

pathfinding  algorithms is a well known technique. 

Demyenand and Buro [2006] shows that the 

Triangulation Reduction A* ( TRA*) method has many 

benefits, including accurate representation of 

polygonal environments, reduction of the search space 

and refinement of the optimal path. Although this 

algorithm uses real-time learning, it has severe 

constraints regarding the environment. To use the 

TRA* we must provide a description of polygonal 

obstacles in the environment, which can be easily 

applied to maps with barriers and holes but it is not 

suitable for labyrinths. 

 

The use of meta-heuristics for adaptation to the 

environment is a topic addressed by several authors. 

Leigh et al. [2007] proposed the GA-Manufactured 

Maneuvering Algorithms (GAMMAs) that was able of 

finding paths more than 1000% faster than the 

traditional A*. In presented architecture the GA was 

able to adapt to the obstacles (called risk zones), 

approach the human-made path and define the best 

way to evaluate the path. However GAMMA depends 

on a prior offline training, that consists in exploring 

some maps in order to extract some patterns before the 

optimization process. 

 
Burchardt and Salomon [2006] implemented a 

Genetic Algorithm to search for paths for robot  

routing. The algorithm runs until the agent achieves its 

goal. There is a constant update process on the 

environment. The fitness function is based on the 

length of the path with penalization on collisions. The 

gene encoding follows the pattern: 

 

Length X1 Y1 X2 Y2 X3 Y3 

 
The path is encoded as equidistant distances 

between the start and finish, allowing the occurrence of 

a deviation. However, this approach only works when 

a nearly direct route exists. 

 

Bulitko and Lustrek [2006] call "lookahead" the 

incomplete search method, which is similar to the min-

max based algorithms used in two-person games. It 

conducted a limited depth search, expanding of the 

space centered on the agent, and heuristically evaluates 

the distance between the agent and the destination. 

However, due to the lookahead pathology [Bulitko and 

Lustrek, 2006], determining the optimal depth for the 

search procedure is not an easy task. 

 

As in [Demyenand and Buro, 2006] and [Salomon 

and Burchardt, 2006], this work investigates partial 

solutions in the map, trying to minimize the problems 

defined by Bulitko and Lustrek [2006] when using this 

incomplete search method. Intends to hold a learning 

through an online training (as opposed to Leigh et al. 

[2007]). Through a codification of the route, such as 

Burchardt and Salomon [2006].  

 

3. The RTP-GA Algorithm. 
 

The proposed method generates possible sub-paths to 

be applied in a map randomly, evaluate the sub-paths 

in the map, and then adapt the sub-paths in order 

optimize the path traversed. Thus for standard 

environments with obstacles, the RTP-GA has a very 

low computational workload can be used in dynamic 

environments.  

 

We decide to use Genetic Algorithms for solving 

the pathfinding problem combining two approaches of 

the literature, presented in Leigh et al. [2007] and in 

Burchardt and Salomon [2006].  The difference 

between our model and the one presented in Leigh et 

al. [2007] is that we use an online training instead of an 

offline one. Our approach also improves the model 

presented in Burchardt and Salomon [2006] since we 

define a chromosome able to adapt to any environment 

that present obstacle patterns. 

 

4. RTP-GA 
 

Genetic Algorithms use techniques based on 

evolutionary process species in order to find good 

solutions for optimization problems. The algorithm 

iterates over a population of solutions, that are called 

individuals or chromosomes.  On each generation 

(algorithm iteration), new individuals  are generated by 

crossover and mutation process and only the most 

suitable individuals survive for the next generation.  

The individual fitness is calculated by a fitness 

function, or objective function. Thus, in each 

generation,  only the individuals with the best values of 

objective function are selected to be in the next 

generation.  

 

It is important to note that, in the presented 

architecture, the quality of individuals (paths) is 

measured  not only by the objective function, but also 

the environment, ensuring an adaptation to changes in 

the map. 

 

4.1 Chromosome representation 
 

As one of the goals of the algorithm is to detect 

obstacle patterns in the map, the proposed Genetic 

Algorithm uses a model based on four movement 

vectors, two horizontal and two vertical. These allow 

you to make up four straight since a single line to a 

deviation in the shape of L or S of an obstacle in any 

one of its sides. As the maze gets narrow, the distance 

of the vectors (lines lenght) tends to decrease, and 

vice-versa. If the obstacles can be overcome by 

contourning them, these vectors tend to find this 

pattern. Each of these four vectors have a distance and 

a direction, as expressed in Table 1:  
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Type Interval Description 

Interger 1 to 4 Distance of Movement 1 

(DM1) 

Interger 1 to 4 Distance of Movement 2 

(DM2) 

Interger 1 to 4 Distance of Movement 3 

(DM3) 

Interger 1 to 4 Distance of Movement 4 

(DM4) 

Interger -1 to 1 Movement Direction 1 (D1) 

Interger -1 to 1 Movement Direction 2 (D2) 

Interger -1 to 1 Movement Direction 3 (D3) 

Interger -1 to 1 Movement Direction 4 (D4) 
Tab. 1 – Chromosome encoding. 

 

 The interval at which movement distances may 

vary represent a percentage of the width (in the case of 

horizontal vectors) and height (in the case of vertical 

vectors) of the map. The directions are given by: 

 

 

 M1 and M3: 0 no movement, -1 down 

(subtracts the y-axis) and +1 up (increase in y-

axis).  

 M2 and M4: 0 no movement, -1 to the left 

(subtracts the x-axis) and +1 to the right 

(increase in x-axis). 

 

4.2 Fitness Function 
 

The objective function (OF) is used to check each 

candidate path. It takes into consideration the 

following terms: 

 

* The Manhattan  Distance (MH), Witch has the 

largest weight in the formula. Its equation is given by      

MH = | x1-x2 | + | y1-y2 |. The higher the the value of 

MH  the the worst situation, since it means that the 

agent is far from the final target; 

 *Total Movement (MT), calculated by the sum of 

half the distance moved. The weight of MH is smaller 

than the one of MH to serve as a tie-breaker, especially 

in the elimination of cycling paths; 

 *Convergence (C0), assumes 0 if the path can not 

be traversed, meaning that an obstacle was found, and 

assumes 1 in case the individual represents a valid 

path. 

 This objective function must be maximized, 

meaning that  the higher the value the better the 

candidate. To ensure this feature was used as a roof 

value given by:  

 

Roof = (Width + Height) * 3 

 

 Value that represents the sum of the maximum of 

four movement vectors plus the maximum value of the 

Manhattan distance. If a path is not valid the 

convergence ensure that the result is the lowest 

possible (in this case, zero). The objective function is 

given by: 

 

FA = ( Roof - MH  - MT * 0,1 ) * C 

 

4.3 Movement Instances 
 

In order to show the types of changes that may happen, 

we will consider, with the loss of generality, a 5x5 

dimension map. Also let "i" be the initial point of the 

agent and  "f" be the final point (exit). The path under 

consideration will be represented by arrows in the map. 

The following situations may be represented in our 

chromosomes (Fig. 2): 

 
(a)                                          (b) 

Fig. 2 – Straight movement. 

 

Figure 2 shows a visual representation of the 

chromosomes exposed in Table 2. 

 

DM1 DM2 DM3 DM4 M1 M2 M3 M4 

0,2 0,6 0,4 0.1 0 -1 0 0 

0,1 0,9 0,7 0.1 -1 0 0 0 

Tab. 2  – Values of straight movement. 

 

Table 2 (line 1) presents a individual in which only 

the M2 field has a valid value. Thus it represents a 

single movement to the left on the map (due to the 

negative value). The distance traveled is a fraction of 

the map size. As DM2 (relative to M2) has value 0.6 

and the map has width 5  the total distance traveled in 

this movement is given by 0.6 x 5 = 3 squares, as 

shown in Figure 2 (a) . The chromosome exposed in 

Table 2 (b) (line 2) also shows a movement with a 

single direction, presented in Fig. 2 (b). The Manhattan  

distance  value of both chromosomes, i.e. the number 

of squares between the resulting point of the movement 

and the maze exit, are 3 and 7,  respectively. The 

objective functions of both chromosomes are shown: 

 

FA(a) = ( 30 – 3 – 3 * 0,1 ) * 1 => 26,7 

FA(b) = ( 30 – 7 – 1 * 0,1 ) * 1 => 22,9 

 

 Since the first chromosome of Table 2 has a higher 

O.F. it is considered better than the second one. 

 

In the next set of examples we will evaluate a 

movement with a single deviation (Figure 3) 

represented by the chromosomes of Table 3: 
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(a)                                          (b) 

Fig. 3 – Movement with deviation. 

 

DM1 DM2 DM3 DM4 M1 M2 M3 M4 

0,4 0,2 0,5 0.9 1 -1 0 0 

0,6 0,2 0,8 0.1 0 1 1 0 
Tab. 3 – Values of deviation movement. 

 

The first chromosome has two nonzero directions: 

M1 vertically and M2 horizontally. Therefore we will 

have two line segments forming a path with deviation. 

A similar situation occur in the second chromosome. 

Both chromosomes are graphically exposed in Figure 

3. 

 

 Table 4 presents chromosomes with two deviations, 

shown in Figure 4: 

 

 
(a)                                          (b) 

Fig. 4 – Movement with two deviations. 

 
DM1 DM2 DM3 DM4 M1 M2 M3 M4 

0,4 0,2 0,5 0.9 1 -1 1 0 

0,6 0,2 0,8 0.1 0 -1 1 1 
Tab. 4 – Values of the two deviations movement. 

 

Figure 5  shows a path in which that agent collides 

with an obstacle: 

 

 
Fig. 5 – An example of an invalid path. 

 
Considering each "o" on the map as an obstacle, it 

is clear that the path exposed in Figure 5 is not 

possible.  Thus the objective function for such path is 

given by: 

 

FA = ( 30 – 3 – 3 * 0,1 ) * 0 => 0,0 

 
 As can be observed, the convergence of the path is 

set to zero and it ensures a low value of the objective 

function to the chromosome related with such path. 

The low values in the objective functions indicate that 

solutions are unfeasible or poor in quality an thus the 

Genetic Algorithm must ensure that such solutions do 

not pass genetic information to future generations. 

 

 Figure 6  shows how the objective function is used 

to select better paths. 

 

 
(a)                         (b)                          (c) 

Fig. 6 – Movements with approximate fitness result. 

 

In the three cases presented in Figure 6 the map has 

the same configuration. In Figure 6 (a) and Figure 6 (b) 

the agent  movement ends in the same place, but in 

Figure 6 (a) makes unnecessary movements. When 

evaluating the chromosomes, the objective function of 

the three cases are given by: 

 

FA(a) = ( 30 – 5 – 3 * 0,1 ) * 1 => 24,7 

FA(b) = ( 30 – 5 – 1 * 0,1 ) * 1 => 24,9 

FA(c) = ( 30 – 4 – 2 * 0,1 ) * 1 => 25,8 

 

Therefore, although Figure 6 (a) and Figure 6 (b) 

have the same Manhattan  distance, the total movement 

(MT) is responsible for appointing the best 

chromosome, in this case Figure 6 (b). However, when 

comparing Figure 6 (b) and Figure 6 (c) we see that 

although the MT Figure 6 (b) is smaller, the value of 

Manhattan  distance of the chromosome in Figure 6 (c) 

ensures a higher value in the Objective Function 

revealing that this chromosome is the best among the 

presented cases. 

 

4.4 The Genetic Algorithm  
 

Our Genetic Algorithm starts whenever the agent 

collides with an obstacle. Before the collision, the 

greedy A * is used without considering the  neighbors. 

This simple version of the A* is used because the GA 

is responsible for running a local search in the map. It 

is important to note that the decision of not consider 

the neighbors in the A* causes a significant speedup in 

the algorithm. 

 
 Figure 7 shows the proposed Genetic Algorithm 

that that perform the following steps:  
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1. Start with an empty population of individuals. 

Complete the population of size N=4 with 

random generated individuals. 

2. Create N chromosomes using crossover 

operation on the initial population. 

3. Create N chromosomes using mutation 

operation on the initial population. 

4. Check the convergence of all chromosomes 

on the map. At this point the map may also be 

altered because the visited squares are 

marked. 

5. Evaluate the chromosomes using the objective 

function , select the N / 2 best chromosomes 

(elitist criterion) and apply the selected 

chromosomes on the map (at this point the 

agent will move through the map).  

6. Greed A* is used to navigate the environment 

until the desired point has distance greater 

than manhattan's point of origin. Therefore the 

agent should continually check the new 

position on the map and mark the visited 

states. 

7. If the comparison between the manhattan's 

distances show that the chosen point is not 

feasible to continue the flow of the algorithm 

using the GA module. 

8. If the point chosen by A * and sub-route 

generated by the GA does not conflict with 

the stopping criterion (the "output"), take the 

N / 2 better, generate more N / 2 random and 

back in step 2. 

 

 
Fig. 7 – Real Time Pathfinding with Genetic Algorithm 

(RTP-GA). 

 

 

 

 

4.5 Local Optimum treatment  
 

We consider a local optimum of the path-finding 

problem, as modeled here, a region of the map that is  

relatively close to the maze exit and that all paths to the 

exit are unfeasible or pass through an already visited 

square  (Fig. 8). In such cases we use the visited 

squares  by the sub-path  as obstacles only if they are 

the resulting point of a path, which induce the GA to 

search regions far from the maze exit, which can be 

considered a diversification strategy. To avoid the 

greedy A * module come back for these local 

optimums, it treat this sub-path  as an obstacle. 

 
Fig. 8 – Example of a local minima 

(the “v” symbol represents an visited node). 

 

5- Implementation 
 
Since one the goals of this work is to prepare a test bed 

for optimization algorithms for the pathfinding 

problem, suitable programming language and  

development environment were chosen. Another factor  

considered in the choice of language and development 

environment was the possibility of exporting the 

developed systems to mobile devices such as tablets 

and mobile phones where the optimized use of the 

resources is highly recommended. 

 
 We performed 20 tests on three different mazes. In 

each test agents were placed in different positions. 

 

5.1 Technology 
 

The development technologies used were Unity 3D 

[UNITY TECHNOLOGIES] through the C # language.  

 

Unity3D 3.x is a game development engine Which has 

the main components needed for designing games 

developing rapidly, such as the physics engine, 

collision systems, sound system and a high level 

programming language based on C, among others. 

 

Unity 3D has an interface for programming in 

Mono. It incorporates key .NET components, including 

a compiler for the C# programming language and a 

complete suite of class libraries. 

 

 The direct assignment of a list of values to arrays in 

C #  allowed an easy viewing of maps used in the 

experiments. Thus the generation of a tileset, which is 

the display of graphics (or sprites) defined in a two-

dimensional array can be made as shown in Figure 9. 
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 The modularization of the code and Object-

Oriented paradigm allows dynamic instantiation of 

both the environment and the agents in Unity.  

 
string[] map = new string[20] 
{ 
 "oooooooooooooooooooo", 
 "of....o............o", 
 "o..o...............o", 
 "oooooooo......oooooo", 
 "ooo....o......o....o", 
 "o.oo..oo......o....o", 
 "o............io....o", 
 "ooooo.ooooooooo....o", 
 "o...o.o............o", 
 "o...o.o....o.......o", 
 "o...o.o....o.......o", 
 "o...o.o....o.......o", 
 "o...o.oooooo.ooooooo", 
 "o..................o", 
 "o...o.o............o", 
 "o...o.o............o", 
 "o...o.o............o", 
 "o...o.o............o", 
 "o...oio.....i......o", 
 "oooooooooooooooooooo" 
}; 
 

Fig. 9 – Dynamic tileset of an map, implemented in a c # 

matrix. 

 
The result of the algorithm applied to the tileset 

defined in Figure 9 executed in a Tablet with Android 

Operational System 2.1 Eclair is exposed in Figure 10. 
 

 
Fig. 10 – RTP-GA simulation with three agents in field. 

 
5.2 Tests 
 

We conducted three tests to compare the expense of 

memory between A* and RTP-AG algorithms. Each in 

a different map, with dimensions of 40 by 40. 

 

In all, to be deterministic (and therefore not 

generate solutions with different memory spent in an 

environment without variation), the A * was performed 

only once. In contrast the average was calculated for 

100 runs of RTP-GA in each test case. 

 

The maps were 

 

 Without Obstacles - to assess the direct search; 

 With patterns (first Fig. 11) - to assess the 

advantages of the adjustment proposed by 

RTP-GA; 

 Without patterns (Fig. 11 second) - to evaluate 

the worst case of RTP-GA. 

 

 
Fig. 11 – Respectively: maps with and without patterns. 

 

5.3 Results and Analysis 
 

The results show that the agents managed to adapt 

themselves  to the surrounding environments even in 

the presence of obstacles. 

 

 Two situations can be observed in the  Figure 1. 

The first map has 2x2 obstacles, the second has long 

corridors. In both cases the agent is able to adapt 

himself. 

 

The result of the experiments can be checked in 

Fig. 12: 

 

 
Fig. 12 – Comparison between the execution of algorithm A-

Star and the average execution of RTP-AG algorithm. 

 

By comparing the RTP-GA with A * in a map 

without obstacles, as predicted, there was a tie. This is 

due to the fact that, initially, the RTP-based GA uses 

the A * algorithm until an obstacle in his way.  

 

In comparison made on a map with obstacles with 

patterns RTP-GA algorithm achieved satisfactory 

results, outperforming the A * 90% of cases this is due 

to the learning agent, in this type of map is used for the 

generation of the sub-paths that does not occur in 

environments with obstacles without default.  

 

In the test with obstacles, but without a pattern, the 

result was not satisfactory. On average, it was much 

worse than A *. This is due to the fact that in this case 

the RTP-GA algorithm tends to generate sub-paths 

more frequently, because there is no genetic advantage 

of the previous chromosomes which leads to an 

overspending of memory. 
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 The objective of the tests is to check if the agents 

are able to find a path to the maze exit. In 100% of the 

cases the agents achieved the goal. 

 

The results were as expected since the RTP-GA has 

a better performance on standardized maps with 

obstacles due to the adjustment provided by the 

Genetic Algorithm, being impracticable for maps that 

have no standard for the evaluation of sub-paths 

generated is costly. 

 

6. Conclusion and Futurework 
 

This work defines a new method to search the shortest 

path between two points in 2D maps. The RTP-GA 

uses the classic A* inside a Genetic Algorithm in order 

to find good solutions in a short period of time. 

 

 The proposed GA used lookahead based modeling 

to the chromosome that can be adapted to any kind of 

map that contains obstacle patterns. Also the lookahead 

pathology is avoided by the iterative nature of the 

algorithm. 

 

 Our experiments were conducted on large maps of 

this form with similar characteristics to adapt to 

dynamic environments, because in the second RTP-GA 

would have a latency of learning in small variations of 

the environment because genetic information. 

 

As future work will seek improvements in this 

architecture to optimize the search process. Such as 

varying the number of segments of lines contained in 

the chromosome. 
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