
Real Time Pathfinding with Genetic Algorithm

Alex Fernandes da V. Machado
1
, Ulysses O. Santos

1
, Higo Vale

1
, Rubens Gonçalvez

1
,

Tiago Neves
2
, Luiz Satoru Ochi

2
, Esteban Walter Gonzalez Clua

2
.

1
Instituto Federal de Educação Tecnológica do Sudeste de Minas Gerais,

Departamento de Computação, Brazil.
2
Universidade Federal Fluminense, Instituto de Computação, Brazil.

Fig 1: Two examples of obstacles adapting with Real Time Pathfinding with Genetic Algorithm (RTP-GA).

Abstract

This paper presents a method to optimize the process

of finding paths using a model based on genetic

algorithms and A * for real time systems, such as video

games, virtual reality environments. The proposed

solution uses obstacle pattern detection based on online

training system that is generally used in systems with

real time requirements and in dynamic environments.

The architecture, named Real Time Pathfinding with

Genetic Algorithm (RTP-GA), uses a Genetic

Algorithm in order to create an agent adapted to the

environment that is able to optimize the search for

paths even in the presence of obstacles. In specific

cases, the RTP-GA architecture presents a complexity

that is better than A* algorithm.

 Keywords: pathfinding, genetic algorithm,

dynamic environment

 Authors’ contact:
{alexcataguases,higovale,gbrubens}@hotmai

l.com, {ulyssesdvlp,
tiagoanz}@gmail.com,{satoru,esteban}@ic.u

ff.br

1. Introduction

The real-time search of the shortest paths between two

points is a fundamental problem for the area of

electronic games, but it is also relevant for other areas

[Stodola and Mazal, 2010]. The A * algorithm [Hart,

Nillson and Raphael, 1968] (and its variations

[Bjornsson et al., 2005]) is one of the key methods for

finding such shortest paths. The A* combines dynamic

programming and an admissible heuristic for pruning

the search space. However, due to its complexity, the

available computing power available in the game cycle

may not be enough for running the A*. Moreover, the

environments are dynamic, meaning that changes in

the positions of the obstacles may occur. In such

dynamic environments high time demanding

algorithms, such the A*, may not be a suitable option.

 Since such algorithms may require many seconds to

end, changes in the environment may occur while the

algorithms are still running. As a result, the problem

solved by the algorithm is no longer the same and

consequently the solution found may no longer apply.

Also, using the A* in multi-agent games may not be

possible, especially in very constrained resources

platforms such as tablets and cellphones.

This paper proposes an algorithm based in Genetic

Algorithms [Mitchell, 1996] and in the A * to optimize

the search for shortest paths in dynamic environments

with real-time requirements. With this technique, the

agent is able to adapt yourself in an homogeneous

maze, using an heuristic that let the agent calculates an

path thought a considerable number of open nodes, in a

single step, without having to check the neighbors for

each node visited.

This paper, first presents an survey about the

related works in path finding. After that, the RTP-GA

algorithm idea is presented, followed by the algorithm

specifications and features. In the end an

implementation is presented with testing and

comparative analysis between the RTP-GA and A*

algorithm.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

2. Related Work

Searching for patterns in maps in order to optimize the

pathfinding algorithms is a well known technique.

Demyenand and Buro [2006] shows that the

Triangulation Reduction A* (TRA*) method has many

benefits, including accurate representation of

polygonal environments, reduction of the search space

and refinement of the optimal path. Although this

algorithm uses real-time learning, it has severe

constraints regarding the environment. To use the

TRA* we must provide a description of polygonal

obstacles in the environment, which can be easily

applied to maps with barriers and holes but it is not

suitable for labyrinths.

The use of meta-heuristics for adaptation to the

environment is a topic addressed by several authors.

Leigh et al. [2007] proposed the GA-Manufactured

Maneuvering Algorithms (GAMMAs) that was able of

finding paths more than 1000% faster than the

traditional A*. In presented architecture the GA was

able to adapt to the obstacles (called risk zones),

approach the human-made path and define the best

way to evaluate the path. However GAMMA depends

on a prior offline training, that consists in exploring

some maps in order to extract some patterns before the

optimization process.

Burchardt and Salomon [2006] implemented a

Genetic Algorithm to search for paths for robot

routing. The algorithm runs until the agent achieves its

goal. There is a constant update process on the

environment. The fitness function is based on the

length of the path with penalization on collisions. The

gene encoding follows the pattern:

Length X1 Y1 X2 Y2 X3 Y3

The path is encoded as equidistant distances

between the start and finish, allowing the occurrence of

a deviation. However, this approach only works when

a nearly direct route exists.

Bulitko and Lustrek [2006] call "lookahead" the

incomplete search method, which is similar to the min-

max based algorithms used in two-person games. It

conducted a limited depth search, expanding of the

space centered on the agent, and heuristically evaluates

the distance between the agent and the destination.

However, due to the lookahead pathology [Bulitko and

Lustrek, 2006], determining the optimal depth for the

search procedure is not an easy task.

As in [Demyenand and Buro, 2006] and [Salomon

and Burchardt, 2006], this work investigates partial

solutions in the map, trying to minimize the problems

defined by Bulitko and Lustrek [2006] when using this

incomplete search method. Intends to hold a learning

through an online training (as opposed to Leigh et al.

[2007]). Through a codification of the route, such as

Burchardt and Salomon [2006].

3. The RTP-GA Algorithm.

The proposed method generates possible sub-paths to

be applied in a map randomly, evaluate the sub-paths

in the map, and then adapt the sub-paths in order

optimize the path traversed. Thus for standard

environments with obstacles, the RTP-GA has a very

low computational workload can be used in dynamic

environments.

We decide to use Genetic Algorithms for solving

the pathfinding problem combining two approaches of

the literature, presented in Leigh et al. [2007] and in

Burchardt and Salomon [2006]. The difference

between our model and the one presented in Leigh et

al. [2007] is that we use an online training instead of an

offline one. Our approach also improves the model

presented in Burchardt and Salomon [2006] since we

define a chromosome able to adapt to any environment

that present obstacle patterns.

4. RTP-GA

Genetic Algorithms use techniques based on

evolutionary process species in order to find good

solutions for optimization problems. The algorithm

iterates over a population of solutions, that are called

individuals or chromosomes. On each generation

(algorithm iteration), new individuals are generated by

crossover and mutation process and only the most

suitable individuals survive for the next generation.

The individual fitness is calculated by a fitness

function, or objective function. Thus, in each

generation, only the individuals with the best values of

objective function are selected to be in the next

generation.

It is important to note that, in the presented

architecture, the quality of individuals (paths) is

measured not only by the objective function, but also

the environment, ensuring an adaptation to changes in

the map.

4.1 Chromosome representation

As one of the goals of the algorithm is to detect

obstacle patterns in the map, the proposed Genetic

Algorithm uses a model based on four movement

vectors, two horizontal and two vertical. These allow

you to make up four straight since a single line to a

deviation in the shape of L or S of an obstacle in any

one of its sides. As the maze gets narrow, the distance

of the vectors (lines lenght) tends to decrease, and

vice-versa. If the obstacles can be overcome by

contourning them, these vectors tend to find this

pattern. Each of these four vectors have a distance and

a direction, as expressed in Table 1:

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

Type Interval Description

Interger 1 to 4 Distance of Movement 1

(DM1)

Interger 1 to 4 Distance of Movement 2

(DM2)

Interger 1 to 4 Distance of Movement 3

(DM3)

Interger 1 to 4 Distance of Movement 4

(DM4)

Interger -1 to 1 Movement Direction 1 (D1)

Interger -1 to 1 Movement Direction 2 (D2)

Interger -1 to 1 Movement Direction 3 (D3)

Interger -1 to 1 Movement Direction 4 (D4)
Tab. 1 – Chromosome encoding.

 The interval at which movement distances may

vary represent a percentage of the width (in the case of

horizontal vectors) and height (in the case of vertical

vectors) of the map. The directions are given by:

 M1 and M3: 0 no movement, -1 down

(subtracts the y-axis) and +1 up (increase in y-

axis).

 M2 and M4: 0 no movement, -1 to the left

(subtracts the x-axis) and +1 to the right

(increase in x-axis).

4.2 Fitness Function

The objective function (OF) is used to check each

candidate path. It takes into consideration the

following terms:

* The Manhattan Distance (MH), Witch has the

largest weight in the formula. Its equation is given by

MH = | x1-x2 | + | y1-y2 |. The higher the the value of

MH the the worst situation, since it means that the

agent is far from the final target;

 *Total Movement (MT), calculated by the sum of

half the distance moved. The weight of MH is smaller

than the one of MH to serve as a tie-breaker, especially

in the elimination of cycling paths;

 *Convergence (C0), assumes 0 if the path can not

be traversed, meaning that an obstacle was found, and

assumes 1 in case the individual represents a valid

path.

 This objective function must be maximized,

meaning that the higher the value the better the

candidate. To ensure this feature was used as a roof

value given by:

Roof = (Width + Height) * 3

 Value that represents the sum of the maximum of

four movement vectors plus the maximum value of the

Manhattan distance. If a path is not valid the

convergence ensure that the result is the lowest

possible (in this case, zero). The objective function is

given by:

FA = (Roof - MH - MT * 0,1) * C

4.3 Movement Instances

In order to show the types of changes that may happen,

we will consider, with the loss of generality, a 5x5

dimension map. Also let "i" be the initial point of the

agent and "f" be the final point (exit). The path under

consideration will be represented by arrows in the map.

The following situations may be represented in our

chromosomes (Fig. 2):

(a) (b)

Fig. 2 – Straight movement.

Figure 2 shows a visual representation of the

chromosomes exposed in Table 2.

DM1 DM2 DM3 DM4 M1 M2 M3 M4

0,2 0,6 0,4 0.1 0 -1 0 0

0,1 0,9 0,7 0.1 -1 0 0 0

Tab. 2 – Values of straight movement.

Table 2 (line 1) presents a individual in which only

the M2 field has a valid value. Thus it represents a

single movement to the left on the map (due to the

negative value). The distance traveled is a fraction of

the map size. As DM2 (relative to M2) has value 0.6

and the map has width 5 the total distance traveled in

this movement is given by 0.6 x 5 = 3 squares, as

shown in Figure 2 (a) . The chromosome exposed in

Table 2 (b) (line 2) also shows a movement with a

single direction, presented in Fig. 2 (b). The Manhattan

distance value of both chromosomes, i.e. the number

of squares between the resulting point of the movement

and the maze exit, are 3 and 7, respectively. The

objective functions of both chromosomes are shown:

FA(a) = (30 – 3 – 3 * 0,1) * 1 => 26,7

FA(b) = (30 – 7 – 1 * 0,1) * 1 => 22,9

 Since the first chromosome of Table 2 has a higher

O.F. it is considered better than the second one.

In the next set of examples we will evaluate a

movement with a single deviation (Figure 3)

represented by the chromosomes of Table 3:

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

(a) (b)

Fig. 3 – Movement with deviation.

DM1 DM2 DM3 DM4 M1 M2 M3 M4

0,4 0,2 0,5 0.9 1 -1 0 0

0,6 0,2 0,8 0.1 0 1 1 0
Tab. 3 – Values of deviation movement.

The first chromosome has two nonzero directions:

M1 vertically and M2 horizontally. Therefore we will

have two line segments forming a path with deviation.

A similar situation occur in the second chromosome.

Both chromosomes are graphically exposed in Figure

3.

 Table 4 presents chromosomes with two deviations,

shown in Figure 4:

(a) (b)

Fig. 4 – Movement with two deviations.

DM1 DM2 DM3 DM4 M1 M2 M3 M4

0,4 0,2 0,5 0.9 1 -1 1 0

0,6 0,2 0,8 0.1 0 -1 1 1
Tab. 4 – Values of the two deviations movement.

Figure 5 shows a path in which that agent collides

with an obstacle:

Fig. 5 – An example of an invalid path.

Considering each "o" on the map as an obstacle, it

is clear that the path exposed in Figure 5 is not

possible. Thus the objective function for such path is

given by:

FA = (30 – 3 – 3 * 0,1) * 0 => 0,0

 As can be observed, the convergence of the path is

set to zero and it ensures a low value of the objective

function to the chromosome related with such path.

The low values in the objective functions indicate that

solutions are unfeasible or poor in quality an thus the

Genetic Algorithm must ensure that such solutions do

not pass genetic information to future generations.

 Figure 6 shows how the objective function is used

to select better paths.

(a) (b) (c)

Fig. 6 – Movements with approximate fitness result.

In the three cases presented in Figure 6 the map has

the same configuration. In Figure 6 (a) and Figure 6 (b)

the agent movement ends in the same place, but in

Figure 6 (a) makes unnecessary movements. When

evaluating the chromosomes, the objective function of

the three cases are given by:

FA(a) = (30 – 5 – 3 * 0,1) * 1 => 24,7

FA(b) = (30 – 5 – 1 * 0,1) * 1 => 24,9

FA(c) = (30 – 4 – 2 * 0,1) * 1 => 25,8

Therefore, although Figure 6 (a) and Figure 6 (b)

have the same Manhattan distance, the total movement

(MT) is responsible for appointing the best

chromosome, in this case Figure 6 (b). However, when

comparing Figure 6 (b) and Figure 6 (c) we see that

although the MT Figure 6 (b) is smaller, the value of

Manhattan distance of the chromosome in Figure 6 (c)

ensures a higher value in the Objective Function

revealing that this chromosome is the best among the

presented cases.

4.4 The Genetic Algorithm

Our Genetic Algorithm starts whenever the agent

collides with an obstacle. Before the collision, the

greedy A * is used without considering the neighbors.

This simple version of the A* is used because the GA

is responsible for running a local search in the map. It

is important to note that the decision of not consider

the neighbors in the A* causes a significant speedup in

the algorithm.

 Figure 7 shows the proposed Genetic Algorithm

that that perform the following steps:

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

1. Start with an empty population of individuals.

Complete the population of size N=4 with

random generated individuals.

2. Create N chromosomes using crossover

operation on the initial population.

3. Create N chromosomes using mutation

operation on the initial population.

4. Check the convergence of all chromosomes

on the map. At this point the map may also be

altered because the visited squares are

marked.

5. Evaluate the chromosomes using the objective

function , select the N / 2 best chromosomes

(elitist criterion) and apply the selected

chromosomes on the map (at this point the

agent will move through the map).

6. Greed A* is used to navigate the environment

until the desired point has distance greater

than manhattan's point of origin. Therefore the

agent should continually check the new

position on the map and mark the visited

states.

7. If the comparison between the manhattan's

distances show that the chosen point is not

feasible to continue the flow of the algorithm

using the GA module.

8. If the point chosen by A * and sub-route

generated by the GA does not conflict with

the stopping criterion (the "output"), take the

N / 2 better, generate more N / 2 random and

back in step 2.

Fig. 7 – Real Time Pathfinding with Genetic Algorithm

(RTP-GA).

4.5 Local Optimum treatment

We consider a local optimum of the path-finding

problem, as modeled here, a region of the map that is

relatively close to the maze exit and that all paths to the

exit are unfeasible or pass through an already visited

square (Fig. 8). In such cases we use the visited

squares by the sub-path as obstacles only if they are

the resulting point of a path, which induce the GA to

search regions far from the maze exit, which can be

considered a diversification strategy. To avoid the

greedy A * module come back for these local

optimums, it treat this sub-path as an obstacle.

Fig. 8 – Example of a local minima

(the “v” symbol represents an visited node).

5- Implementation

Since one the goals of this work is to prepare a test bed

for optimization algorithms for the pathfinding

problem, suitable programming language and

development environment were chosen. Another factor

considered in the choice of language and development

environment was the possibility of exporting the

developed systems to mobile devices such as tablets

and mobile phones where the optimized use of the

resources is highly recommended.

 We performed 20 tests on three different mazes. In

each test agents were placed in different positions.

5.1 Technology

The development technologies used were Unity 3D

[UNITY TECHNOLOGIES] through the C # language.

Unity3D 3.x is a game development engine Which has

the main components needed for designing games

developing rapidly, such as the physics engine,

collision systems, sound system and a high level

programming language based on C, among others.

Unity 3D has an interface for programming in

Mono. It incorporates key .NET components, including

a compiler for the C# programming language and a

complete suite of class libraries.

 The direct assignment of a list of values to arrays in

C # allowed an easy viewing of maps used in the

experiments. Thus the generation of a tileset, which is

the display of graphics (or sprites) defined in a two-

dimensional array can be made as shown in Figure 9.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5

 The modularization of the code and Object-

Oriented paradigm allows dynamic instantiation of

both the environment and the agents in Unity.

string[] map = new string[20]
{
 "oooooooooooooooooooo",
 "of....o............o",
 "o..o...............o",
 "oooooooo......oooooo",
 "ooo....o......o....o",
 "o.oo..oo......o....o",
 "o............io....o",
 "ooooo.ooooooooo....o",
 "o...o.o............o",
 "o...o.o....o.......o",
 "o...o.o....o.......o",
 "o...o.o....o.......o",
 "o...o.oooooo.ooooooo",
 "o..................o",
 "o...o.o............o",
 "o...o.o............o",
 "o...o.o............o",
 "o...o.o............o",
 "o...oio.....i......o",
 "oooooooooooooooooooo"
};

Fig. 9 – Dynamic tileset of an map, implemented in a c #

matrix.

The result of the algorithm applied to the tileset

defined in Figure 9 executed in a Tablet with Android

Operational System 2.1 Eclair is exposed in Figure 10.

Fig. 10 – RTP-GA simulation with three agents in field.

5.2 Tests

We conducted three tests to compare the expense of

memory between A* and RTP-AG algorithms. Each in

a different map, with dimensions of 40 by 40.

In all, to be deterministic (and therefore not

generate solutions with different memory spent in an

environment without variation), the A * was performed

only once. In contrast the average was calculated for

100 runs of RTP-GA in each test case.

The maps were

 Without Obstacles - to assess the direct search;

 With patterns (first Fig. 11) - to assess the

advantages of the adjustment proposed by

RTP-GA;

 Without patterns (Fig. 11 second) - to evaluate

the worst case of RTP-GA.

Fig. 11 – Respectively: maps with and without patterns.

5.3 Results and Analysis

The results show that the agents managed to adapt

themselves to the surrounding environments even in

the presence of obstacles.

 Two situations can be observed in the Figure 1.

The first map has 2x2 obstacles, the second has long

corridors. In both cases the agent is able to adapt

himself.

The result of the experiments can be checked in

Fig. 12:

Fig. 12 – Comparison between the execution of algorithm A-

Star and the average execution of RTP-AG algorithm.

By comparing the RTP-GA with A * in a map

without obstacles, as predicted, there was a tie. This is

due to the fact that, initially, the RTP-based GA uses

the A * algorithm until an obstacle in his way.

In comparison made on a map with obstacles with

patterns RTP-GA algorithm achieved satisfactory

results, outperforming the A * 90% of cases this is due

to the learning agent, in this type of map is used for the

generation of the sub-paths that does not occur in

environments with obstacles without default.

In the test with obstacles, but without a pattern, the

result was not satisfactory. On average, it was much

worse than A *. This is due to the fact that in this case

the RTP-GA algorithm tends to generate sub-paths

more frequently, because there is no genetic advantage

of the previous chromosomes which leads to an

overspending of memory.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6

 The objective of the tests is to check if the agents

are able to find a path to the maze exit. In 100% of the

cases the agents achieved the goal.

The results were as expected since the RTP-GA has

a better performance on standardized maps with

obstacles due to the adjustment provided by the

Genetic Algorithm, being impracticable for maps that

have no standard for the evaluation of sub-paths

generated is costly.

6. Conclusion and Futurework

This work defines a new method to search the shortest

path between two points in 2D maps. The RTP-GA

uses the classic A* inside a Genetic Algorithm in order

to find good solutions in a short period of time.

 The proposed GA used lookahead based modeling

to the chromosome that can be adapted to any kind of

map that contains obstacle patterns. Also the lookahead

pathology is avoided by the iterative nature of the

algorithm.

 Our experiments were conducted on large maps of

this form with similar characteristics to adapt to

dynamic environments, because in the second RTP-GA

would have a latency of learning in small variations of

the environment because genetic information.

As future work will seek improvements in this

architecture to optimize the search process. Such as

varying the number of segments of lines contained in

the chromosome.

7. References

UNITY TECHNOLOGIES: Unity 3D User Manual. At

www.unity3d.com/support/documentation/manual

[Accessed 10 July 2011].

LEIGH, R., LOUIS, S. J. AND MILES, C. Using a Genetic

Algorithm to Explore A*-like Pathfinding Algorithms. In:

IEEE Congress on Computational Intelligence and

Games. CIG – 2007.

DEMYENAND, D. AND BURO, M. Efficient Triangulation-Based

Pathfinding. In: AAAI'06 Proceedings of the 21st

national Conference on Artificial intelligence. 2006.

BURCHARDT, H. AND SALOMON, R. Implementation of Path

Planning using Genetic Algorithms on Mobile Robots.

IEEE Congress on Evolutionary Computation. CEC

2006.

BULITKO, V., LUSTREK, M. Lookahead pathology in real-time

path-finding. In Proceedings of the National Conference

on Artificial Intelligence. AAAI 2006.

HART, P.E., NILLSON, N.J. AND RAPHAEL, B. A formal basis

for the heuristic determination of minimum cost paths.

IEEE Transactions on Systems Science and Cybernetics,

1968.

BJORNSSON, Y., ENZENBERGER, M., HOLTE, R.C. AND

SCHAEFFER, J. Fringe search: Beating A* at pathfinding

on gamemaps. IEEE Computational Intelligence in

Games, 2005.

STODOLA, P. and MAZAL, J. Optimal location and motion of

autonomous unmanned ground vehicles. In World

Scientific and Engineering Academy and Society.

WSEAS 2010.

MITCHELL, M.; An introduction to genetic algorithms. The

MIT Press, United States; 1996

.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7

