
Intelligent Behavior Simulation Module for
Software Process Elements

Rafael O. Chaves Walter A. Da L. Lobato*

Emanuel M. Da C. Tavares*

Tales C. Miranda* Sandro R. B. Oliveira* Elói L. Favero

Postgraduate Program in Electrical Engineering – Instituto de Tecnologia

Universidade Federal do Pará (UFPA)

*Postgraduate Program in Computer Science – Instituto de Ciências Exatas e Naturais

Universidade Federal do Pará (UFPA)

Abstract

Componentization is a Software Engineering (SE)

strategy successfull in the development of new

projects. Mainstream games use components that

handle a set of functions relevant to a common aspect

of a genre (e.g. real time strategy, first person shooter).

However, Artificial Intelligence (AI) components, in

spite of their great gameplay weight in current games,

few has been researched and published about. This

scenario gets worse when it comes to specific

components for SE simulation games. This paper

shows the results of the development of an AI

component called Intelligent Behavior Simulation

Module for Software Process Elements (MSCI-ep) for

software process simulators. MSCI-ep objectives are to

support and encourage development of this genre of

educational games.

Keywords: artificial intelligence, software process,

simulation, educational games

Authors’ contact:
rochaves@ufpa.br, {walter.lobato,

emanuelmaues, tales.miranda88}@gmail.com,

{sbro, favero}@ufpa.br

1. Introduction

Certain aspects of game development such as physics,

networking, audio components, etc., have had support

for their specific purposes. These components bring

great benefits to the gaming industry: they reduced

development time, increased reliability and lowered

cost. But, despite AI being a key element to some

recent games, few has been researched and published

in order to componentize it. Game engines usually treat

AI as part of other components [FILHO 2005] or

controlled by script languages like Lua or Python

[FOLMER 2007].

 As quoted in [CHAVES 2010], software process

simulation games has made little use of

componentization, being a demotivating factor for the

development of new games. Also, [CHAVES 2010]

proposed a software process simulator machine

(SPSM) aiming to bundle the main generic

requirements of software process simulation. However,

SPSM does not feature a way to simulate the behavior

of resources allocated to process. These resources are

the process element instances defined in their software

architecture (roles, artifacts, tasks and tools). Bearing

in mind that the behavior of these elements is

important to give more realism to the simulation,

thereby software process simulation games become

more interesting for educational purposes.

 Through the fundamental rules of Software

Engineering and Scenarios (both behavioral models),

[OH 2006] and [BARROS 2001] present the

importance of software process element behavior for

educational purposes, and their influence on the overall

project behavior. These behaviors are usually difficult

to implement computationally, requiring knowledge of

a programming language or another specific language

for this problem. So, facilitate the modeling,

implementation and reuse of these behaviors is an

important contribution to research on simulation games

software process.

 This paper presents an Intelligent Behavior Module

Simulation Software Process Elements (MSCI-ep) to

describe the individual behavior of software process

elements and relations among them, which defines the

global behavior of a staff assigned to a software

project. The MSCI-ep, through a fully graphical and

customizable interface, abstracts the complexity of the

programming language needed to describe the

simulation logic. The MSCI-ep is based on Data-

Driven Systems [DAREMA 2004] techniques and

System Dynamics [FORRESTER 1961] and was

developed according to a set of criteria compiled by

Barros [2001], Dantas [2004] and Oh [2006]. Tests

were carried out to verify its ability to create intelligent

behavior solely from its graphical interface and its real

adherence to criteria in section 3.

2. Motivation and Relevance

To simulate Software Processes parameters are

required to establish a temporal relationship of events

and states of the elements that make up the process.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

In a real software process, although there are

precedence relations between tasks [BRENDAOU et.

al. 2007], it is known that the time for completion of a

task depends mainly on the attributes of roles (e.g.

experience, ability to work in a group) and tools (e.g.

ease of use) allocated for its implementation. Tasks’

nature (e.g. complexity) also influence in their

completion time.

 Process elements can influence each other (e.g. a

tool may decrease the productivity of a role that has no

practical for it). Same way each can influence

themselves (e.g. role humor can decrease or increase

his productivity). Influence is caused by a proportional

or inversely proportional relationship between the

attributes of the elements, i.e. there is a positive or

negative influence, respectively. Thus, the MSCI-ep is

concerned with all the attributes of the elements of

process simulation software and their relationships. It

is also designed to maintain the lowest coupling with

other components of game development (e.g. SPSM).

 Wangenheim’s work [2009] found that the games

for teaching software project management [DANTAS

2004; LUDEWIG and DRAPPA 2000] and software

process [Oh 2006] did not have a module (component)

to deal with specific "intelligence"(behavior) of the

software process elements. Consequences: high

coupling among different aspects of those games (e.g.

flow of process execution and behavior of the

resources allocated in the project share the same code),

lack of reusable features and a graphical environment

that completely abstracts the coding to create a new

behavior. OH [2006] implemented a

graphicalenvironment that allowed the description of

behaviors. However, there were some behaviors that

the graphical environment was not flexible enough to

describe. These require an advanced knowledge in the

language used, demanding workarounds.

 The importance of an AI component in game

architecture is pointed out by [FOLMER 2007]: it

determines the behavior of game objects and allows

reuse. An AI component example is the OpenAI

Project
1
. It implements tools to support some AI

techniques which are specified to operate with great

modularity and interoperability with other tools,

components and engines (for games) that are compliant

to their specifications.

 Given the existence of OpenAI, which handles and

implements some AI techniques for general purposes,

this proves the relevance of an AI module that is

specific to simulation games for teaching ES. This

genre uses mainly two AI techniques: Dynamic

Systems and Data-Driven Systems. MSCI-ep aims to

contribute to research and development of serious

games that teach ES, which, in conjunction with SPSM

1 1

 http://openai.sourceforge.net

[CHAVES 2010], will create a game engine for these

games.

3. Requirements for the development
of AI modules for SE simulation
games

Requirements were compiled from Barros [2001],

Dantas [2004], Oh [2006], Neves et. al. [2005] to

develop AI modules for SE simulation games. These

requirements are references to MCSI-ep development.

3.1 Mirror the necessary programming for the
behavior of the software process elements

As in Barros [2001], Dantas et. al. [2004] and partially

Oh [2006] it is necessary to know the language to

define the behavioral models. This situation increases

the complexity and cost of creating these models. The

Intelligence Module must be a framework that: offers

graphical representations for software process elements

(e.g. role, artifact, tool, task, etc.); allow the definition

of those attributes; have the most important

mathematical functions (e.g. linear, exponential,

polynomial) to establish the relationships between the

attributes of the process elements.

 As a result of the AI module being a fully graphical

environment where only arguments and parameters are

set, this limits the semantic power and accuracy of

behavioral models created within. This situation may

be appropriate for models with educational purposes.

However when it is necessary that the model be more

accurate, the AI module should provide an option for

the modeler to have the freedom to plan beyond the

constraints of the framework.

3.2 Be responsible for all the attributes to the
behavioral model

Behavioral models should be responsible for all the

attributes and relationships needed for the simulation in

order to look like the real behavior of the software

process elements.

3.3 Stratify behavioral patterns in levels of
difficulty

The behavioral models should be classified into levels

of difficulty, making them similar to phases of non-

educational games.

3.4 Being a reusable component

Behavioral models should be independent of other

components for game development because one

purpose of componentization is to encourage research

in ES education through games. That way, AI module

can be reused in other game projects. This requirement

origins from [NEVES et al. 2005], but the problem of

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

reuse was found in [OH 2006; DANTAS 2004;

BARROS 2001].

3.5 Eliminate the deterministic effect

Software development is mainly influenced by human

behavior and organizational politics, which are very

difficult to formalize, measure and predict.

Relationships between human attributes are complex

and not always stable and deterministic. For example, a

developer who is in a bad mood will always have a

lower productivity? His work will always be more

prone to errors? After a rest period the developer

returns exactly to its initial state? Despite the common

sense answer "yes" to these questions, a deterministic

result is unreal in these situations.

 To increase the level of realism of the simulation,

relationships and deterministic values of the attributes

shall be reduced as much as possible when it involves

human and political issues of the software process.

Deterministic simulations quickly become boring for

the players, after they discover the “trick" to solve a

particular challenge. Random variables can minimize

this situation. However, depending on the degree of

their variance and frequency values, they can still bring

absurd results and events far distant from reality. For

example, a role that has three humor moods: "good

mood", "normal" and "grumpy" if the value "grumpy"

and "good mood" have a frequency of 70%, it is not

usually consistent with reality.

3.6 Behavioral models need to be simulated
and tested independently of other game
components

One of the main limitations of behavioral models

referenced in this paper is that they do not work

independent of other components, hindering their

development. To solve this situation, behavioral

models should be created and tested independently of

any other component.

4. Intelligent Behavior Simulation
Module for Software Process Elements
Description

MSCI-ep was developed based on a dynamic creation

of a set of variables that can be instantiated as needed

to create a behavioral model. The dynamically created

variables are classified as: continuous, cumulative,

dependent and discrete. Each one has specific

characteristics of classification and relationship rules

with each other.

For the creation and instantiation of the variables it

is used graphical user interface that defines the

classification and the values of the variables, becoming

it transparent and eliminating any coding as shown in

examples in Figures 1, 2 and 3.

The figure 1 shows the creation of a discrete

variable, inserting the variable name, the number of

states and the probability values of each one takes

place.

Figure 1 – Creation of the Discrete Variable

“Status”

 Figure 2 illustrates the creation of a dependent

variable, which is inserted the name of the variable, the

variable which it depends (need to have been created

previously), and the function that rules this

dependence.

 Finally the figure 3 shows the list of variables that

were created and their types. This screen attaches the

behavior created to a element of the software process,

in this case the element is one role named “role 1”.

By completing this step is automatically generated

a class called Intelligence.java that describes the

behavioral model with the logic and configuration that

will be used in the simulation. A class that represents a

software process element that has an aggregation

relationship with the class Intelligence.java makes use

of the behavioral model described in the class

Intelligence. Figure 4 is shown a aggregation between

the Role User class and Intelligence class.

Figure 2 – Creation of the Dependent Variable

“Productivity”

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

Figure 3 – Main screen. Shows the list of Role

Users, Tasks and Variables created

Figure 4 – Aggregation between Intelligence class

and Role User class

By saving this configuration is automatically

generated the Intelligence.java class with a instance of

the variables created, this class is exemplified in an

automatically generated code shown in Figure 5.

The code section describes the creation of the

following objects: "time" (line 46), "status" (line 49)

with the values of the attributes "state" (line 55, 62, 69

and 76) and "transition" (lines 56 -60, 63-67, 70-74 and

77-81); "experience" (line 83-87) with the function that

defines it values.

5. Configuration and simulation of the
behavioral model

To demonstrate the simulation process of MSCI-ep,

a behavioral model was created obeying the following

steps: (a) creation of variables to the software element

Role User b) relationship between the variables using

functions, (c) Simulation of the Behavioral Model and

(d) verify the adherence of the MSCI-ep with the

requirements defined in Section 3; below each item is

explained in a subsection.

5.1. Creation of Variables

Five variables were created in the MSCI-ep for

Role User.

a. Variable "time": controls the cycle time of the

simulation.

b. Discrete variable "status": variable that has

four different states, which represent the Role User

emotional states, these are: Happy, Sad, Anxious and

Relaxed.

c. Cumulative Variable "experience": That

numerically represents the accumulation of experience

on a task over time (cycles) the Role.

d. Dependent Variable "errors": The numerical

representation of errors made by the Role User in a

task.

5.2 Relationship between Variables

To represent the influence relationship that

variables have with each other, a variable is placed in

function of another. However the expressions and

values used in the functions of this work were obtained

through experimentation, so they are only for testing

purposes and cannot be generalized as rules. See [OH

2006; BARROS 2001] for more research and accurate

mathematical modeling of the software process

element behavior.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

Figure 5 – Auto-generated Code section

For discrete variables is used the roulette

selection method [DE JONG 1965], which is

commonly used in genetic algorithms. A roulette

wheel is mounted where each slice is a state of the

discrete variable, and the size of the slice represents

the chance (probability) that this state has to be

chosen according to a random number.

Status variable’s auto-relation: For "status"

variable, each turn of the MSCI-ep has two steps: a)

checks the current state, and b) raffles the next state

considering the weight of every other state has over

the original state.

Figure 6 represents the wheel for each state, i.e.

the probability that each state has to switch to another

state.

Function of experience variable: For

"experience" variable is used the following function:

experience = 0001 + experience +

(experience * 0.25)
(1)

The "experience" variable is cumulative. In the

course of simulation time (cycle) "experience" is

always increased. This increase is due to the

empirical principle that the Role User will always

gain more experience in a task as long it spend more

time allocated to it.

Function of “errors” variable: For the

dependent variable "errors" the following function is

used:

errors = 0.5 - (experience - (2)

errorLinesFromStatus)

Which ErrorLinesFromStatus is the numerical

representation of errors for each state of the "status"

variable; therefore the emotional state will affect the

mistakes committed by the Role User. Table 1 shows

the errorLinesFromStatus values for each state:

happy, sad, anxious, and relaxed.

Function of “productivity” variable: For the

dependent variable "Productivity" is defined the

following function:

productivity = errors –

statusProduction
(3)

Which StatusProduction is the numeric value that

represents the production capacity of role in a given

state. These values are fixed, and were configured as

shown in table 2.

5.3. Simulation of behavioral mode

Figure 7 represents a small software process using

the notation of SPIDER_ML [OLIVEIRA 2009].

This process is composed by: a task, an input artifact,

and a role with the variables needed to simulate

intelligent behavior through the MSCI-ep.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5

(a)

(b)

(c)

(d)

Figure 6 – Roulette for each state of

“Status” variable

Table 1 – ErrorLinesFromStatus values according

to the discrete variable state

status errorLinesFromStatus

Happy 0.01

Sad 0.02

Anxious 0.02

Relaxed 0.01

Table 2 - StatusProduction values according to

“Status” variable state

status statusProduction

Happy -0.3

Sad 0.3

Anxious 0.1

Relaxed -0.2

Figure 7 - Experiment overview

Two simulation rounds were performed to verify

if happens a deterministic behavior, i.e. if the first

results of the simulation would be the same or very

similar to the results of the second simulation round.
Labels: 0 – Happy, 1 – Sad, 2 – Anxious, 3 –

Relaxed.

Figure 8 refers to the behavior of the “status”

variable (y axis) relative to the “time” (x axis) in the

first simulation round. The second round behavior is

shown in figure 9. The difference between figures 8

and 9 confirms that the roulette method eliminates

the deterministic effect.

From the figure 10, it can be seen the effect that

the error variable decreases in the same proportion of

the variable experience increases, as defined in the

function (2). Observing figures 8 and 10 it can be

seen another effect: the errors variable and status

variable over the productivity according to the

function (3).

 For the simulation shown in figure 8, figure 10

shows the behavior of the role of continuous

variables (errors, experience) and their influences on

the variable productivity, according to the

"Productivity" (3).

5.4. Evaluation of the adherence between
intelligence module and the requirements

Table 3 shows each AI module requirements and

how MSCI-ep adheres to each one.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6

Figure 8 – First simulation round of the status

variable behavior through time.

Figure 9 - Second simulation round of the status

variable behavior through time.

Figure 10 – Behavior of the continuous variable

through time

Table 3 - Evaluation of the adherence between the

intelligence module and the requirements

Requirement Full Adherence Description

Mirror the

necessary

programming

for the

behavior of the

software

process

elements

Yes This requirement

is fully achieved.

Since there is a

graphical

interface, see

Figures 1, 2 and

3, which defines

the attributes of

the software

process elements

and the

interactions

between them.

Thus,

abstracting the

complexity of

programming

required.

Be responsible

for all the

attributes of the

behavioral

model

Yes This requirement

is fully achieved.

None of the

attributes needed

to define the

behavior of

software process

element are

external to the

MSCI-ep. All

attributes are

variables created

dynamically

using the

graphical user

interface.

Stratify the

behavioral

models in

difficulty levels

No This requirement

was not

achieved. By the

time of writing

this paper don’t

exist a way to

classify the

behavioral

models.

Reusable

component

Yes This requirement

has been fully

achieved.

Therefore the

MSCI-ep creates

dynamically the

Intelligence.java

file that contains

the behavioral

model. This

class enables the

integration

between the

MSCI-ep and

other

components for

the simulation

games for ES

development.

The behavioral

model can

always be

redefined to be

more appropriate

to a specific

software

process.

Eliminate the

deterministic

Partially This requirement

is partially

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7

effect achieved. The

use of roulette

technique the

discrete

variables

eliminates the

deterministic

effect of these

and its

dependent

variables. e.g.

“errors”

function is

influenced by

errorLinesFrom

Status, this uses

the roulette

technique, so

“errors” is

randomly

influenced. In

the case of

“experience”

function, it will

still have a

deterministic

behavior,

because it does

not depend of a

discrete variable

that uses the

roulette

technique.

Behavioral

models should

be simulated

and tested

independently

from other

game

components

Yes This requirement

has been fully

achieved. As

demonstrated in

the tests, only

the MSCI-ep

was enough to

build behavioral

models and test

them. There was

no need of

another game

component.

6. CONCLUSIONS

Educational games represent a large market niche

[BELLOTI F. et. al. 2009]. So, the development of

this game type must use the methods and techniques

of software engineering, emphasizing the reuse of

components. This work was presented a set of

requirements for the development of a reusable

component to implement an intelligent behavior of

software process elements, to the games created

using this component be more realistic, simulating

the actions of participants in real software process.

As a consequence to follow four of the six

requirements defined in this work: the MSCI-ep

becomes more transparent the necessary

programming to describes the behavior of the

software process element, this feature facilitates the

development of behavioral models; MSCI-ep is

responsible for all attributes of the behavioral model

thus reduces the coupling with other components, and

the dynamic generation of Intelligence.java class

(containing the logic of behavioral model) increases

the potential for reuse of this IA module; another

positive consequence of the lower coupling between

the MSCI-ep and the other components is the facility

of testing behavioral models. However, the MSCI-ep

is not able to classify behavioral models in difficulty

levels.

A test was presented that demonstrated the MSCI-

ep application as a AI component with the main

features and functions to simulate the behavior of

software process elements. Still is missing the scale

tests. The MSCI-ep is promising, since the

mainstream simulation games for teaching ES do not

have specific components to deal with behavioral

aspects of the software process simulation elements.

Acknowledgements

The authors would like to thank the Spider Project

Team for their support to this paper.

References

WOODCOCK, S., 2001. Game AI: the state of the art industry

2000-2001. Game Developer, 8 (8), 36-44.

HOLLAND, M., 2004. Citing references: the Harvard System

[online] Bournemouth University. Available from:

www.bournemouth.ac.uk/library/using/harvard_system.

html [Accessed 17 June 2006].

KARTCH, D., 2000. Efficient rendering and compression for

full-parallax computer-generated holographic

stereograms. PhD thesis, Cornell University.

PARKE, F.L. AND WATERS, K., 1996. Computer facial

animation. Wellesley: AK Peters.

DUCHENEAUT, N., YEE, N., NICKELL, E. AND MOORE, J.R.,

2006. “Alone together?”: exploring the social dynamics

of massively multiplayer online games. In:

Proceedings of the SIGCHI conference on Human

Factors in computing systems, 22-27 April 2006

Montreal. New York: ACM Press, 407-416.

BARROS, M DE O., 2001. Gerenciamento de Projetos

baseado em Cenários: Uma Abordagem de Modelagem

Dinâmica e Simulação. Thesis (PhD) held in the

Postgraduate Program in Engineering Systems and

Computing at UFRJ

BELLOTTI F ET AL.2009, Enhancing the educational value of

video gameS. Computers in Entertainment (CIE) -

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 8

SPECIAL ISSUE: Media Arts and Games (Part II). -

New York, NY, USA .

BRENDAOU, R., ET. AL., 2007. Definition of an Executable

SPEM 2.0. Procedings of the 14th Asia-Pacific

Software Engineering Conference, IEEE CS Press, pp.

390–397.

CHAVES R. O., TAVARES E. M. DA C., OLIVEIRA, S. R. B.,

FAVERO E. L., 2010. A Software Process Simulator

Machine for Software Engineering Simulation Games.

In: SBGames

DANTAS, A. R., ET. AL.., 2004. A Simulation-Based Game

for Project Management Experiential Learning.

Proceedings of SEKE 2004, pp. 19-24.

DAREMA, F., 2004 - Dynamic Data Driven Applications

Systems: A New Paradigm for Application Simulation

and Measurements. In: Computational Science - ICSS

2004. Springer Berlin / Heidelberg, 662-669.

DE JONG, K. A., 1975. An analysis of the behavior of a class

of genetic adaptive systems (PhD thesis, University of

Michigan)

DRAPPA, A. AND LUDEWIG, J., 2000. Simulation in Software

Engineering Training. Proc. 22th Int’l Conf. Software

Eng., ACM Press, pp. 199–208.

FILHO, V. V., 2005. REVOLUTION AI ENGINE –

Desenvolvimento de um motor de inteligência Artificial

para a Criação de Jogos Eletrônicos. TCC graduação

em ciência da computação Universidade Federal de

Pernambuco

FOLMER, E., 2007. Component based game development: a

solution to escalating costs and expanding deadlines?.

Proceedings of the 10th international conference on

Component-based software engineering.

FORRESTER, J.W., 1961, Industrial Dynamics, Cambridge,

MA: The MIT Press

NEVES, EVANDRO GREZELI DE BARROS ; BITTENCOURT,

JOÃO RICARDO ; OSÓRIO, FERNANDO S. . Proposta de

um Motor de Inteligência Artificial para Jogos

Digitais.. In: SBGames / WJogos, 2005, São Paulo.

Anais do SBGames 2005 / WJogos. São Paulo : USP -

SBC, 2005. v. 1. p. 275-279.

OH, E. N., 2006. SIMSE: A Software Engineering

Simulation Environment for Software Process

Education. Thesis (PhD) held in the Postgraduate

Program in Information and Computer Science at

University of California, Irvine

OLIVEIRA, S. R. B., 2009. SPIDER - Uma Proposta de

Solução Sistêmica de um Suite de ferramentas de

Software Livre de apoio à implementação do modelo

MPS.BR. Research Project. Instituto de Ciências Exatas

e Naturais, Universidade Federal do Pará, Belém.

WANGENHEIM, C. G. V. AND SHULL, F. 2009. To Game or

Not to Game. IEEE Software, vol. 26, no. 2, pp. 92-94.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 9

