
GPU Pathfinding Optimization

Adônis Silva Fernando Rocha Artur Santos

Geber Ramalho Veronica Teichrieb

Federal University of Pernambuco, Center of Informatics - CIn, Brazil

Abstract

In recent years, graphics processing units (GPUs) have

shown a significant advance of computational

resources available for the use of non-graphical

applications. The ability to solve problems involving

parallel computing as well as the development of new

architectures that supports this new paradigm, such as

CUDA, has encouraged the use of GPU for general

purpose applications, especially in games. Some

parallel tasks which were CPU based are being ported

over to the GPU due to theirs superior performance.

One of these tasks is the pathfinding of an agent over a

game map, which has already achieved a better

performance on GPU, but is still limited. This paper

describes some optimizations to a GPU pathfinding

implementation, addressing a larger work set (agents

and nodes) with good performance.

Keywords: pathfinding, intelligent agent, games,

CUDA, GPU, A*

Authors’ contact:
{ats,fafr,als3,glr,vt}@cin.ufpe.br

1. Introduction

Nowadays entertainment industry moves billions of

dollars; however it is not cinema, but games, that stays

in the top of the list. Games like Call of Duty: Modern

Warfare 2, have reached historic levels, such as the

amounts generated by the Avatar’s film [Humphries

2010]. In order to games moves this quantity of money,

there are many factors involved, such as gameplay and

graphics realism.

 To enhance gameplay and therefore the player’s

immersion in the game environment, it is necessary to

use artificial intelligence (AI) techniques [Mateas

2003]. However, the use of AI techniques results in a

higher processing cost, often impairing the

performance of the game and forcing, many times, the

best AI techniques to be relegated and not used. As a

result, the game fails to not have a great acceptance

among the players for not presenting challenges with

enough level of difficulty [Csikszentmihalyi 2003].

 Trying to introduce new experiences, several

studies have been performed seeking better

performance in order to allow the application of AI

techniques to digital games. Many of these techniques

are derived from graphical rendering, as Level of

Detail - LOD [Sery et al. 2006] and crowds processing

techniques [Treuille et al. 2006].

 However, some physical limitations such as high

frequency, high heat generation in a small area, and

electromagnetic interference, resulted in the need for a

shift in the architecture of processors, thus allowing the

emergence of commercial, multi-core processor [AMD

2005]. Later, the idea of multiple cores has joined other

processing devices, like graphics cards.

 The architecture of current GPUs allows a high

computing power, reaching more than 20x the power

of a high-performance processor, as the case of directly

comparison between the Intel Core i7 and a GTX400

Series GPU [Owens et al. 2006]. This great

performance achieved by the GPUs can even surpass

Moore's Law.

 The big difference in performance between CPUs

and GPUs can be attributed to the differences in their

architectures: the CPUs are optimized for high

performance on sequential code execution, having thus

many sub tasks dedicated to support flow control and

cache data, while the GPU processors are designed for

parallel processing of instructions, following the

concept SIMD (Single Instruction, Multiple Data), thus

having more components dedicated to the processing

of instructions [Owens et al. 2006]. With this

development, approaches have emerged for general

purpose processing on GPUs, trying to harness the

parallelism of these high power graphics processors.

 Conversely, not all applications will achieve a

better performance when migrated to the GPU.

Features like the degree of parallelism and its model of

memory access can allow a better application perform

if processed in the CPU. Furthermore, the architecture

of graphics cards still has some limitations as the lack

of a cache hierarchy, the emergence of double-

precision processing only on newer cards, and the

existing bottlenecks in data transfer between CPU and

GPU.

 With the ability to utilize graphics cards for general

processing, taking advantage of its inherent

parallelism, AI techniques can be processed in a less

costly way for the CPU allowing several other parts of

the game to be processed without suffering loss of

performance. To enable this new programming

paradigm, it was necessary that new architectures were

developed, as the case of CUDA’s architecture

(Compute Unified Device Architecture [CUDA 2010])

from NVIDIA.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

 Thus, this work shows how much performance can

be gained by using CUDA to process an A*

pathfinding algorithm and how some minor changes,

seeking a better use of the architecture prepared by

CUDA, can get even better performance gains in

processing one of the most basic activities in games,

but almost one of the most necessary: calculating the

best path between two points, known as pathfinding. In

the second section we review the literature about what

is being researched on the subject. Later we show how

we developed our GPU based implementation and its

optimizations, followed by the results comparing this

implementation with a CPU one.

 In the last and fifth section, we conclude the work

and outline the next steps to be done in this research.

2. Related Work

In a game universe, one of the worst challenges is find

a way, often the best, between two points that

represents the origin and the destiny of a character

movement. This problem can be defined as

pathfinding. The pathfinding process results in a list of

points that represent the character path between the

two points.

 The path quality and the memory consumption can

determine the success of the resulted path [Tozour

2003]. Hence, some decisions about the search space

can determine the performance and the effectiveness of

the search algorithm. In that way, Tozour shows some

possibilities and the influences in the performance

results, such as the search space representation in

Regular Grids, Navigation Meshes or Waypoint

Graphs.

 In addition, some games can have thousands of

entities that are not controlled by the user, known as

non-player character (NPC). Those entities should have

their path calculated in a dynamic way, avoiding static

and dynamic (the case of others NPCs in the

environment) obstacles [LaValle 2006].

 Hence, some studies were made seeking better

performances, avoiding the decreasing of global game

performance. With the advent of CUDA architecture,

the game industry started to use it to process the

difficult task of pathfinding, increasing the number of

researches in this area.

 Harish and Narayanan in their study [2007] show

the migration of some graph search algorithms from

CPU to GPU. They present implementations of the

algorithms: (i) BFS (Breadth First Search); (ii) SSSP

(Single Source Shortest Path); and (iii) APSP (All Pair

Shortest Path). As result, the implementations show

similar or faster performance, when compared to the

same algorithms processed in a supercomputer that

cost five or six times more expensive than the graphic

hardware used in the study.

 Another work is the one made by Bleiweiss [2008]

that adapt the Dijkstra and A* algorithms using the

parallelism of GPU. To test if the algorithms had any

gains, he tested some roadmaps varying the number of

agents and nodes of the graph generated. The focus of

his work is not the pathfinding with possible

optimizations or with collision detection (techniques

that would made the character movement more

smoothly, similar to a human movement), but assert

the porting of this kind of AI techniques could be

ported to GPU and find some improvements that

increase the use of the parallel architecture of a graphic

card. As results, Bleiweiss achieved a speedup of 24x,

in spite of some constraints, as: (i) reduced maps (a

maximum of 340 nodes – which means a 18x18

navigable map); (ii) few agents; and (iii) high statically

allocated memory consumption.

 Reynolds [Reynolds 2006] made his work in a

similar way, but using the power of the PlayStation 3®

hardware to improve the performance. So, Reynolds

partitioned the problem in smaller jobs and each of it is

processed by one of the Synergistic Processor Units

(SPUs) which composes the console hardware [Pham

et al. 2005].

 Fisher in the work GPU Accelerated Path-planning

for Multi-agents in Virtual Environments [Fisher 2009]

shows the parallelization of the previous work using

the CUDA architecture; shows some modifications to

reduce the cost of memory transactions between CPU

and GPU; and shows that the implementation using the

graphics hardware improved up 56 times when

compared with the sequential version.

 As shown in this section, most studies have failed

to exploit some improvements that are available in the

new generations graphic card. Those improvements

can increase the performance when compared with a

simple sequential version processed in the CPU.

3. Implementation

This work aims to exploit the parallelism in performing

the navigation of thousands of agents in a game.

Essentially, the goal is to demonstrate the potential of a

GPU pathfinding implementation compared to a CPU

implementation, showing the speedup acquired. It was

thus chosen CUDA architecture for the GPU

pathfinding.

 CUDA [CUDA 2010] concerns the general purpose

parallel architecture developed by NVIDIA in order to

fully exploit the advantages offered by graphics cards

which are essential in the performance of parallel

computing applications. The following sections present

an overview of the CUDA architecture followed by a

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

detailed description of the navigation planning

algorithm.

3.1 CUDA

CUDA is a relatively new hardware and software

architecture designed to facilitate managing the GPU

as a device for general-purpose parallel computing.

Using this framework, the graphics card is viewed as a

device capable of executing a large number of threads

in parallel. Thus, a single program, called a kernel and

written in a C extended programming language, which

facilitates the development of CUDA based programs,

is compiled to the device instruction set and operates

on different data elements simultaneously.

 The batch of threads that executes a kernel is

organized as a grid of thread blocks. In CUDA, threads

can be considered the basic units of parallel processing.

Each thread on the GPU performs the same function as

the kernel and has an ID and local memory. They are

organized in blocks and can synchronize its execution

and share the same memory space, known as shared

memory. A set of blocks represents a grid, which can

be one-dimensional or two-dimensional. The grid, in

turn, owns a global memory, a constant memory and

texture memory that can be accessed by each block

which composes it. A kernel consists in the code that is

executed on the GPU. For each kernel call, a

configuration containing the number of blocks in each

grid, the number of threads per block and, optionally,

the amount of shared memory to be allocated and the

stream associated with the kernel, are needed.

 The device thread scheduler decomposes a thread

block onto smaller thread groups, usually 32 threads,

called warps. Occupancy refers to the ratio between the

number of active warps per multiprocessor and the

maximum active warps permitted. This concept helps

in the understanding of how efficient a kernel could be

on the GPU. Having a higher occupancy, usually

results in a higher performance. For applications that

aren't high arithmetic, such as pathfinding, the peak

occupancy reaches 75%. CUDA's Occupancy

Calculator [CUDA 2010] further assists to find the best

configuration to use all resources offered by the GPUs.

The compute capability of the device exploited in the

parallel pathfinding implementation presented in this

paper complies with CUDA version 1.2. Table 1 shows

the output generated for blocks of 384 threads (with 21

registers and 44 bytes of shared memory) used in this

work.

Table 1 - CUDA's Occupancy Calculator tool generated

output for the pathfinding block of 384 threads

Threads per Block 384

Registers per Block 8192

Warps per Block 12

Threads per Multiprocessor 768

Thread Blocks per Multiprocessor 2

3.2 Basic Implementation

In order to validate the gain achieved by processing the

A* pathfinding algorithm on the GPU, a CPU solution

was implemented for comparison purposes. Some

optimizations with respect to multi-core processors or

intrinsic SIMD calls (SSE - Streaming SIMD

Extensions) [Bleiweiss 2008] are beyond the scope of

this paper. However, some modifications, such as the

open node list as a heap based priority queue, proposed

by Rabin [2000] were developed to make possible

performing a consistent comparison.

 Aiming to serve as a basis for understanding the

CUDA architecture and to investigate aspects of

parallelization presented in agents, we have done an

A* pathfinding implementation based on what is

proposed in [Bleiweiss 2008]. The relevant aspects of

this implementation and subsequent performed

optimizations are described in the following sections.

3.2.1 A* using CUDA

Similarly to the CPU implementation, the graph

representing the game map is encapsulated in an

adjacency lists data structure. However, due to some

GPU architecture restrictions, such as memory

alignment, texture allocation and use of priority queue,

some modifications were done. Furthermore, as the

parallelization is referred to the agents, each of them is

treated as a thread in a block and executes a complete

A* pathfinding.

 The graph is divided into three main structures, so

that memory remained aligned:

 Nodes: represented by four floats (total of 16

bytes) – one for the id corresponding to the

node and three to store the node position

(x,y,z) in the world. Despite it offers 3D

support, we worked only with a 2D space;

 Edges: they are also represented by four floats

– two of them to store its connections (origin,

destination), one to store the cost and other

reserved just to coalesce the memory;

 Adjacency directory: represents the node’s set

of edges and is composed of two non-negative

integers (total of 8 bytes) – one indicates the

offset into the edge list, and the other shows

the offset plus the node’s count of edges. The

use of this adjacency directory, although

incurs an extra cost of 8*N bytes compared to

an equivalent CPU implementation,

contributes to a more efficient navigation.

As the graph created is basically a query structure,

it is suitable to remain in a fast access memory region.

Therefore, all structures which represent the graph

have been mapped to the texture memory in GPU. The

main advantage of using textures is that it behaves like

a cache, allowing high transfer rates for localized

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

accesses. It also supports larger graphs since the

amount of available texture memory is proportional to

the size of GPU RAM.

We also applied some constraints regarding to the

agent movement in the map: every node is navigable

and can be part of an agent path (i.e. there is no

obstacles); the agent can only move in horizontal and

vertical, not in diagonal directions, as the map was

divided into a grid.

The priority queue implementation, which

represents the open nodes of the algorithm, is one of

the most important aspects in the A* execution. In the

A* main loop, the priority queue is the most accessed

structure and impacts directly on the algorithm

performance. For this reason, it is restricted to each

specific agent and allocated in the local memory,

reaching a maximum of 16KB per thread. The priority

queue was implemented as a binary heap, previously

allocated with size equals to the number of nodes in the

graph, while maintaining a set of pairs composed by a

float type cost and an integer node id. Elements with

the smallest cost are placed on top of the queue. The

insert and extract operations, essential to the A*

execution, were implemented with a logarithm cost,

avoiding recursions. The code bellow lists the heap

based extract method.

__device__ CUCost

extractFromQueue(CUPriorityQ* pq,

unsigned int* qSize) {

 CUCost cost;

 if((*qSize) >= 1) {

 cost = pq->costs[0];

 pq->costs[0] = pq->costs[(*qSize)-

1];

 (*qSize)--;

 heapify(pq, qSize);

 }

 return cost;

}

3.2.2 Working Set

To implement the pathfinding algorithm on the GPU,

we defined a working set composed of 4 inputs and 2

outputs. The inputs are each in the form of an array and

the described below are:

 An array containing the paths of all agents,

represented by a pair (origin, destination);

 An array of costs (float) initialized to zero,

representing the cost of each node starting

from the initial node;

 Two arrays of integers representing the list of

open and closed nodes/edges.

The size of both arrays of costs, open and closed

nodes/edges is of A * N, where A is the number of

agents in the game and N the number of nodes of the

graph. The set of outputs consists of:

 An array of accumulated costs (float),

containing the sum of the costs of each path,

for each agent;

 An array node positions (float3), containing

the paths found for each agent and, in the

worst case, having the size of A * N.

This working set is present throughout the

execution of the algorithm and is all previously

allocated and initialized, so there is no dynamic

allocation.

3.2.3 Execution

During the execution, the configuration of the kernel is

calculated based on number of agents in the game.

Initially, the origin and destination of the agent is set

randomly and an A* is performed for this pair in the

game map. The software then queries the properties of

the graphics device using CUDA to prevent the A*

exceeds the available resources of the GPU. Thus, it is

estimated the maximum number of agents that may

have their ways calculated and then the kernel runs in

loop; partial results are then copied to the CPU after

execution iteration.

 This mechanism of splitting the working set,

adapting it to the limit of available memory allows

increasing the number of agents, approaching a real

world situation, where there are thousands of agents in

a game. Because the index of threads can exceed the

total number of agents for that kernel call, an initial

check is made to disallow the GPU to compute

something beyond what should be done.

 At the end of the pathfinding execution for each

thread, the algorithm outputs the paths found for each

agent along with the cumulative cost of the path

calculated by A*. During the implementation and

development of the navigation algorithm on GPU, it

was possible to identify some bottlenecks and

optimizations that further increase the gain achieved by

the implementation on the graphics cards. These

changes can be viewed in the following section.

3.2.4 Optimizations

From the basic pathfinding algorithm implementation

on the GPU, it was possible to identify bottlenecks and

optimizations that allow a much larger gain compared

to CPU implementation and to the algorithm extension

supporting a greater tests set, close to what exists in

current games – thousands of agents and huge map.

 The execution of the kernel loop increases

overhead in the existing partial data from the GPU to

the CPU, reducing the performance of pathfinding. To

minimize the time spent, rather than storing the

position of the agent (float3) in the output array that

contains the path found, we stored the id of the

correspondent node (unsigned int), decreasing the

amount of data transferred (float 3 to unsigned int).

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

Moreover, this same output array was allocated in the

CPU non-paged memory, when available, where there

is less control by the operating system and

consequently an improvement in communication

between the video card and RAM memory bus of the

motherboard. These modifications improved by 3x the

transfer rate of partial results.

 Another optimization performed is related to a

relatively new concept and was first used in Ray-

Tracing by Aila [AILA et. al 2009]. The idea is

basically to make the warps more independent and

efficient. On GPU, a block execution only ends when

all of the running warps finish. In the context of

pathfinding, warps within the same block can have

very different paths. Thus, at least one of the warps

would spend more time calculating the path than

another one, leaving the block, somehow inefficient.

With the addition of persistent threads [AILA et. al

2009], each warp works almost independently and does

not expect the end of the other’s execution to start,

increasing the performance of the algorithm. Despite

the overhead this technique brings, we implemented

the persistent threads using atomic operations in the

shared memory instead of global memory, because of

the fast access of shared memory.

 For a better understanding of CUDA architecture,

we have also made some modifications: heuristic

calculation (Euclidean distance) without using the

sqrt function, which is an expensive operation to

CUDA and a tuning to reduce the number of registers

used and the transfer of data to global memory.

 Based on these optimizations performed, it was

possible to see gains in comparison to the basic

implementation on the GPU, strengthening even more

the idea of porting the pathfinding to use the

computing power of graphics hardware. The results

and their implications are detailed in the following

section.

4. Results

The A* pathfinding algorithms implemented in CPU

and GPU and described in section 3 are analyzed and

compared in this section. Evaluated from the

perspective of performance gain (speedup) and

memory consumption, this analysis had significant

results, making possible seeing that the parallelization,

at the level of agents and for the covered algorithms,

showed some speedup, strengthening the idea of using

the GPU as a platform for general purpose

applications, with emphasis on adapting algorithms of

Artificial Intelligence in Games.

We used undirected graphs for benchmark and

generated them automatically with a low complexity

topology. The number of agents used was, in average,

the square of nodes quantity, excepted for some

benchmarks that focused on running the algorithm with

a fairly large number of agents and nodes. The paths of

each agent were randomly generated and we used a

capability of 1.2, compatible with all graphics cards

currently on the market. All results described in this

section performed on an Intel Core i7 1.6GHz with

4GB of RAM processor, for both CPU and GPU

implementations and an NVIDIA GeForce GTS 360M

with 1782MHz shader clock, 1GB of global memory

and 12 multiprocessors graphics card. The speedup

was measured comparing the single-threaded CPU

algorithm with the ones implemented on GPU. The

pathfinding ran on Windows 7 and the time was

measured using the timer of Windows API.

 As the paths were generated randomly, each

benchmark ran three times and the average between the

time measured and memory used was taken to provide

a more consistent result. Thus, we performed a

comparison between the performance obtained with

implementations in CPU, basic GPU and GPU

optimized, with and without persistent threads. In

Table 2 you can see all benchmarks used in the tests.

Table 2 - Benchmark lists; with the nodes and edges

numbers, quantity of agents (threads), the number of blocks

without persistence (384 threads per block)

Graph Nodes Edges Agents Blocks

G0 16 48 64 1

G1 64 224 1024 3

G2 144 528 20736 54

G3 256 960 65536 171

G4 324 1224 115600 302

G5 400 1520 300000 784

G6 900 3480 20736 54

G7 2025 7920 1024 3

G8 2025 7920 65536 150

 From the values obtained by the average, we

calculated the speedup that the GPU in comparison to

the CPU. The speedup achieved for each benchmark

can be seen in Figure 1. It is observed that the gain is

greater as the complexity of the map increases (larger

number of nodes) and the number of agents as well,

reaching its peak in G3. We can also see that for a very

small set, as in G0, the CPU implementation still

represents a good solution. On the other hand, with a

very large working set, the GPU implementation

achieves a speedup of about 6x.

Figure 1 - Comparison of A* performance of basic GPU,

with and without persistent threads (PT) vs. the CPU

implementation.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5

 Although the speedup obtained is less than in

[Bleiweiss 2008], the main contribution of this work is

the number of agents and map size we achieved. While

in [Bleiweiss 2008] is used a map with maximum of

340 nodes, we achieved a maximum of 2025 nodes

with 65536 agents, and a maximum of 300000 agents

with a game map of 400 nodes, which represents a set

closer to a real game application. As the memory of the

graphics cards is still limited, making a pathfinding

implementation with a high scalability, close to real

world, is a common challenge and growing research

area. In Figure 2 is also possible to view the

execution time of each A* implementation done which

shows that the execution time grows with the topology

of the game map. Observing the execution time of the

G8 set on CPU, we can see that, with a large working

set, which demands a lot of processing power from

CPU, the GPU implementation represents a great

solution.

Figure 2 – Absolute execution time of A* implementation on

CPU, basic GPU and GPU with and without persistent

threads (PT).

5. Conclusion

This paper has presented a wide study of the

techniques related to the solution of the agent terrain

navigation problem, seeking its direct application in

game development. The main objective of this work

was to develop a pathfinding algorithm on GPU and

figure possible and effective optimizations, taking

advantage of the potential of parallel graphics

processors and the CUDA architecture, allowing the

use of these multiprocessors in the problem of

navigation.

 For this reason, it is possible to visualize the

potential of GPUs in the pathfinding execution. The

current games have the tendency of bringing huge and

complex environments, with simulations of thousands

of agents in real time. With the limitations imposed by

the CPU architecture and resources, some AI

techniques are having performance problems to

execute in CPUs. Along with the constant and fast

evolution of computing power of graphics processors,

the implementation of those AI techniques, mainly

those with a high parallelism degree, became very

promising in GPUs, establishing a bridge to a possible

future in games.

 As future work, some improvements and

modifications are listed below:

 Reduce the working set, mainly using

dynamic allocation;

 Expansion to multiple GPUs, noting the

impact of replication map of the game;

 Investigate the possibility of multi-agent

approaches, where an agent can reuse the

previously calculated by another way;

 Investigate the possibility of another approach

to parallelization, differently from the one

presented in this work – one agent, one

thread.

This paper presents a solution to the problem of

navigation of agents using the GPU as a development

platform. We intend to improve the implementation of

the A* algorithm so that it can use all the resources and

computing power of graphics hardware. In addition,

there is the possibility of establishing a benchmark that

can serve as a basis for similar applications to be

tested, since there is no standardization of the sets of

tests, parameters, etc. Thus, we understand that it

would be possible to evaluate the performance of

different navigation algorithms in a consistent and

effective way on the GPU.

References

AILA, T., LAINE, S., 2009. Understanding the Efficiency of

Ray Traversal on GPUs. In: Proceedings of the

Conference on High Performance Graphics 2009 (HPG

2009), 145–149.

AMD, 2005. Multi-core processors the next evolution in

computing. Amd multi-core technology whitepaper.

BLEIWEISS, A., 2008. GPU Accelerated Pathfinding. In

Proceedings of the ACM SIGGRAPH/

EUROGRAPHICS Symposium on Graphics Hardware,

Aire-la-Ville. Eurographics Association, 65-74.

CUDA, 2010. Computed Unified Device Architecture

[online]. Available from: www.nvidia.com/

object/cuda_home_new.html [Accessed 20th July 2010].

CSIKSZENTMIHALYI, M., 1991. Flow: The Psychology of

Optimal Experience. Harper Perennial.

FISHER, L. G., SILVEIRA, R. NEDEL, L., 2009. GPU

Accelerated Path-planning for Multi-agents in Virtual

Environments. In SBGames, 2009.

HARISH, P. AND NARAYANAN, P. J., 2007. Accelerating large

graph algorithms on the GPU using CUDA. In:

Proceedings of the International Conference on High

Performance Computing (18-21 December 2007 Goa).

Springer-Verlag, 197-208.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6

HUMPHRIES, J., 2010. Avatar Vs Modern Warfare 2: The

billion dollar behemoths [online] Business Management.

Available from: www.bme.eu.com/news/avatar-vs-

modern-warfare-2/ [Acessed 27th July 2010].

LAVALLE, S. M., 2006. Planning Algorithms [online]

Cambridge University Press. Available from:

http://planning.cs.uiuc.edu/ [Acessed 20th July 2010]

MATEAS, M., 2003. Expressive AI: Games and Artificial

Intelligence. In: Proceedings of International DiGRA

Conference.

OWENS, J. D., LUEBKE, D., GOVINDARAJU, N., HARRIS, M.,

KRÜGER, J., LEFOHN, A. E. AND PURCELL, T. J., 2005. A

Survey of General-Purpose Computation on Graphics

Hardware. In Start of The Art Report of the Eurographics

Conference.

PHAM, D., et al (20 authors). 2005. The Design and

Implementation of a First-Generation CELL Processor.

In Solid-State Circuit Conference, 2005. ISSCC 2005

IEEE International.

RABIN, S. 2000. A* Speed Optimizations. Game

Programming Gems. Charles River Media, 2000. 272–

287.

REYNOLDS, C. 2006. Big fast crowds on ps3. In sandbox’06:

Proceedings of the 2006 ACM SIGGRAPH symposium on

Videogames, ACM Press, New York, NY, USA, 113–

121.

SERÝ, O., POCH, T., SAFRATA, P. AND BROM, C., 2006. Level-

of-detail in behaviour of virtual humans. In Proceeding

of the Conference on Current Trends in Theory and

Practice of Computer Science, 21-27 January 2006

Merín. Heidelberg: Springer-Verlag, 565–574.

TOZOUR, P., 2003. Search Space Representations. In AI Game

Programming Wisdom 2, editors, Charles River Media,

pages 405-415. Hingham, Massachusetts.

TREUILLE, A. COOPER, S. AND POPOVIC, Z., 2006. Continuum

Crowds. In: Proceedings of SIGGRAPH 2006. ACM

Trans. Graph. 25(3).

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7

