
Fluid Animation on Arbitrarily-Shaped Structured Grids

Vitor B. R. B. Barroso

Tecgraf / PUC-Rio, Brazil

Waldemar Celes

Tecgraf / PUC-Rio, Brazil

Figure 1: Example of flow confined in a river-like boundary geometry. The image illustrates blue ink advected by the flow.

Abstract

In this paper, we present a fast and straightforward tech-
nique to simulate two-dimensional fluid flows on planar
structured grids with arbitrary shape and parameteriza-
tion. Although driven by a regular uniform grid, the re-
sulting flows correctly follow and interact with arbitrary
boundary walls and internal obstacles. This is accom-
plished by using Jacobian matrices to relate field deriva-
tives in the world and parameter spaces, which allows
us to solve the reduced Navier-Stokes equations directly
in the latter. The technique is demonstrated by using
a GPU-based Eulerian Stable Fluid solver to generate
real-time animations of flows confined in river-like ge-
ometry with arbitrary boundaries.

Keywords: Computational Fluid Dynamics, Eulerian
Fluids, Fluid Animation, Domain Parameterization

Authors’ Contact:
{vbarata,celes}@tecgraf.puc-rio.br

1 Introduction

Fluids and fluid flows are strongly present in our every-
day lives. We can easily find examples such as winds,
sea waves, smoke steaming from a vent, and the con-
tinuous flow of a river. Because of that, the modeling,
simulation, and animation of fluid motion has been an
active research topic for years in diverse areas, includ-
ing engineering, movie special effects, and games.

Fluid motion is governed by the Navier-Stokes equa-
tions, a set of partial differential equations whose pre-
cise numerical solution is remarkably difficult and com-
putationally expensive. Therefore, interactive applica-
tions such as games must trade accuracy for efficiency
and robustness, while generating interesting and con-
vincing fluid-like flows. For this purpose, a reduced
form of the equations is used to drive the simulation of
somewhat coarse representations of the fluid.

There are two main approaches for simulating fluids
in real-time: Lagrangian techniques, such as Smoothed

Particle Hydrodynamics [Stam and Eugene 1995], rep-
resent a fluid by a set of moving particles. On the other
hand, Eulerian techniques, such as Stable Fluids [Stam
1999], describe a fluid by sampling its properties on
each element of a stationary space subdivision, and inte-
grate these properties over time to generate motion. Sev-
eral domain discretizations may be used, from a regular
grid to a dynamic multi-resolution unstructured mesh.

In this paper, our scope is limited to the Eulerian
approach. More precisely, we investigate an efficient
method to animate fluids on structured grids with curved
and arbitrarily-shaped boundaries, such as the winding
riverbed in Figure 1. The idea is to simplify the simula-
tion by working on an underlying uniform grid, whose
coordinate derivatives are related to the world space
ones by means of Jacobian matrices.

Our research builds on the early work on Stable Flu-
ids by Stam [Stam 1999]. His technique was the first
to achieve an unconditionally stable real-time Eulerian
fluid simulation, and it is still the base of many modern
Eulerian algorithms. We extend the method in a way
similar to Stam’s own generalization technique [Stam
2003], but instead of a Catmull-Clark Surface parame-
terization, our approach handles only simple planar sur-
faces without holes in two dimensions, while on the
other hand being more easily extensible to arbitrarily-
shaped volumes in three dimensions. Another impor-
tant distinction is that our proposed method requires no
explicit topological information, no transition functions
between mesh patches, and less complex math: all we
need are the positions of the parameterized grid nodes
and/or centers in world space, from which we can com-
pute Jacobian matrices that relate field derivatives in
both coordinate systems. This well-known mathemat-
ical technique allows us to efficiently integrate the re-
duced Navier-Stokes equations directly in the parameter
space, accounting for curves and deformations in a nat-
ural way. As a result, we avoid the overhead of working
with simplicial meshes with explicit topology or refining
the grid near boundaries, which would normally be nec-
essary to accurately model curved geometries, and thus
we are able to produce faster river-like flow animations.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1



The remainder of the paper is organized as follows:
in Section 2, we briefly review related works on Eulerian
fluid simulation. Section 3 recalls the reduced Navier-
Stokes model, the finite difference formulation, and the
standard Stable Fluids integrator. In Section 4, we de-
scribe the mathematical tools used in our proposed tech-
nique, including the Jacobian-based coordinate transfor-
mation, and show how to apply them to each step of
the simulation. Implementation details are described in
Section 5, followed by a discussion of the results in Sec-
tion 6. Finally, in Section 7, we conclude the work and
point out directions for future research.

2 Related work

Fluid simulation techniques for computer graphics have
been studied for many years. However, the work by
Foster and Metaxas [Foster and Metaxas 1997] was
one of the first to achieve real-time frame rates with
an entirely physically-based Navier-Stokes integration
scheme, without the need for an animator to manually
define some of the flow’s features. Their method uses a
regular grid and integrates the flow equations explicitly,
leading to a fast but potentially unstable solution. As a
consequence, their approach imposes significant limits
on the time step, grid resolution, and fluid viscosity.

The first unconditionally stable real-time Eule-
rian fluid simulation technique was developed by
Stam [Stam 1999], who solved the Navier-Stokes equa-
tions on a regular grid in several sequential steps by in-
tegrating one term at a time. His method replaces the ad-
vection step by an implicit semi-Lagrangian integration.
Moreover, it also approaches the diffusion and pressure
computations implicitly by solving Poisson equations.
This technique has become quite popular and was im-
plemented in GPU by Harris [Harris 2004].

Several works built on the stable solution proposed
by Stam. Some tried to model the free surface of
fluid flows [Enright et al. 2002], the interactions be-
tween different liquids [Hong and Kim 2005; Losasso
et al. 2006b], or between a liquid and a rigid or de-
formable solid [Guendelman et al. 2005; Batty et al.
2007; Robinson-Mosher et al. 2008]. Others attempted
to simulate phase changes [Losasso et al. 2006a] or spe-
cial phenomena like fire [Horvath and Geiger 2009].
Different techniques have also been proposed to handle
the inherent numeric dissipation problem of the original
model [Fedkiw et al. 2001; Mullen et al. 2009].

Another line of research attempts to improve the
modeling of boundary geometries and obstacles. In the
early work by Foster and Metaxas, boundaries and ob-
stacles were voxelized into the regular grid by simply
marking the non-fluid cells [Foster and Metaxas 1997].
As a result, objects with complex shapes required ex-
cessive grid discretization, and those whose orientation
did not match the grid introduced visible artifacts in the
animation. Several methods have attempted to address
this problem, which is still under active research.

Some methods use accurate normals in an attempt to
enforce correct boundary conditions [Foster and Fedkiw
2001], or modify the calculations performed in bound-
ary cells to capture object geometries [Johansen and
Colella 1998; Roble et al. 2005], but they still suffer
from artifacts or face difficulties being evaluated ro-
bustly [Batty et al. 2007]. There are also techniques
that try to capture fine fluid motion detail only where
needed by using octrees [Shi and Yu 2002; Losasso et al.
2004], simplicial meshes [Feldman et al. 2005; Klingner
et al. 2006; Chentanez et al. 2007; Mullen et al. 2009] or
moving domain representations [Rasmussen et al. 2004;
Shah et al. 2004], and techniques that simulate fluids on
3D surfaces of arbitrary topology [Stam 2003; Shi and
Yu 2004]. Although some of these are very compelling,
their algorithms tend to become more complex to imple-
ment, and there is usually a considerable overhead when
compared to a regular grid approach.

Similarly to our work, Stam himself has also pro-
posed a technique to generalize the Stable Fluids algo-
rithm to arbitrary parametric surfaces [Stam 2003]. His
approach is more general in that it can handle holes and
nonplanar surfaces with arbitrary topology. However,
it requires an implementation of Catmull-Clark subdivi-
sion surfaces [Catmull and Clark 1978] and their exact
evaluation at arbitrary parameter values [Stam 1998].
Additionally, it depends on knowledge about the mesh
topology and has to deal with overlapping neighboring
surface patches by introducing special boundary condi-
tions and update rules, as well as transition functions
to convert vector quantities between different patch pa-
rameter spaces. Furthermore, his work also needs the
precomputation of a local metric from [Aris 1989] that
is far more complex than the approach adopted here.

In contrast to the previous work above, our proposed
method is less general in that it handles only planar de-
formed regular grids without holes. However, it pro-
vides a contribution in that it uses a straightforward ap-
proach based on per-cell Jacobian matrices, which are
easy to understand and precalculate. Also, it assumes an
underlying single-patch regular grid topology which can
be described trivially, requiring only the positions of the
grid nodes and/or centers. Moveover, it requires simpler
math and no special boundary conditions or transition
functions, allowing for a more efficient implementation.
And lastly, just like the original Stable Fluids, the tech-
nique described here can be readily extended to three-
dimensional volumetric domains, which is not so simple
with the Catmull-Clark parameterization.

Another interesting approach to handle irregular
boundaries and obstacles is proposed in [Batty et al.
2007]. In their work, the usual pressure projection step
is rephrased as a kinetic energy minimization, which
leads to results free from grid artifacts with relatively
coarse regular discretizations. One disadvantage of their
approach is that they still require information about
the entire domain, including many cells that might be
marked as out of bounds, such as in a C-shaped path.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2



3 Technical background

In this section, we briefly review the reduced Navier-
Stokes equations [Chorin and Marsden 1993], the fi-
nite difference method, and the Stable Fluids tech-
nique [Stam 1999] in 2D. As mentioned before, the
model and method can be easily extended to 3D.

3.1 Navier-Stokes equations

A fluid can be described by a velocity vector field (u⃗ =
[u, v]T ) and a pressure scalar field (p). We can also con-
sider other properties like temperature (T ), density (ρ),
kinematic viscosity (ν), and external forces (F⃗ ), con-
stant or not, along the fluid.

The evolution of the velocity and pressure fields over
time for an incompressible fluid is given by the reduced
Navier-Stokes equations:

∇· u⃗ = 0 (1)
∂u⃗

∂t
= − (u⃗·∇) u⃗− 1

ρ
∇p+ ν∇2u⃗+

1

ρ
F⃗ (2)

Note that (2) is actually vectorial and corresponds to
two scalar equations in 2D and three in 3D. Also, the
differential operators are expanded as follows, where u⃗
is a vector and r is a scalar:

∇r =

[
∂r

∂x

∂r

∂y

]
∇· u⃗ =

∂u

∂x
+

∂v

∂y

∇2r =
∂2r

∂x2
+

∂2r

∂y2
(u⃗·∇)r =

∂r

∂x
u+

∂r

∂y
v

Equation (1) indicates that the velocity field of an
incompressible fluid is divergence-free, which means
there can be no point where mass is concentrated or dis-
sipated. Equation (2) can be best understood by exam-
ining each of its terms: the first, advection, models how
the fluid movement carries any property with it, includ-
ing the fluid velocity itself. The second, pressure gradi-
ent, implies that the fluid is dragged to regions of lower
pressure. The third, diffusion, models internal friction,
i.e. how the fluid resists to changes in its movement due
to viscosity. Finally, the last term corresponds to the
acceleration caused by external forces, such as gravity.

3.2 Grid representation and finite differences

In the simplest Eulerian approach, a fluid is described
by sampling its properties in a regular structured grid.
Each cell is identified by an [i, j]T index and has the
same size [δx, δy]T . Samples are taken on each cell cen-
ter x⃗ = [x, y]T . In this discretized space, we need to
approximate derivatives for a scalar r by finite differ-
ences:

∂r

∂x
=

1

2δx
[r (x+ δx)− r (x− δx)] +O

(
δ2x
)

∂2r

∂x2
=

1

δ2x
[r (x+ δx)− 2r (x) + r (x− δx)] +O

(
δ2x
)

Transporting coordinates to the grid and discarding
the nonlinear terms:

∂r

∂x

∣∣∣∣
i,j

≈ 1

2δx
[ri+1,j − ri−1,j ]

∂2r

∂x2

∣∣∣∣
i,j

≈ 1

δ2x
[ri+1,j − 2ri,j + ri−1,j ]

Replacing the above formulas in (2), we find an ap-
proximate expression for ∂u⃗/∂t. We can then use any
numerical integration method to evolve the fluid veloc-
ity field and other properties.

It is important to note that a better representation for
the fluid domain can be obtained by sampling the fluid
velocity in a staggered MAC grid pattern [Harlow and
Welch 1965; Foster and Metaxas 1997], in which each
vector component is stored in the grid edge or face or-
thogonal to it. This allows for better energy conserva-
tion properties and more robustness to the integration
scheme. The technique described in this work was im-
plemented on a centered grid, but it is equally suitable
to a MAC grid.

3.3 Stable Fluids

The explicit integration of (2) is potentially unstable
[Foster and Metaxas 1997]. This has led to the develop-
ment of an alternative method, known as Stable Fluids,
to evolve the velocity field of a fluid in an uncondition-
ally stable manner. In this technique, whose details can
be found in [Stam 1999], the Navier-Stokes equations
are solved by sequentially applying four operators: ex-
ternal force (F ), advection (A), diffusion (D), and pro-
jection (P ). Each step uses the velocities computed by
the previous one to further evolve the field values:

u⃗n+1
i,j = P ◦D ◦A ◦ F

(
u⃗n
i,j

)
(3)

The force step does not present any instability prob-
lems. Therefore, an explicit Euler integration scheme
can be used.

The stable advection step uses an inverse semi-
Lagrangian approach. Consider a particle on the center
x⃗ of a grid cell. If this particle were to be transported
by the flow, it would reach a position (x⃗ + u⃗∆t) (in a
first-order approximation), carrying with it all the fluid
properties, including its velocity. If we now think back-
wards, the particle that will reach position x⃗ must have
come from (x⃗− u⃗∆t). This means we can simply back-
trace the particle trajectory, interpolate the property val-
ues at the computed location, and assign these values as
the new ones for the current cell:

r (x⃗, t+∆t) = r (x⃗− u⃗ (x⃗, t)∆t, t)

rn+1
i,j = rn

(
x⃗i,j − u⃗n

i,j∆t
)

(4)

The stable diffusion step also uses an implicit for-
mulation: (

I − ν∆t∇2
)
u⃗n+1
i,j = u⃗n

i,j (5)

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3



In (5), we have a Poisson equation, which can be
solved by a variety of methods. Stam proposes the ro-
bust multigrid technique [Hackbusch 1985], but in this
paper we choose the simpler Jacobi iteration method de-
scribed in [Harris 2004]. This is a slow-convergence it-
erative technique, in which we repeat a fixed number of
times the following update rule:

u⃗i,j =

u⃗i+1,j+u⃗i−1,j

δ2x
+

u⃗i,j+1+u⃗i,j−1

δ2y
+

u⃗i,j

ν∆t

1
ν∆t + 2

(
1
δ2x

+ 1
δ2y

) (6)

Finally, on the projection step, we first calculate the
divergence of the velocity field and use it to find the
pressure gradient in (7) [Stam 1999]:

∇· u⃗ = ∇2p (7)

We have once more a Poisson equation, for which
the Jacobi iteration update rule is given by:

p′i,j =

pi+1,j+pi−1,j

δ2x
+

pi,j+1+pi,j−1

δ2y
− (∇· u⃗)i,j

2
(

1
δ2x

+ 1
δ2y

) (8)

Once the pressure has been found, we project the
velocities into a divergence-free field by applying:

u⃗′ = u⃗−∇p (9)

After the velocities have been integrated, we can use
them to evolve scalar quantities through the fluid, such
as density and temperature. This evolution can be mod-
eled by:

∂r

∂t
= − (u⃗·∇) r + κd∇2r − κer + S (10)

In this equation, κd and κe are configurable coeffi-
cients. Note also that (2) and (10) are strikingly similar.
Indeed, the same integration method can be applied here
by using sequential operators for source (S), advection
(A), diffusion (D), and extinction (E):

rn+1
i,j = E ◦D ◦A ◦ S

(
rni,j

)
(11)

In (11), the extinction term can be integrated di-
rectly:

rn+1
i,j = (1 + κe∆t)

−1
rni,j (12)

Finally, we can also compute how particles are trans-
ported by the flow. This is done by forward integration
of each particle position using the fluid velocities.

As a final remark, it should be noted that, since the
calculation of derivatives for a cell requires accessing its
direct neighbors, we need an extra layer of cells around
the fluid domain to impose some boundary conditions.
A good discussion of this topic can be found in [Foster
and Metaxas 1997].

4 Parameterized Stable Simulation

The main goal of our work is to be able to use a simple
uniform grid to drive a fluid simulation on an arbitrarily-
shaped structured grid. The idea is to perform the inte-
gration of the reduced Navier-Stokes equations directly
in the uniform grid’s parameter (s, t) space, instead of in
the (x, y) coordinates of the more complex world-space
domain discretization. Figure 2 shows the relationship
between the two coordinate frames.

We start by presenting the Jacobian matrix concept
and how it can be used to convert some of the fluid prop-
erties between the world and grid spaces. Then, we
examine some additional techniques and mathematical
adaptations that must be made to each step of the Stable
Fluids solver in order to achieve our goal. Throughout
the section, we use the notation fx to denote the deriva-
tive of f in the x direction, and f(x,y) to denote the value
of f in the (x, y) coordinate space.

x

y

s

t

�x =
�

x
y

� �
s
t

�
=

�
4.5
0.5

�

Figure 2: Relationship between world (x, y) and grid (s, t)
coordinates.

4.1 Jacobian matrix and coordinate systems

Looking back to Equations (1) and (2), we note that the
fluid behavior is described only in terms of velocities
and other field derivatives, not depending directly on
any positional information. Therefore, all we need is
to relate these properties in the world and grid spaces.
For that purpose, we can express the derivatives fs and
ft as follows:

fs = fxxs + fyys ft = fxxt + fyyt (13)

Similarly, we can express fx and fy as:

fx = fssx + fttx fy = fssy + ftty (14)

In matrix form:(
fs
ft

)
=

(
xs ys
xt yt

)(
fx
fy

)
⇒ ∇f(s,t) = J∇f(x,y)

(13b)(
fx
fy

)
=

(
sx tx
sy ty

)(
fs
ft

)
⇒ ∇f(x,y) = J−1∇f(s,t)

(14b)

Using the definitions above for the Jacobian matrix
J and its inverse, it can also be easily shown that:

u⃗(s,t) = (J−1)T u⃗(x,y) (15)

u⃗(x,y) = JT u⃗(s,t) (16)

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4



Both the Jacobian matrix J and its inverse can be
precomputed by the fluid solver. In this work, we calcu-
late the Jacobian matrix terms on each cell by finite dif-
ferences with the positions of neighboring cell centers,
and then store them just like any other fluid property.

It is important to note that, since the Jacobian is not
necessarily constant over each cell, it should also be in-
terpolated when needed. However, throughout the algo-
rithm, most of the times it will be queried exactly at a
cell center, in which case we can avoid this extra cost.

Another remark is that, as we will see in Section 4.3,
we will also need the second-order terms sxx, syy , txx
and tyy . Once we have the inverse Jacobian matrix sam-
pled over the grid, these terms can also be precalculated
by considering each term of J−1 as a scalar field f and
using Equation (14) again, along with finite differences.

4.2 Advection step and particle tracking

Figure 3: Effect of particle tracking for a velocity in the x di-
rection. Dashed line: trajectory without tracking. Continuous
line: trajectory with velocity recalculation in grid coordinates.

In the advection step of the solver, we first query the
flow velocity at the center of each grid cell. We then use
the Jacobian matrix to transform this velocity to grid co-
ordinates, where the advection is to be performed. The
backtracking of the Lagrangian particle can be done by
an integrator of any desired order. After reaching the
final location, the value of the advected field can be in-
terpolated and copied back to the original cell.

It is important to note that, with higher-order inte-
grators or when the time step allows the particle to go
through several grid cells at once, it is necessary to track
the particle and find out when it moves from a cell to one
of its neighbors. This is often the case in fluid animation
and requires a very simple verification in the underlying
grid coordinates. On each transition, since the Jacobian
matrix can be different for each cell, the velocity in grid
coordinates should be recalculated from the remaining
time step movement in world coordinates. Figure 3 il-
lustrates how this can affect the behavior of the fluid.

4.3 Diffusion step and Jacobi iterations

For the diffusion step, the form of the Jacobi iterations
must be derived from scratch. We start with Stam’s im-
plicit equation [Stam 1999], with the time step replaced
by h to avoid confusion with the t coordinate, and using
u⃗′ to denote the next value of u⃗ after the current itera-
tion:

u⃗′ − u⃗

νh
= (u⃗xx + u⃗yy) (17)

Using (14) twice to expand the derivatives of the
Laplacian:

= (u⃗x)s sx + (u⃗x)t tx + (u⃗y)s sy + (u⃗y)t ty

= (u⃗ssx + u⃗ttx)s sx + (u⃗ssx + u⃗ttx)t tx+

(u⃗ssy + u⃗tty)s sy + (u⃗ssy + u⃗tty)t ty

Hence, by the chain rule:

= (u⃗sssx + u⃗ssxs + u⃗tstx + u⃗ttxs) sx+

(u⃗stsx + u⃗ssxt + u⃗tttx + u⃗ttxt) tx+

(u⃗sssy + u⃗ssys + u⃗tsty + u⃗ttys) sy+

(u⃗stsy + u⃗ssyt + u⃗ttty + u⃗ttyt) ty

Combining terms and reversely applying (14) for
sxx, syy , txx, tyy yields:

= u⃗ss

(
s2x + s2y

)
+ u⃗tt

(
t2x + t2y

)
+

u⃗s (sxx + syy) + u⃗t (txx + tyy) + 2u⃗st (sxtx + syty)

Approximating this equation by finite differences in
the underlying uniform grid, where δs = δt = 1, and
plugging back into (17), we can finally find the iteration
rule for u⃗:

u⃗′
i,j [β + 2 (ks + kt)] = αf+

(u⃗i+1 + u⃗i−1) ks + (u⃗i+1 − u⃗i−1) kss+

(u⃗j+1 + u⃗j−1) kt + (u⃗j+1 − u⃗j−1) ktt+

(u⃗i+1,j+1 + u⃗i−1,j−1 − u⃗i+1,j−1 − u⃗i−1,j+1) kst

(18)

where:

ks = s2x + s2y kt = t2x + t2y

kst = (sxtx + syty) /2 α = 1/νh (19)
kss = (sxx + syy) /2 β = 1/νh

ktt = (txx + tyy) /2 f = u⃗i,j

Note that ks, kt, kst, kss and ktt can all be precal-
culated. Nevertheless, the iteration becomes somewhat
expensive due to the need to access all eight cell neigh-
bors. This cost is also present in [Stam 2003].

4.4 Projection step

The projection step starts by calculating the divergence
of the velocity field. This can be done in a very straight-
forward manner by using (14).

The Jacobi iterations to obtain the pressure field
should be transformed in a way analogous to that of the
diffusion step. Indeed, (18) can be applied directly if we
replace u⃗ and u⃗′ with p and p′, respectively, and use the
following parameter values:

α = −1, β = 0, f = ∇· u⃗

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5



4.5 Transport step

The transport of particles by the fluid flow is achieved by
integrating their positions forward in time. This process
follows the same rules and adaptations described for the
backtracking during advection.

It should be noted that particle coordinates must be
stored directly in grid coordinates, since there is no
straightforward way to convert a position from world
coordinates to them (that would probably require solv-
ing a nonlinear system of two equations). The opposite
conversion, on the other hand, is possible by interpo-
lating grid node positions at the particle coordinates, an
operation that will be required if the particles are to be
rendered later.

4.6 Boundary conditions

In our simulation, we chose to describe border and ob-
stacle conditions in terms of the velocities tangent and
orthogonal to the boundary. A wall cell, for example,
should ensure that the orthogonal velocity entering or
leaving it is zero, while letting the tangent velocity vary
according to its roughness. This means that boundary
conditions are applied to velocities in grid coordinates,
which are always aligned with the corresponding sur-
face. On the other hand, since velocities must be stored
back in world coordinates, the Jacobian matrix must be
used both ways in the process. Furthermore, if a bound-
ary indicates an entrance or exit of fluid, its required
velocity magnitude should also be ensured in world co-
ordinates, despite its direction depending on the grid
orientation. For example, if a fluid enters the domain
through a diagonal boundary orthogonal to the grid co-
ordinate s, that’s the direction the velocity should be en-
forced in. If the entrance speed is u, however, this exact
magnitude should be enforced in the world (x, y) frame.

5 Implementation

Our implementation is strongly based on the work by
Harris [Harris 2004], making extensive use of the GPU
and standard OpenGL textures and shaders.

As mentioned earlier, we consider the fluid domain
in the world (x, y) space to be mapped to an underlying
uniform grid with (s, t) coordinates. Each cell is identi-
fied by an [i, j]T index, has unit size in grid space, and
center x⃗ = [x, y]T in world space. The grid geometry is
given by a simple input array of its node coordinates.

We use floating-point textures to store every quan-
tity sampled throughout the fluid domain. That in-
cludes fluid properties like velocity (in world space) and
pressure, secondary properties like divergence and curl,
scalar quantities like the density of some colored inks
for visualization, external influences like applied forces
and ink sources, and all precalculated grid properties,
such as the Jacobian matrices, their inverses, and the k
terms in (19).

In order to control the behavior of the fluid near
boundaries, we adjust the pressure and velocity for each
border cell based on its corresponding internal neighbor.
For the cells in the entire lower boundary of the grid, for
example, this neighbor is the cell directly above it. As
explained in [Foster and Metaxas 1997], pressure val-
ues should usually be copied unaltered from the interior
to the border cells to keep the effect on the flow mini-
mal. The velocity, on the other hand, can be controlled
to achieve different effects.

We use two textures to control boundary conditions.
The first one stores, for each grid cell that represents
a boundary, the offset in grid coordinates necessary to
find the corresponding internal neighbor (cells inside the
fluid domain and inside obstacles receive special values
instead to indicate that). The second stores a tangen-
tial scale factor and an orthogonal absolute offset for the
velocity. This allows a border cell to have an arbitrary
orthogonal velocity entering or leaving the fluid domain,
while its tangent velocity is calculated as a scalar times
the tangent velocity of the internal neighbor cell, result-
ing in either a more laminar or more turbulent flow.

Finally, we use vertex buffer objects to hold grid
node and center coordinates in world space, as well as
node texture coordinates in grid space. These are used
for various visualization modes of the grid, fluid proper-
ties, inks and particles. The particles themselves could
have their positions stored in buffer objects as well, but
our current implementation uses another texture for that,
allowing a maximum number of particles equal to the
number of cells in the grid.

Our fluid simulation evolves by using GLSL
shaders, one for each step of the solver. The implemen-
tation follows the work by Harris [Harris 2004], with the
adaptations from Section 4. Additional shaders are also
used for Lagrangian particle tracking, bilinear interpola-
tion (when GPU does not filter floating-point textures),
and various visualization modes.

6 Results and Discussion

In this section, we present example grids, describe val-
idation experiments and discuss the obtained results in
terms of correctness and performance. All non-regular
grids were simulated as riverbeds, with the fluid entering
from the left and exiting on the right with the appropri-
ate speed to ensure mass conservation.

Figure 4: Grid geometry for a curved path.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6



Figure 5: Results obtained for the curved path geometry. From top to bottom: blue ink advected by the flow, massless particles
transported by it (or velocity vectors in the third column), fluid velocity in the x (red) and y (green) directions, and relative pressure
(low as blue, high as red). From left to right: refined (500× 100) grid with rough boundaries, refined grid with smooth boundaries
and added fluid viscosity, and coarse (100× 20) grid with rough boundaries.

6.1 Validation on regular grid

The most trivial validation of our method is to apply it
to a standard regular grid. The resulting fluid behavior
should be identical to the one obtained by the original
Stable Fluids algorithm. Mathematically, the Jacobian
matrix for a regular grid with cell size [δx, δy]

T is given
by (20). It can be verified that plugging this value into
the equations derived in Section 4 does reduce them to
the original versions. Experimentally, the predicted be-
havior was also verified in all of our tests.

J =

(
xs ys
xt yt

)
=

(
δx 0
0 δy

)
(20)

6.2 Curved path

The grid shown in Figure 4 was designed to test the
fluid’s behavior flowing through a path with curved
boundaries.

Some of the simulation results are presented in Fig-
ure 5, which shows very convincing flows. In the left
column, we can see that the rough borders and the fluid’s
inertia cause the formation of vortexes just around and
past sharp concave corners, where they are intuitively
expected. Moreover, from the last row, we can also con-
firm that these areas correctly have a lower pressure than

their surroundings. Directing our attention to the mid-
dle column, we can see a well-behaved viscous laminar
flow inside a smooth boundary. Note that sharp corners
still produce a small pressure decrease. Finally, the right
column shows how the overall fluid behavior is the same
on a lower-resolution grid, although vortexes and other
fine details tend to disappear.

6.3 Constricted path

The next grid, presented in Figure 6, resembles a Venturi
tube. It was designed to test the fluid’s behavior when
flowing through a constriction.

Figure 6: Grid geometry for a constricted path.

The results of this simulation are presented in Fig-
ure 7. For a laminar flow, a higher velocity is expected
inside the constricted region to keep the mass flow per
area constant. Additionally, from the hydrodynamics
theory, the fluid inside the constriction should also ex-
hibit a lower pressure. These properties can be verified

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7



Figure 7: Results obtained for the constricted path geometry. From top to bottom: blue ink advected by the flow, massless particles
transported by it (or velocity vectors in the third column), fluid velocity in the x (red) and y (green) directions, and relative pressure
(low as blue, high as red). From left to right: refined (1000×100) grid with rough boundaries, refined grid with smooth boundaries
and added fluid viscosity, and coarse (100× 20) grid with rough boundaries.

in the bottom two rows of the middle column, where
turbulences are minimal. In our experiments, we also
numerically confirmed the ratio of the velocity increase.
For example, for a half-width section, the fluid cor-
rectly flows at approximately double the full-width sec-
tion speed. In contrast, it is interesting to note the dif-
ferent behavior observed in the left and right columns.
When the fluid has no viscosity at all, it tends to rush
right past the constriction, tunneling through the thicker
section with little loss of velocity. Combined with the
rough boundaries (left column), large vortexes are then
generated, as shown in the first two rows.

6.4 River-like path

The last test grid geometry was designed as a represen-
tation of a natural river, possibly with internal obstacles
like rocks and small islands. The basic grid is presented
in Figure 8.

Figure 8: Grid geometry for a river-like path.

The river-like geometry was also altered in two dif-
ferent ways: first, we included a circular obstacle in the
beginning of the widest section; second, we forked and
rejoined the path at some points. The resulting bound-
ary shapes and their respective simulation results can be
seen in Figure 9.

It is important to note that our model does not sup-
port actual holes in the grid representation, since there is
always a full regular grid underneath. Instead, to achieve
the kind of effect described here, we must deform the

cells in appropriate grid areas (usually rectangles in the
grid space) so that they approximate the shape of the
desired internal obstacles. Then, the outermost layer
cells must be marked as walls and have boundary con-
ditions associated with them. In Figure 9, these appar-
ently missing obstacle cells are simply hidden to provide
a better visual appearance.

As for the simulation results, in the figure’s left col-
umn we can observe a low pressure zone in the most
constricted section of the river and some interesting vor-
texes formed as a result of the boundary’s shape and
roughness. In the middle column, we can clearly no-
tice the perturbation of the flow created by the obstacle,
as some vortexes are generated behind it. Finally, the
right column shows how the flow is forked and rejoined
in a natural-looking way.

6.5 Performance

We measure the performance of our proposed method
and compare it with that obtained by a standard Stable
Fluids solver [Stam 1999] implemented in an analogous
manner.

The most computationally intensive steps of our in-
tegrator are the Jacobi iterations, which therefore im-
pose a bound on our efficiency. Fortunately, for anima-
tion purposes, the number of iterations need not be very
high: 20 to 50 should be enough for the viscosity and
diffusion steps, and 40 to 80 provide good results for
the pressure computation [Harris 2004].

Table 1 shows the frame rates we achieved for the
simulation of fluids over regular grids using our pro-
posed method and the original Stable Fluids solver. We
enabled the full simulation of the fluid, along with a set
a ink densities and particle positions, using a fixed 20 it-

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 8



Figure 9: Results obtained for the river-like path geometry with refined (1000 × 100) grids and rough boundaries. From top to
bottom: blue ink advected by the flow, massless particles transported by it, fluid velocity in the x (red) and y (green) directions,
and relative pressure (low as blue, high as red). From left to right: free path, circular obstacle, and forked path.

erations for the viscosity and diffusion steps. The frame
rates also include the rendering of ink alone. All mea-
surements were performed on a machine with an Intel
Core 2 Quad Q8400 2.66GHz processor, 4GB of RAM
and a GeForce 9600 GT graphics card.

Table 1: Performance measurements comparing our proposed
method with the original Stable Fluids solver. The parentheses
indicate the grid dimensions.

Pressure Our Method Stable Fluids Our Method
Iterations (300× 300) (300× 300) (300× 130)

10 39 fps 79 fps 80 fps
25 24 fps 46 fps 48 fps
50 19 fps 38 fps 39 fps
100 14 fps 28 fps 28 fps

As can be seen in the Table 1, our method has ap-
proximately doubled the computational cost of the origi-
nal Stable Fluids solver for the same grid size. However,
the extra freedom of the parameterization can eliminate
the need to oversample the fluid domain near its bound-
aries. Therefore, if the total number of cells required by
the parameterized grid is less than half of that needed
for an equivalent regular grid, we can actually achieve
better performance than the standard algorithm.

7 Conclusion

In this paper, we extended the work on Stable Fluids
by Stam [Stam 1999] to animate fluids confined in two-
dimensional domains with arbitrarily-shaped bound-
aries. We employed a simple uniform grid to drive
the simulation, in parameter space, of a structured dis-
cretization of these domains. In order to accomplish
this, the Jacobian matrices that relate world and parame-
ter spaces were derived using finite differences. As a re-
sult, our approach was able to deliver efficient and con-
vincing flow simulation on complex domains, as in the
demonstrated examples of winding riverbeds with ob-
stacles and forks.

It is interesting to note that, despite having a higher

computational cost per-cell than the original Stable Flu-
ids solver, our proposed method can produce convincing
results for curved-boundary domains with a relatively
small number of cells, which greatly compensates that
cost and allows for quite fast simulations. Moreover,
with an approach based on regular grids, the fluid be-
havior should not be depicted as accurately, even with a
large number of cells or adaptive refinement schemes.

The proposed method can be easily extended to
3D. As efficiency may be a constraint for complex
3D domains, we plan to investigate the use of a
CUDA-based implementation and the replacement of
the Jacobi iteration method by a more efficient ap-
proach for solving the Poisson equations, either a multi-
grid method [McAdams et al. 2010] or a conjugate-
gradient method with an incomplete Cholesky precon-
ditioner [Golub and Van Loan 1996].

Acknowledgments

We would like to thank CNPQ and Faperj for the fund-
ing received during this project.

References
ARIS, R. 1989. Vectors, tensors, and the basic equations of

fluid mechanics. Dover books on engineering. Dover Pub-
lications.

BATTY, C., BERTAILS, F., AND BRIDSON, R. 2007. A fast
variational framework for accurate solid-fluid coupling. In
ACM SIGGRAPH 2007 papers, ACM, SIGGRAPH ’07.

CATMULL, E., AND CLARK, J. 1978. Recursively gen-
erated b-spline surfaces on arbitrary topological meshes.
Computer-Aided Design 10, 6, 350 – 355.

CHENTANEZ, N., FELDMAN, B. E., LABELLE, F.,
O’BRIEN, J. F., AND SHEWCHUK, J. R. 2007. Liquid sim-
ulation on lattice-based tetrahedral meshes. In Proceedings
of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, 219–228.

CHORIN, A., AND MARSDEN, J. 1993. A mathematical in-
troduction to fluid mechanics. Springer-Verlag.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002.
Animation and rendering of complex water surfaces. In

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 9



Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM, SIGGRAPH
’02, 736–744.

FEDKIW, R., STAM, J., AND JENSEN, H. W. 2001. Vi-
sual simulation of smoke. In Proceedings of the 28th
annual conference on Computer graphics and interactive
techniques, ACM, SIGGRAPH ’01, 15–22.

FELDMAN, B. E., O’BRIEN, J. F., AND KLINGNER, B. M.
2005. Animating gases with hybrid meshes. In ACM SIG-
GRAPH 2005 Papers, ACM, SIGGRAPH ’05, 904–909.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation
of liquids. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, ACM,
SIGGRAPH ’01, 23–30.

FOSTER, N., AND METAXAS, D. 1997. Modeling the mo-
tion of a hot, turbulent gas. In Proceedings of the 24th
annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’97, 181–188.

GOLUB, G. H., AND VAN LOAN, C. F. 1996. Matrix com-
putations (3rd ed.). Johns Hopkins University Press, Balti-
more, MD, USA.

GUENDELMAN, E., SELLE, A., LOSASSO, F., AND FEDKIW,
R. 2005. Coupling water and smoke to thin deformable
and rigid shells. In ACM SIGGRAPH 2005 Papers, ACM,
SIGGRAPH ’05, 973–981.

HACKBUSCH, W. 1985. Multi-grid methods and applications.
Springer series in computational mathematics. Springer.

HARLOW, F. H., AND WELCH, J. E. 1965. Numerical cal-
culation of time-dependent viscous incompressible flow of
fluid with a free surface. In The Physics of Fluids 8, 2182–
2189.

HARRIS, M. J. 2004. Fast Fluid Dynamics Simulation on the
GPU. GPU Gems. Pearson Higher Education, ch. 38.

HONG, J.-M., AND KIM, C.-H. 2005. Discontinuous fluids.
In ACM SIGGRAPH 2005 Papers, ACM, SIGGRAPH ’05,
915–920.

HORVATH, C., AND GEIGER, W. 2009. Directable, high-
resolution simulation of fire on the gpu. In ACM SIG-
GRAPH 2009 papers, ACM, SIGGRAPH ’09, 41:1–41:8.

JOHANSEN, H., AND COLELLA, P. 1998. A cartesian grid
embedded boundary method for poisson’s equation on ir-
regular domains. Journal of Computational Physics 147, 1,
60 – 85.

KLINGNER, B. M., FELDMAN, B. E., CHENTANEZ, N.,
AND O’BRIEN, J. F. 2006. Fluid animation with dynamic
meshes. In ACM SIGGRAPH 2006 Papers, ACM, SIG-
GRAPH ’06, 820–825.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating
water and smoke with an octree data structure. In ACM SIG-
GRAPH 2004 Papers, ACM, SIGGRAPH ’04, 457–462.

LOSASSO, F., IRVING, G., GUENDELMAN, E., AND FED-
KIW, R. 2006. Melting and burning solids into liquids and
gases. IEEE Transactions on Visualization and Computer
Graphics 12, 343–352.

LOSASSO, F., SHINAR, T., SELLE, A., AND FEDKIW, R.
2006. Multiple interacting liquids. In ACM SIGGRAPH
2006 Papers, ACM, SIGGRAPH ’06, 812–819.

MCADAMS, A., SIFAKIS, E., AND TERAN, J. 2010.
A parallel multigrid poisson solver for fluids simulation
on large grids. In Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion, Eurographics Association, 65–74.

MULLEN, P., CRANE, K., PAVLOV, D., TONG, Y., AND

DESBRUN, M. 2009. Energy-preserving integrators for
fluid animation. In ACM SIGGRAPH 2009 papers, ACM,
SIGGRAPH ’09, 38:1–38:8.

RASMUSSEN, N., ENRIGHT, D., NGUYEN, D., MARINO,
S., SUMNER, N., GEIGER, W., HOON, S., AND FEDKIW,
R. 2004. Directable photorealistic liquids. In Proceedings
of the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, 193–202.

ROBINSON-MOSHER, A., SHINAR, T., GRETARSSON, J.,
SU, J., AND FEDKIW, R. 2008. Two-way coupling of flu-
ids to rigid and deformable solids and shells. In ACM SIG-
GRAPH 2008 papers, ACM, SIGGRAPH ’08, 46:1–46:9.

ROBLE, D., ZAFAR, N. B., AND FALT, H. 2005. Carte-
sian grid fluid simulation with irregular boundary voxels. In
ACM SIGGRAPH 2005 Sketches, ACM, SIGGRAPH ’05.

SHAH, M., COHEN, J. M., PATEL, S., LEE, P., AND

PIGHIN, F. 2004. Extended galilean invariance for adap-
tive fluid simulation. In Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation,
Eurographics Association, 213–221.

SHI, L., AND YU, Y. 2002. Visual smoke simulation with
adaptive octree refinement. Tech. rep., University of Illi-
nois.

SHI, L., AND YU, Y. 2004. Inviscid and incompressible fluid
simulation on triangle meshes. Computer Animation and
Virtual Worlds 15, 3-4, 173–181.

STAM, J., AND EUGENE, F. 1995. Depicting fire and other
gaseous phenomena using diffusion processes. In Proceed-
ings of the 22nd annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’95, 129–136.

STAM, J. 1998. Exact evaluation of catmull-clark subdivi-
sion surfaces at arbitrary parameter values. In Proceedings
of the 25th annual conference on Computer graphics and
interactive techniques, ACM, SIGGRAPH ’98, 395–404.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th
annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’99, 121–128.

STAM, J. 2003. Flows on surfaces of arbitrary topology. In
ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, 724–731.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 10


	Introduction
	Related work
	Technical background
	Navier-Stokes equations
	Grid representation and finite differences
	Stable Fluids

	Parameterized Stable Simulation
	Jacobian matrix and coordinate systems
	Advection step and particle tracking
	Diffusion step and Jacobi iterations
	Projection step
	Transport step
	Boundary conditions

	Implementation
	Results and Discussion
	Validation on regular grid
	Curved path
	Constricted path
	River-like path
	Performance

	Conclusion



