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Abstract 
 

This paper investigates the design of a challenging 

Game AI for a modern strategy game, which can be 

seen as a large-scale multiagent simulation of an 

historical military confrontation. As an alternative to 

the typical script-based approach used in industry, we 

test an approach where military units and leaders, 

organized in a hierarchy, learn to improve their 

collective behavior through playing repeated games. In 

order to allow the application of a reinforcement 

learning framework at each level of this complex 

hierarchical decision-making structure, we propose an 

abstraction mechanism that adapts semi-automatically 

the level of detail of the state and action 

representations to the level of the agent. We also study 

specifically various reward signals as well as inter-

agent communication setups and show their impact on 

the Game AI performance, distinctively in offensive 

and defensive modes. The resulting Game AI achieves 

very good performance when compared with the 

existing commercial script-based solution. 
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1. Introduction 
 

Modern strategy games constitute large-scale 

multiagent simulations that share many characteristics 

with real-world problems. Specifically, they reach high 

levels of complexity in terms of the sizes of state and 

action spaces, and their environments are partially 

observable and stochastic. For these games, it is 

generally recognized that the design of challenging 

automated opponents (called game AI) is an important 

issue [Buro 2003]. The most common approach to this 

problem in the game industry is to use ad-hoc 

techniques with hand-crafted knowledge, although this 

approach is tedious and usually leads to low-quality 

opponents [Nareyek 2004; Rabin 2003; Rabin 2006]. 

 

 Let us consider, as a motivating example, the 

modern strategy game shown in the screenshot of 

Figure 1. This is Battleground
™

 (Talonsoft
®
), a 

commercial wargame which simulates historical 

Napoleonic battles (see 

http://johntillersoftware.com/NapoleonicB

attles.html), therefore focusing on the military 

aspects (rather than economic, diplomatic aspects 

treated extensively in other strategy games). 
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Figure 1: Battleground™ is a turn-based stochastic game that 

simulates the confrontation between two armies at historical 

battlefields. 
 

Because of its parallel nature (at each turn, all military 

units can act simultaneously), the complexity of action 

selection for each side, seen from a centralized 

perspective, grows exponentially with the number of 

units it controls (if there are U units, each with A 

possible actions, the resulting branching factor is A
U
). 

This property is well known in the multiagent systems 

literature, including in video-game applications 

[Guestrin et al. 2002; Guestrin et al. 2003]. Regarding 

the configuration of a simple Battleground
™

 scenario, 

the two armies contain respectively 101 and 83 front-

line units that are placed on a small map of 35x20 

hexagons. The combinatory explosion leads to a huge 

state space in the order of 10
2000

 and a maneuver action 

space of 10
180

 concerning one army and of 10
150

 

concerning the other. As a result, a distributed 

approach to the design of a Game AI for this type of 

game is a natural and reasonable candidate to be 

explored. However, distributing action selection to the 

level of individual units (which are numerous – in the 

hundreds, heterogeneous – infantry, cavalry, artillery 

with dynamic size and health, and evolve in a complex 

environment – thousands of hexagons each 

characterized by a type of terrain, altitude, etc.) leads 

to another problem well studied in the multiagent 

community: how to coordinate the individual choices 

from all units. So that, though taken in a distributed 

and autonomous manner, individual decisions lead to a 

meaningful collective behavior. 
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The coordination problem is studied from many 

angles in the multiagent community, and we refer here 

especially to the classification proposed in [Claus and 

Boutilier 1998], which introduces learning as one 

approach to obtain or improve coordination between 

agents in a multiagent system. Since a game 

environment provides a straightforward (initially) 

reward signal – the game score, within game or at end-

game situations, as well as the ability to repeat a 

number of learning episodes relatively easily, we have 

chosen to study the use of reinforcement learning (RL) 

[Sutton and Barto 1998] on this task. 

 

RL is specifically designed for learning behavioral 

strategies by maximizing a cumulative reward from the 

interaction with the environment. A natural question is 

to ask whether state-of-the-art RL techniques are up to 

the job of tackling the complexity of learning for the 

type of games we are interested in. Results obtained by 

innovative systems such as TD-Gammon [Tesauro 

2002] would seem encouraging as they have pushed 

back the limitations of the approach. However, it turns 

out, as illustrated by the Battleground
™

 simple scenario 

given above, that the problem we want to tackle dwarfs 

in complexity the ones typically addressed by the RL 

community. 

 

Taking some inspiration from human intelligence, 

we describe in this paper an abstraction method that 

takes into account a hierarchical decision-making 

structure to design proper and tractable state and action 

representations for RL in a largely automated fashion. 

We integrate this new abstraction method with state-of-

the-art RL techniques to construct a system that is able 

to design automatically efficient strategies for modern 

strategy games. 

 

We apply our approach to the Battleground
™

 game 

and compare experimentally various setups of our 

learning agents with baselines techniques (script-based 

agent and random agent) and a human player. In order 

to explain these evaluations, we address briefly other 

challenging issues which had to be tackled, such as the 

design of a learning scenario, communication and 

coordination within the multiagent system, the design 

of adequate reward functions, and generalization 

through function approximation. 

 

The results show that our system fairs very well 

against the existing commercial script-based solution. 

We conclude by outlining possible improvements and 

directions for future work. 

 

2. Background 
 

A promising approach for reducing complexity in 

learning problems consists in simplifying the level of 

detail of the information available [Giunchiglia and 

Walsh 1992; Blum and Langley 1997; Saitta and 

Zucker 2001]. There are several possibilities to change 

from a representation with full information to one at an 

abstracted level. One can, for example, remove 

irrelevant variables, generalize information, add 

constraints, etc. [Jong and Stone 2005; Li et al. 2006]. 

 

Knowledge about the domain such as military 

decision-making and spatial information is of crucial 

importance in the case of modern strategy games 

because it can guide us toward the purpose of 

abstraction [Corruble et al. 2002]. In this context, 

relevant information can be obtained by techniques 

known as terrain analysis. 

 

Terrain analysis is a process that provides 

guidelines for gathering, analysis, and organization of 

intelligence, identifying areas of the battlefield that 

affect courses of action [Grindle et al. 2004]. It 

interprets natural and man-made features of a 

geographic area to determine their effects on military 

strategic and tactical maneuvers. Strategic maneuver is 

considered to be high-level decision-making where 

leaders can obtain a broad overview of the battlefield. 

Tactical analysis provides the leader with a much more 

detailed view of specific areas-of-interest on the 

battlefield. 

 

Understanding terrain is especially useful because 

we can identify ideal locations for scouting parties, 

best line of sight/fire and also the ability to hide troops 

and equipment. These are hints that can be employed 

in the decision-making system indicating tactical 

suitability of the various locations for both attacks and 

defenses. The importance of the study and analysis of 

terrain has been recognized for hundreds of years in 

military science. Moreover, its importance has been 

recently recognized in the domain of modern strategy 

games [Forbus et al. 2001; Rabin 2006]. 

 

3. Abstraction Method Based on 
Terrain Analysis 
 

In this section, we describe a new abstraction method 

based on terrain analysis that makes use of a 

hierarchical decision-making structure to adapt semi-

automatically the level of detail of the state and action 

representations to the hierarchical level of the decision 

being made. Differently to standard hierarchical RL 

approaches such as MaxQ or HexQ [Dietterich 2000], 

our approach does not decompose agent tasks into 

subtasks. Instead of this, each agent always perform a 

unique kind of task by treating state and action spaces 

in an appropriate level of granularity. 

 

3.1 Hierarchical Structure of the Decision-
Making 
 

In modern strategy games as indeed in many real-life 

situations, one can see that the military hierarchical 

structure of command and control is a natural 

candidate for the decomposition of the decision-

making process. In this structure, terminal nodes 

correspond to units placed on the terrain and non-
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terminal nodes represent the leaders of the groups of 

units (see Figure 2). The ability for decision-making is 

distributed across specific groups. Subordinate leaders 

receive orders from their superiors and use their 

domain-specific knowledge and local information to 

make their own decisions. 

 

A main advantage of this structure is that it allows 

high-level leaders (who do not act directly on the 

environment because they cannot carry out physical 

actions) to make strategic decisions to accomplish 

high-level goals, only considering information at an 

appropriate level of detail (in this case, little detail but 

wide scope). It reduces the complexity of learning for 

each group of agents. However, the number of low-

level units to be controlled and the intensity of 

interaction between their strategies increase 

dramatically when learning strategies for deeper levels 

of the hierarchy. This requires some higher degree of 

coordination between the leaders in order to provide a 

mechanism in which the units work as a team [Claus 

and Boutilier 1998; Guestrin et al. 2002]. 

 

Figure 2: Hierarchical decomposition of an army in 

specialized groups of agents. 
 

In this context, hierarchies can provide 

coordination mechanisms by modeling communication 

between agents as follows: (1) vertically, between a 

high-level agent and its subordinates (goal sharing); 

and (2) horizontally, between agents of the same group 

(intra-group communication). The challenge then 

consists in establishing a trade-off between the 

individual goal taken by each agent and the goal of its 

group. 

 

3.2 Abstraction of State and Action Spaces 
 

Strategic decision-making at the high levels of the 

hierarchy requires adequate state and action 

representations. For this purpose, we take some 

inspiration from terrain analysis techniques to propose 

a new algorithm for the abstraction of state and action 

spaces that integrates terrain data together with 

dynamic battlefield information. The high-level 

environment representation generated is used by 

leaders in order to get only the information they need 

to make relevant decisions. The abstraction process is 

executed in two main steps: abstraction of the action 

space and abstraction of the state space. 

3.2.1 Abstraction of the Action Space 
 

Tactical action spaces (lower-level actions used for 

tactical decisions) of modern strategy games are often 

composed of the combination of two main variables: a 

location on the map and an elementary task to 

accomplish at this location. In order to adapt tactical 

action spaces at the strategic level, we abstract both 

variables. On one hand, we gather manually a certain 

number of elementary tasks (fire, turn, move, etc.) to 

define high-level tasks (monitoring, exploration, 

occupation, concentrated attack, etc.). 

 

On the other hand, our algorithm explores 

automatically the map by a rule-based approach in 

order to find key locations that reduce considerably the 

size of the action space. A key location is any position 

on the map whose control is likely to give distinct 

military advantage to the force that holds it. It could be 

a piece of high ground with good observation and 

fields of fire, transportation choke-points such as a 

water crossing, mountain gap, or road junction, or even 

dense woods or rivers that anchor the flank of a 

conflict line. It can be controlled by fire, obstacles, or 

the relative positioning of friendly forces and is often 

selected for conflict positions or objectives. 

 

Finding key locations is then fundamental since it 

can let the leader to make inferences about possible 

degree of vulnerability of friendly forces to enemy 

attacks. Figure 3 illustrates the identification of key 

locations on a real map to demonstrate the generality of 

our algorithm. As a result, once high-level tasks are 

given and key locations are identified, they are 

combined to build the strategic action space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Identification of key locations on a real map. 

Bridges on the river, the castle on the top of the hill, the top 

of the mountain, large crossroads in the center town, 

crossroads of access for the city, are all good examples of 

key locations. 
 

3.2.2 Abstraction of the State Space 
 

State spaces of modern strategy games are composed 

of the combination of a number of variables which are 

used to represent full game situations. Our proposal for 
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abstracting them consists, on one hand, in generating a 

summary of the state of all units belonging to a group 

in the hierarchy. This summary can be composed of 

relevant variables such as center of mass, size, health, 

quality, mobility and ammunition of the group. 

 

On the other hand, the key locations identified 

previously in the abstraction of action space are used as 

seeds to be expanded progressively by adding 

neighboring locations until a full partitioning of the 

map into strategic zones has been reached. A strategic 

zone is a region of the map where intelligence 

collection efforts must be focused. It is associated to a 

category of mobility (easy mobility, restricted mobility 

or no mobility) according to the terrain nature. Figure 4 

illustrates strategic zones generated using as seeds the 

key locations identified on the real map of Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Identification of key locations and strategic zones 

on a real map. The strategic zones are generated by 

propagating key locations in order to aggregate adjacent 

locations, taking into account physical constraints of the 

terrain. 
 

The state representation is composed of two main 

datasets: a summarized description of a group of units 

for which an order is under consideration, and a 

summarized description of friendly and enemy forces 

for each strategic zone on the map. 

 

3.3 Algorithm Definition 
 

Our algorithm (see Figure 5) takes into account some 

features of a given scenario: objectives, fixed objects 

(ease of access and obstacles), and a two-dimensional 

map topography. In addition to this, it takes also as 

input a set of players, a set of high-level tasks, a set of 

variables describing the situation of a group, and a set 

of variables describing the situation of units placed on 

strategic zones. The algorithm is composed of four 

steps as described below: 

 

 Identification of key locations: locations, 

fixed objects and objectives on the map are 

evaluated by the isRelevantLocation function 

to identify those which are likely to give 

advantage to front-line units. Two factors can 

render key locations: how a unit wants to use 

it, and whether his enemy can use it to defeat 

the unit. So, a position is identified as key 

location when it is recognized that the task 

depends upon its seizure or retention. 

Examples include urban areas, lines of 

communication and supply, topography, 

drainage characteristics, bridges, choke 

points, high ground, key military installations, 

and supply routes. 

 Identification of strategic zones: this step is 

divided into three sub-steps. First of all, 

locations whose associated terrain is of 

restricted mobility are identified on the map 

by the isTerrainOfRestrictedMobility 

function in order to generate preliminary 

strategic zones. Each non-aggregated location 

of this terrain type is used as seeds to create a 

new strategic zone and is then expanded 

progressively by adding adjacent locations of 

the same terrain type using the 

propZoneSameTerrain propagation recursive 

function. After this, the key locations 

identified in the previous step are also used as 

seeds which are expanded progressively by 

adding non-aggregated adjacent locations 

using the propZones function until a full 

partitioning of the map into strategic zones 

has been reached. The expansion rate of each 

location takes into account the relation 

between two factors: a minimum threshold 

and an accumulated weight of aggregation. 

The minimum threshold is a parameter that 

must be achieved for allowing the addition of 

an adjacent location to a zone. It is computed 

taking into account several criteria: the 

movement cost of the terrain type, the 

eventual obstacles and ease of access, as well 

as the variation of altitude. The accumulated 

weight of aggregation is a parameter that 

indicates the probability for adding a location 

to a zone. It is initialized to zero and it is 

reinforced after each aggregation failure. 

Finally, eventual “lost” strategic zones are 

created if there still are locations non-

aggregated on the map. The procedure stops 

when there is no more free locations on the 

map. All strategic zones created are then 

combined in a single list; 

 Fusion of strategic zones: strategic zones are 

evaluated by the fusionZones function to 

detect those in which size is relevant when 

compared to the map size. Small zones are 

absorbed by adjacent zones of larger 

boundary; 

 Generation of state and action spaces: a 

state representation is built based on the 

results of the three first steps, by a projection 

onto a predefined list of relevant variables 

describing the situation of a group and the 
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combination of three sets (strategic zones, 

variables describing the situation of units 

placed on each zone, and sides). An action 

representation is built based on the Cartesian 

product of high-level maneuvers and key 

locations. 
 

1:genStateActionRepresentation(Objectives,Objects,MapLocations, 
2:    Players, HighLevelTasks, GroupDescription, ZoneDescription) 

3: { 

4:    KeyLocations ←  

5:    StrategicZones ←  

6:    for all oi  (Objectives  Objects  MapLocations) do 

7:       if isRelevantLocation(oi) then 

8:          KeyLocations ← KeyLocations  {oi} 

9:          StrategicZones ← StrategicZones  {{oi}} 
10:     end if 

11:  end for 

12:  RestrictedZones ←  

13:  for all ti  MapLocations do 

14:     if isTerrainOfRestrictedMobility(ti) then 

15:        Zone ← {ti} 

16:        Zone ← propZoneSameTerrain( Zone, MapLocations ) 

17:        RestrictedZones ← RestrictedZones  {Zone} 
18:     end if 

19:  end for 

20:  StrategicZones ← propZones(StrategicZones, MapLocations) 

21:  LostZones ←  

22:  for all ti  MapLocations do 

23:     Zone ← {ti} 
24:     Zone ← propZoneSameTerrain( Zone, MapLocations ) 

25:     LostZones ← LostZones  {Zone} 

26:  end for 

27:  StrategicZones←StrategicZones  RestrictedZones LostZones 

28:  StrategicZones ← fusionZones( StrategicZones, MapLocations) 
29:  ActionRepresentation ← HighLevelTasks x KeyLocations 

30:  ZoneRepresentation←ZoneDescription x StrategicZones x Players 

31:  StateRepresentation ←GroupDescription  ZoneRepresentation 
32:  return ActionRepresentation and StateRepresentation 

33: } 

Figure 5: Sketch of algorithm for terrain analysis and 

abstraction of state and action spaces. 
 

3.4 Generating Representations for 
Battleground

™
 

 

In this section, we apply our abstraction method to 

Battleground
™

. For this purpose, we use the game 

scenario called Death in the Flèches, discussed 

previously in the introduction. It simulates a stage of 

the battle of Borodino (1812) between the French army 

of Napoleon and the Russian army of Kutuzov. 

 

To design a strategic action space, we choose five 

high-level tasks predefined for the commercial game: 

 

 Extreme attack: units attack in a more 

concentrated formation, with maximum 

stacking in each location; 

 Regular attack: units move so as to take a 

specified location; 

 Wait order: units stop movement; 

 Regular defend: units move so as to hold a 

specified location; 

 Extreme defend: units do not fall back until 

all of the units of the organization are no 

longer in good order. 

To design a strategic state space, we choose 8 

variables to describe the situation of groups and 2 

variables to describe the situation of units on each zone 

(see Figure 6). 

 

Group description (8 variables) 

 Center of mass (x, y) of the group on the map (2 

variables); 

 Artillery, cavalry, and infantry strength levels (3 

variables); 

 Fatigue, quality, and movement allowance levels (3 

variables). 

Strategic zone description (2 variables) 

 Unit strength and fatigue levels (2 variables) 
 

Figure 6: Variables chosen to describe the state of groups of 

units and zones. 
 

The execution of our algorithm of terrain analysis 

obtains as result 8 key locations and 6 strategic zones 

on the map (see Figure 7). So, a state representation 

composed of 32 variables arranged in two main 

datasets is built for the higher level of the hierarchy: 8 

variables for group description, and 24 variables for 

strategic zone description (2 description variables x 6 

strategic zones x 2 sides). In addition to this, high-level 

tasks are associated with key locations on the map to 

compose an abstracted action space of 33 strategic 

actions (4 high-level tasks x 8 key locations + Wait 

order). 

 

 

Figure 7: Our algorithm of terrain analysis identifies 8 key 

locations and 6 strategic zones on the map. 
 

Consequently, the complexity of the scenario is 

considerably reduced to a state space in the order of 

10
82

 and an action space composed of 33 actions for 

each leader. This is a significant achievement when 

compared to the original problem complexity presented 

in the introduction (state and action spaces in the order 

of 10
2000

 and 10
180

 respectively). Yet the real value of 

this achievement can only be measured on the basis of 

the performance of the whole system. This is what we 

aim for in the experimental evaluation presented in the 

next section. 

 

 

1 

2 

3 

4 
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4. Experiments 
 

In this section, we present experiments using our 

approach applied to Battleground
™

 to evaluate the 

performance of the whole system. For this purpose, we 

address in the next subsection a number of crucial 

technical issues in order to obtain a fully functional 

system. 

 

4.1 Learning Setup 
 

In order to speed up learning, we set up our system 

with a particular learning scenario, a function 

approximator for generalization and a communication 

method to favor coordination among agents. These 

points are discussed below before coming to the 

experimental results themselves. 

 

4.1.1 Learning Scenario 
 

The learning scenario is configured according to a 

particular bootstrap mechanism proposed by Madeira 

[2004] that is able to accelerate the reinforcement 

learning procedure. This mechanism generates 

valuable training data as it leaves only a small part of 

the hierarchical decision-making to be learned at any 

given time. In effect, we configure our learning system 

(called learning AI) to control and learning only the 

decision-making at the higher level of the French army, 

giving strategic orders to its subordinates. The script-

based decision-making system included in the 

Battleground
™

 game (called bootstrap AI) is used to 

control the Russian army, and the lower levels of the 

French army according to the orders flowing down 

from the level controlled by the learning AI. We also 

test in a second stage the situation where roles are 

reversed, control and learning a Russian strategy 

against the French. This is relevant as the battle is not 

symmetrical, since the French army is attacking (his 

goal is to conquer some locations controlled by the 

Russian army on the start of the game) and the Russian 

one is defending (his goal is to defend some locations 

from the French army attack). 

 

4.1.2 Non-linear Function Approximation 
 

In order to generalize between similar situations, a 

three-layer artificial neural network trained by the error 

back-propagation algorithm is employed. It is 

composed of 32 inputs v1,v2,…,v32 corresponding to the 

variables of the state representation s=(v1,v2,…,v32), 

and 33 outputs Q(s,a1),Q(s,a2),…,Q(s,a33) 

corresponding to the cumulative rewards associated 

with the action space A={a1,a2,…,a33}. Cumulative 

rewards of selected actions are updated incrementally 

at each game tour by the gradient descent Sarsa(λ) 

algorithm [Sutton and Barto 1998]. The output layer 

propagates values by an ordinary linear function. The 

hidden layer contains 80 neurons, propagates values by 

a hyperbolic tangent function, and uses a learning rate 

noutputhidden   , where n is the number of neurons of 

the output layer. Sarsa(λ) is tuned so as to use a 

learning rate αoutput=0.05 decaying by 10% at every 

evaluation, a constant exploration rate ε=0.01, and an 

eligibility trace λ=0.7. 

 

4.1.3 Coordination and Reward Function 
 

We tackle the issue of coordination experimentally by 

testing two hypotheses: (1) Can some form of limited 

communications between leaders of the same 

hierarchical level improve performance? In the RL 

framework, increased communications means a more 

complex state space. So we study this trade-off here, 

by including in the state description the orders (high-

level tasks combined with keys locations on the map) 

given to same-level leaders in the previous game turn. 

Three leaders that are present in the higher level of the 

scenario used in this experiment share their previous 

decisions with them; (2) How best can each leader be 

rewarded for its order? Two simple options are 

considered: on one hand, a global reward function for 

which each leader is rewarded based on the game 

points scored in the current turn by his entire army (the 

score results from gaining control of objectives and 

from the losses inflicted and received); on the other 

hand, a local reward function where a leader is 

rewarded for the score points that only the units it 

controls obtained (taking in account objectives 

conquered by its group, as well as losses suffered by its 

group or inflicted on the opponent). The reward signal 

r is computed at the end of each turn t as the change in 

the game score between previous and current game 

turns: 

ttt scorescorer   11
 

 

where scoret+1 and scoret are computed in function of 

conquered and lost objectives, and opponent and own 

army losses by: 

 





t

k

kkkkt ownLessoppLesslostObjconqObjscore
0

)(  

 

4.2 Learning Results 
 

In this section, we present experimental results 

obtained when learning strategies for French and 

Russian armies in the context of the Death in the 

Flèches scenario. 

 
4.2.1 French Offense 
 

In this first experiment, our agents learn a behavioral 

strategy for the French army. Their goal is to maximize 

the score. Figure 8 shows the performance of four 

setups for the learning agents: with and without 

communication combined with global and local 

rewards. The learning agents have as opponent the 

bootstrap AI. The bootstrap AI is used both as 

opponent and support to leave only a small part of the 

decision making to be learned at any given time. The 

learning AI takes control over a level of the French 
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side, while the bootstrap AI takes control of 

subordinate levels, in addition to all levels of the 

opponent. 

 
Evaluation Results of Learning Agents (French army on the attack)
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Figure 8: Performance evolution for the French army 

comparing learning agents with and without communication, 

with local and global reward, and baselines (random, 

bootstrap AI, human). 
 

The performance achieved with these setups is 

compared with that of the bootstrap AI, of the random 

agent and of the human player. In the learning curves 

provided, each point corresponds to one evaluation 

phase whose value is the average score over the 50 

corresponding episodes. We observe the following 

results: 

 

 Several setups achieve the same performance 

as the bootstrap AI in only a few thousands of 

episodes. They correspond to the ones using a 

global reward (see normalized score in Figure 

9). The strategy learned with these setups 

consists in undertaking a frontal attack and 

circumvent the territory dominated by the 

opponent through the edges of the forest in 

order to capture the most important objective 

(see Figure 10); 

 Communication of orders between agents has 

little impact on the convergence point, but 

seems to help to get a smoother progression of 

performance; 

 Local rewards do not lead to good results in 

these experiments. They lead to an average 

performance (somewhere between random 

and bootstrap AI) with communication was 

present, and to a very poor one without 

communication. The strategy learned by this 

setup shows that the agents do not cooperate 

in the execution of their tasks. A group of 

units prefers to beat a retreat instead of 

helping the partner in the combat against 

Russians since it undergoes heavy losses and 

never conquer scenario objectives. 

Consequently, the partner alone becomes 

hopeless against the strength and the 

privileged location of the Russian army. 

 

Evaluation Results of Learning Agents (French army on the attack)
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Figure 9: Normalized scores for all setups of learning agents 

controlling the French army and baselines agents (random, 

bootstrap AI, human). 
 

These results are very interesting and significant 

because they show us that a global reward is the key to 

the attack winning when controlling the high level of 

the hierarchy. This makes some sense in the context of 

a 19
th

 century military offensive which generally 

entailed at some point sacrificing numbers of soldiers 

in headlong charges (fresh units, a reserve, would 

eventually, at a later stage,  overcome the defenders), a 

behavior which would be naturally discouraged by a 

local (selfish) reward. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10: General outline of the strategy learned for the 

French army in the Death in the Flèches scenario. French 

units are blue and Russian units are green (several units can 

occupy the same location). Red circles are scenario 

objectives. 
 

4.2.2 Russian Defense 
 

In this second experiment, we reverse the roles by 

asking our agents to learn a strategy for the Russian 

army. The goal for the Russian side is to minimize the 

game score. Hence, the lowest curve is the best one. 

Figure 11 shows the performance of four setups for the 

learning agents: with and without communication 

combined with global and local rewards. The learning 

agents always have as opponent the bootstrap AI. We 

observe the following results: 
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Evaluation Results of Learning Agents (Russian army on the defense)
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Figure 11: Performance evolution for the Russian army 

comparing learning agents with and without communication, 

with local and global reward, and baselines (random, 

bootstrap AI, human). Russian goal is to achieve the lowest 

game score. 
 

 

 All setups obtain interesting performance (at 

least the same level as the bootstrap AI and 

the human player) with more stable curves 

than the attacker side (see normalized score in 

Figure 12). In Battleground, the defender side 

is always placed on a privileged location. So, 

defending strategies seem simpler as a result 

of the relatively low mobility of the simulated 

armies. It does not seem strange that the 

learning agents in the defensive obtain better 

performance than in the offensive. 

 Communication of orders between agents 

increases performance significantly. It helps 

to get a smoother progression. Setups based 

on communication achieve excellent results, 

outperforming by far the bootstrap AI and the 

human player; 

 A key difference here is that local rewards are 

not penalizing. This seems to indicate that it is 

not as harmful to the army if agents follow a 

selfish strategy while on a defensive position. 
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Figure 12: Normalized scores for all setups of learning agents 

controlling the Russian army and baselines agents (random, 

bootstrap AI, human). 

 

5. Related Work 
 

We can mention here some works that have applied 

different approaches to strategy games environments. 

A number of researchers have focused on single 

algorithms to a single aspect of the games. Guestrin et 

al. [2003] proposed RMDP to generalize strategic 

plans within the framework of multiple environments. 

Marthi et al. [2005] proposed Concurrent ALisp, a 

language that provides a natural manner to specify 

behavior of the multithreaded systems. Kovarsky and 

Buro [2006] used PDDL to explore the tactical 

decisions involved in building orders. Chan et al. 

[2007] provided planning mechanisms specialized to 

resource production. Balla and Fern [2009] proposed 

an adaptation of the UCT planning algorithm to the 

domain of strategy games. 

 

Other researchers have been interested in 

approaches capable of playing entire games. Muñoz-

Avila and Aha [2004] used HTN planning. Ponsen et 

al. [2006] proposed ESTG, a methodology based on 

evolutionary learning for automatically generating 

tactics with Dynamic Scripting. Sharma et al. [2007] 

proposed CARL, a multilayered architecture that 

combines Case-Based Reasoning (CBR) and RL to 

achieve transfer while playing against the Game AI 

across a variety of scenarios. McCoy and Mateas 

[2008] integrated multiple specialist components by 

incorporating expert high-level strategic knowledge. 

Wintermute et al. [2007] proposed SORTS, a 

middleware that interfaces the ORTS game engine to 

the Soar cognitive architecture. Navarro and Corruble 

[2009] employed dynamic tactical points and specific 

training scenarios for the learning AI for ORTS. 

Langley et al. [2005], Nason and Laird [2005], 

Hinricks and Forbus [2007], and Wilson et al. [2008] 

works have applied transfer learning in real-time game 

environments using Markov logic networks and 

bayesian techniques. 

 

6. Conclusion and Future Work 
 

In this paper, we described a multi-level abstraction 

method based on terrain analysis that adapts semi-

automatically the level of detail of the state and action 

representations to a distributed hierarchical decision-

making structure. This hierarchical structure does not 

require either a strategy set or an evaluation function, 

but rather only a set of abstract states and actions that 

are provided along with the ability to simulate their 

effects. We combined this method with RL techniques 

and an innovative learning scenario to construct a 

learning system for the automatic design of behavioral 

strategies that can tackle the complexity of modern 

strategy games. 

 

 The results obtained are very encouraging since our 

decision-making system achieves very good 

performance when controlling the higher level of the 
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hierarchy and compared with the scripted-based 

commercial AI. Only a few thousands of learning 

episodes were needed to achieve these results. This 

confirms the effectiveness of our approach, the 

coherence of the state and action representations 

designed, and validate in practice that it is possible to 

improve the performance of a system by learning only 

a part of a global strategy [Stone 2000]. 

 

We studied several setups for the learning agents by 

combining coordination and rewarding strategies in the 

framework of the some Battleground scenarios. 

Encouraging initial results showed the importance of 

using some form of communication between agents of 

the same hierarchical level, and global rather than local 

reward functions when learning attack strategies. We 

are now studying in more detail the issue of 

coordination in order to experiment more developed 

techniques. 

 

More generally, we believe that terrain analysis is 

able to better support reinforcement learning in order 

to permit strategic reasoning and that our method has a 

relatively wide applicability and could be also used for 

serious games where multiple units act together on a 

map to achieve a common goal. Also the ideas and 

concepts presented here are not specific to games, and 

could be applied to most large multiagent simulations, 

especially when the agents are naturally organized in a 

form of hierarchical structure. 
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