
Combining Reinforcement Learning with a Multi-Level Abstraction
Method to Design a Powerful Game AI

Charles Madeira Vincent Corruble

LIP6, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France

Abstract

This paper investigates the design of a challenging

Game AI for a modern strategy game, which can be

seen as a large-scale multiagent simulation of an

historical military confrontation. As an alternative to

the typical script-based approach used in industry, we

test an approach where military units and leaders,

organized in a hierarchy, learn to improve their

collective behavior through playing repeated games. In

order to allow the application of a reinforcement

learning framework at each level of this complex

hierarchical decision-making structure, we propose an

abstraction mechanism that adapts semi-automatically

the level of detail of the state and action

representations to the level of the agent. We also study

specifically various reward signals as well as inter-

agent communication setups and show their impact on

the Game AI performance, distinctively in offensive

and defensive modes. The resulting Game AI achieves

very good performance when compared with the

existing commercial script-based solution.

Keywords: reinforcement learning, strategic decision-

making, modern strategy games, abstraction, terrain

analysis, multiagent systems.

Authors’ contact:
charlesandrye@gmail.com

vincent.corruble@lip6.fr

1. Introduction

Modern strategy games constitute large-scale

multiagent simulations that share many characteristics

with real-world problems. Specifically, they reach high

levels of complexity in terms of the sizes of state and

action spaces, and their environments are partially

observable and stochastic. For these games, it is

generally recognized that the design of challenging

automated opponents (called game AI) is an important

issue [Buro 2003]. The most common approach to this

problem in the game industry is to use ad-hoc

techniques with hand-crafted knowledge, although this

approach is tedious and usually leads to low-quality

opponents [Nareyek 2004; Rabin 2003; Rabin 2006].

 Let us consider, as a motivating example, the

modern strategy game shown in the screenshot of

Figure 1. This is Battleground
™

 (Talonsoft
®
), a

commercial wargame which simulates historical

Napoleonic battles (see

http://johntillersoftware.com/NapoleonicB

attles.html), therefore focusing on the military

aspects (rather than economic, diplomatic aspects

treated extensively in other strategy games).

friendly

artillery

friendly

skirmisher

friendly

infantry
enemy infantry

friendly cavalry
forest

embankment

rendered

scene

Figure 1: Battleground™ is a turn-based stochastic game that

simulates the confrontation between two armies at historical

battlefields.

Because of its parallel nature (at each turn, all military

units can act simultaneously), the complexity of action

selection for each side, seen from a centralized

perspective, grows exponentially with the number of

units it controls (if there are U units, each with A

possible actions, the resulting branching factor is A
U
).

This property is well known in the multiagent systems

literature, including in video-game applications

[Guestrin et al. 2002; Guestrin et al. 2003]. Regarding

the configuration of a simple Battleground
™

 scenario,

the two armies contain respectively 101 and 83 front-

line units that are placed on a small map of 35x20

hexagons. The combinatory explosion leads to a huge

state space in the order of 10
2000

 and a maneuver action

space of 10
180

 concerning one army and of 10
150

concerning the other. As a result, a distributed

approach to the design of a Game AI for this type of

game is a natural and reasonable candidate to be

explored. However, distributing action selection to the

level of individual units (which are numerous – in the

hundreds, heterogeneous – infantry, cavalry, artillery

with dynamic size and health, and evolve in a complex

environment – thousands of hexagons each

characterized by a type of terrain, altitude, etc.) leads

to another problem well studied in the multiagent

community: how to coordinate the individual choices

from all units. So that, though taken in a distributed

and autonomous manner, individual decisions lead to a

meaningful collective behavior.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

http://johntillersoftware.com/NapoleonicBattles.html
http://johntillersoftware.com/NapoleonicBattles.html

The coordination problem is studied from many

angles in the multiagent community, and we refer here

especially to the classification proposed in [Claus and

Boutilier 1998], which introduces learning as one

approach to obtain or improve coordination between

agents in a multiagent system. Since a game

environment provides a straightforward (initially)

reward signal – the game score, within game or at end-

game situations, as well as the ability to repeat a

number of learning episodes relatively easily, we have

chosen to study the use of reinforcement learning (RL)

[Sutton and Barto 1998] on this task.

RL is specifically designed for learning behavioral

strategies by maximizing a cumulative reward from the

interaction with the environment. A natural question is

to ask whether state-of-the-art RL techniques are up to

the job of tackling the complexity of learning for the

type of games we are interested in. Results obtained by

innovative systems such as TD-Gammon [Tesauro

2002] would seem encouraging as they have pushed

back the limitations of the approach. However, it turns

out, as illustrated by the Battleground
™

 simple scenario

given above, that the problem we want to tackle dwarfs

in complexity the ones typically addressed by the RL

community.

Taking some inspiration from human intelligence,

we describe in this paper an abstraction method that

takes into account a hierarchical decision-making

structure to design proper and tractable state and action

representations for RL in a largely automated fashion.

We integrate this new abstraction method with state-of-

the-art RL techniques to construct a system that is able

to design automatically efficient strategies for modern

strategy games.

We apply our approach to the Battleground
™

 game

and compare experimentally various setups of our

learning agents with baselines techniques (script-based

agent and random agent) and a human player. In order

to explain these evaluations, we address briefly other

challenging issues which had to be tackled, such as the

design of a learning scenario, communication and

coordination within the multiagent system, the design

of adequate reward functions, and generalization

through function approximation.

The results show that our system fairs very well

against the existing commercial script-based solution.

We conclude by outlining possible improvements and

directions for future work.

2. Background

A promising approach for reducing complexity in

learning problems consists in simplifying the level of

detail of the information available [Giunchiglia and

Walsh 1992; Blum and Langley 1997; Saitta and

Zucker 2001]. There are several possibilities to change

from a representation with full information to one at an

abstracted level. One can, for example, remove

irrelevant variables, generalize information, add

constraints, etc. [Jong and Stone 2005; Li et al. 2006].

Knowledge about the domain such as military

decision-making and spatial information is of crucial

importance in the case of modern strategy games

because it can guide us toward the purpose of

abstraction [Corruble et al. 2002]. In this context,

relevant information can be obtained by techniques

known as terrain analysis.

Terrain analysis is a process that provides

guidelines for gathering, analysis, and organization of

intelligence, identifying areas of the battlefield that

affect courses of action [Grindle et al. 2004]. It

interprets natural and man-made features of a

geographic area to determine their effects on military

strategic and tactical maneuvers. Strategic maneuver is

considered to be high-level decision-making where

leaders can obtain a broad overview of the battlefield.

Tactical analysis provides the leader with a much more

detailed view of specific areas-of-interest on the

battlefield.

Understanding terrain is especially useful because

we can identify ideal locations for scouting parties,

best line of sight/fire and also the ability to hide troops

and equipment. These are hints that can be employed

in the decision-making system indicating tactical

suitability of the various locations for both attacks and

defenses. The importance of the study and analysis of

terrain has been recognized for hundreds of years in

military science. Moreover, its importance has been

recently recognized in the domain of modern strategy

games [Forbus et al. 2001; Rabin 2006].

3. Abstraction Method Based on
Terrain Analysis

In this section, we describe a new abstraction method

based on terrain analysis that makes use of a

hierarchical decision-making structure to adapt semi-

automatically the level of detail of the state and action

representations to the hierarchical level of the decision

being made. Differently to standard hierarchical RL

approaches such as MaxQ or HexQ [Dietterich 2000],

our approach does not decompose agent tasks into

subtasks. Instead of this, each agent always perform a

unique kind of task by treating state and action spaces

in an appropriate level of granularity.

3.1 Hierarchical Structure of the Decision-
Making

In modern strategy games as indeed in many real-life

situations, one can see that the military hierarchical

structure of command and control is a natural

candidate for the decomposition of the decision-

making process. In this structure, terminal nodes

correspond to units placed on the terrain and non-

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

Agent

Agent

Perception Action

Agent
Strategy

Long-term

objective

Tactic

Specific

action

Agent

Agent Agent Agent

Perception Action

Order Order

Order Order Order

Situation

Situation Situation

Intention

terminal nodes represent the leaders of the groups of

units (see Figure 2). The ability for decision-making is

distributed across specific groups. Subordinate leaders

receive orders from their superiors and use their

domain-specific knowledge and local information to

make their own decisions.

A main advantage of this structure is that it allows

high-level leaders (who do not act directly on the

environment because they cannot carry out physical

actions) to make strategic decisions to accomplish

high-level goals, only considering information at an

appropriate level of detail (in this case, little detail but

wide scope). It reduces the complexity of learning for

each group of agents. However, the number of low-

level units to be controlled and the intensity of

interaction between their strategies increase

dramatically when learning strategies for deeper levels

of the hierarchy. This requires some higher degree of

coordination between the leaders in order to provide a

mechanism in which the units work as a team [Claus

and Boutilier 1998; Guestrin et al. 2002].

Figure 2: Hierarchical decomposition of an army in

specialized groups of agents.

In this context, hierarchies can provide

coordination mechanisms by modeling communication

between agents as follows: (1) vertically, between a

high-level agent and its subordinates (goal sharing);

and (2) horizontally, between agents of the same group

(intra-group communication). The challenge then

consists in establishing a trade-off between the

individual goal taken by each agent and the goal of its

group.

3.2 Abstraction of State and Action Spaces

Strategic decision-making at the high levels of the

hierarchy requires adequate state and action

representations. For this purpose, we take some

inspiration from terrain analysis techniques to propose

a new algorithm for the abstraction of state and action

spaces that integrates terrain data together with

dynamic battlefield information. The high-level

environment representation generated is used by

leaders in order to get only the information they need

to make relevant decisions. The abstraction process is

executed in two main steps: abstraction of the action

space and abstraction of the state space.

3.2.1 Abstraction of the Action Space

Tactical action spaces (lower-level actions used for

tactical decisions) of modern strategy games are often

composed of the combination of two main variables: a

location on the map and an elementary task to

accomplish at this location. In order to adapt tactical

action spaces at the strategic level, we abstract both

variables. On one hand, we gather manually a certain

number of elementary tasks (fire, turn, move, etc.) to

define high-level tasks (monitoring, exploration,

occupation, concentrated attack, etc.).

On the other hand, our algorithm explores

automatically the map by a rule-based approach in

order to find key locations that reduce considerably the

size of the action space. A key location is any position

on the map whose control is likely to give distinct

military advantage to the force that holds it. It could be

a piece of high ground with good observation and

fields of fire, transportation choke-points such as a

water crossing, mountain gap, or road junction, or even

dense woods or rivers that anchor the flank of a

conflict line. It can be controlled by fire, obstacles, or

the relative positioning of friendly forces and is often

selected for conflict positions or objectives.

Finding key locations is then fundamental since it

can let the leader to make inferences about possible

degree of vulnerability of friendly forces to enemy

attacks. Figure 3 illustrates the identification of key

locations on a real map to demonstrate the generality of

our algorithm. As a result, once high-level tasks are

given and key locations are identified, they are

combined to build the strategic action space.

Figure 3: Identification of key locations on a real map.

Bridges on the river, the castle on the top of the hill, the top

of the mountain, large crossroads in the center town,

crossroads of access for the city, are all good examples of

key locations.

3.2.2 Abstraction of the State Space

State spaces of modern strategy games are composed

of the combination of a number of variables which are

used to represent full game situations. Our proposal for

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

abstracting them consists, on one hand, in generating a

summary of the state of all units belonging to a group

in the hierarchy. This summary can be composed of

relevant variables such as center of mass, size, health,

quality, mobility and ammunition of the group.

On the other hand, the key locations identified

previously in the abstraction of action space are used as

seeds to be expanded progressively by adding

neighboring locations until a full partitioning of the

map into strategic zones has been reached. A strategic

zone is a region of the map where intelligence

collection efforts must be focused. It is associated to a

category of mobility (easy mobility, restricted mobility

or no mobility) according to the terrain nature. Figure 4

illustrates strategic zones generated using as seeds the

key locations identified on the real map of Figure 3.

Figure 4: Identification of key locations and strategic zones

on a real map. The strategic zones are generated by

propagating key locations in order to aggregate adjacent

locations, taking into account physical constraints of the

terrain.

The state representation is composed of two main

datasets: a summarized description of a group of units

for which an order is under consideration, and a

summarized description of friendly and enemy forces

for each strategic zone on the map.

3.3 Algorithm Definition

Our algorithm (see Figure 5) takes into account some

features of a given scenario: objectives, fixed objects

(ease of access and obstacles), and a two-dimensional

map topography. In addition to this, it takes also as

input a set of players, a set of high-level tasks, a set of

variables describing the situation of a group, and a set

of variables describing the situation of units placed on

strategic zones. The algorithm is composed of four

steps as described below:

 Identification of key locations: locations,

fixed objects and objectives on the map are

evaluated by the isRelevantLocation function

to identify those which are likely to give

advantage to front-line units. Two factors can

render key locations: how a unit wants to use

it, and whether his enemy can use it to defeat

the unit. So, a position is identified as key

location when it is recognized that the task

depends upon its seizure or retention.

Examples include urban areas, lines of

communication and supply, topography,

drainage characteristics, bridges, choke

points, high ground, key military installations,

and supply routes.

 Identification of strategic zones: this step is

divided into three sub-steps. First of all,

locations whose associated terrain is of

restricted mobility are identified on the map

by the isTerrainOfRestrictedMobility

function in order to generate preliminary

strategic zones. Each non-aggregated location

of this terrain type is used as seeds to create a

new strategic zone and is then expanded

progressively by adding adjacent locations of

the same terrain type using the

propZoneSameTerrain propagation recursive

function. After this, the key locations

identified in the previous step are also used as

seeds which are expanded progressively by

adding non-aggregated adjacent locations

using the propZones function until a full

partitioning of the map into strategic zones

has been reached. The expansion rate of each

location takes into account the relation

between two factors: a minimum threshold

and an accumulated weight of aggregation.

The minimum threshold is a parameter that

must be achieved for allowing the addition of

an adjacent location to a zone. It is computed

taking into account several criteria: the

movement cost of the terrain type, the

eventual obstacles and ease of access, as well

as the variation of altitude. The accumulated

weight of aggregation is a parameter that

indicates the probability for adding a location

to a zone. It is initialized to zero and it is

reinforced after each aggregation failure.

Finally, eventual “lost” strategic zones are

created if there still are locations non-

aggregated on the map. The procedure stops

when there is no more free locations on the

map. All strategic zones created are then

combined in a single list;

 Fusion of strategic zones: strategic zones are

evaluated by the fusionZones function to

detect those in which size is relevant when

compared to the map size. Small zones are

absorbed by adjacent zones of larger

boundary;

 Generation of state and action spaces: a

state representation is built based on the

results of the three first steps, by a projection

onto a predefined list of relevant variables

describing the situation of a group and the

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

combination of three sets (strategic zones,

variables describing the situation of units

placed on each zone, and sides). An action

representation is built based on the Cartesian

product of high-level maneuvers and key

locations.

1:genStateActionRepresentation(Objectives,Objects,MapLocations,
2: Players, HighLevelTasks, GroupDescription, ZoneDescription)

3: {

4: KeyLocations ←

5: StrategicZones ←

6: for all oi (Objectives Objects MapLocations) do

7: if isRelevantLocation(oi) then

8: KeyLocations ← KeyLocations {oi}

9: StrategicZones ← StrategicZones {{oi}}
10: end if

11: end for

12: RestrictedZones ←

13: for all ti MapLocations do

14: if isTerrainOfRestrictedMobility(ti) then

15: Zone ← {ti}

16: Zone ← propZoneSameTerrain(Zone, MapLocations)

17: RestrictedZones ← RestrictedZones {Zone}
18: end if

19: end for

20: StrategicZones ← propZones(StrategicZones, MapLocations)

21: LostZones ←

22: for all ti MapLocations do

23: Zone ← {ti}
24: Zone ← propZoneSameTerrain(Zone, MapLocations)

25: LostZones ← LostZones {Zone}

26: end for

27: StrategicZones←StrategicZones RestrictedZones LostZones

28: StrategicZones ← fusionZones(StrategicZones, MapLocations)
29: ActionRepresentation ← HighLevelTasks x KeyLocations

30: ZoneRepresentation←ZoneDescription x StrategicZones x Players

31: StateRepresentation ←GroupDescription ZoneRepresentation
32: return ActionRepresentation and StateRepresentation

33: }

Figure 5: Sketch of algorithm for terrain analysis and

abstraction of state and action spaces.

3.4 Generating Representations for
Battleground

™

In this section, we apply our abstraction method to

Battleground
™

. For this purpose, we use the game

scenario called Death in the Flèches, discussed

previously in the introduction. It simulates a stage of

the battle of Borodino (1812) between the French army

of Napoleon and the Russian army of Kutuzov.

To design a strategic action space, we choose five

high-level tasks predefined for the commercial game:

 Extreme attack: units attack in a more

concentrated formation, with maximum

stacking in each location;

 Regular attack: units move so as to take a

specified location;

 Wait order: units stop movement;

 Regular defend: units move so as to hold a

specified location;

 Extreme defend: units do not fall back until

all of the units of the organization are no

longer in good order.

To design a strategic state space, we choose 8

variables to describe the situation of groups and 2

variables to describe the situation of units on each zone

(see Figure 6).

Group description (8 variables)

 Center of mass (x, y) of the group on the map (2

variables);

 Artillery, cavalry, and infantry strength levels (3

variables);

 Fatigue, quality, and movement allowance levels (3

variables).

Strategic zone description (2 variables)

 Unit strength and fatigue levels (2 variables)

Figure 6: Variables chosen to describe the state of groups of

units and zones.

The execution of our algorithm of terrain analysis

obtains as result 8 key locations and 6 strategic zones

on the map (see Figure 7). So, a state representation

composed of 32 variables arranged in two main

datasets is built for the higher level of the hierarchy: 8

variables for group description, and 24 variables for

strategic zone description (2 description variables x 6

strategic zones x 2 sides). In addition to this, high-level

tasks are associated with key locations on the map to

compose an abstracted action space of 33 strategic

actions (4 high-level tasks x 8 key locations + Wait

order).

Figure 7: Our algorithm of terrain analysis identifies 8 key

locations and 6 strategic zones on the map.

Consequently, the complexity of the scenario is

considerably reduced to a state space in the order of

10
82

 and an action space composed of 33 actions for

each leader. This is a significant achievement when

compared to the original problem complexity presented

in the introduction (state and action spaces in the order

of 10
2000

 and 10
180

 respectively). Yet the real value of

this achievement can only be measured on the basis of

the performance of the whole system. This is what we

aim for in the experimental evaluation presented in the

next section.

1

2

3

4

5

6

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5

4. Experiments

In this section, we present experiments using our

approach applied to Battleground
™

 to evaluate the

performance of the whole system. For this purpose, we

address in the next subsection a number of crucial

technical issues in order to obtain a fully functional

system.

4.1 Learning Setup

In order to speed up learning, we set up our system

with a particular learning scenario, a function

approximator for generalization and a communication

method to favor coordination among agents. These

points are discussed below before coming to the

experimental results themselves.

4.1.1 Learning Scenario

The learning scenario is configured according to a

particular bootstrap mechanism proposed by Madeira

[2004] that is able to accelerate the reinforcement

learning procedure. This mechanism generates

valuable training data as it leaves only a small part of

the hierarchical decision-making to be learned at any

given time. In effect, we configure our learning system

(called learning AI) to control and learning only the

decision-making at the higher level of the French army,

giving strategic orders to its subordinates. The script-

based decision-making system included in the

Battleground
™

 game (called bootstrap AI) is used to

control the Russian army, and the lower levels of the

French army according to the orders flowing down

from the level controlled by the learning AI. We also

test in a second stage the situation where roles are

reversed, control and learning a Russian strategy

against the French. This is relevant as the battle is not

symmetrical, since the French army is attacking (his

goal is to conquer some locations controlled by the

Russian army on the start of the game) and the Russian

one is defending (his goal is to defend some locations

from the French army attack).

4.1.2 Non-linear Function Approximation

In order to generalize between similar situations, a

three-layer artificial neural network trained by the error

back-propagation algorithm is employed. It is

composed of 32 inputs v1,v2,…,v32 corresponding to the

variables of the state representation s=(v1,v2,…,v32),

and 33 outputs Q(s,a1),Q(s,a2),…,Q(s,a33)

corresponding to the cumulative rewards associated

with the action space A={a1,a2,…,a33}. Cumulative

rewards of selected actions are updated incrementally

at each game tour by the gradient descent Sarsa(λ)

algorithm [Sutton and Barto 1998]. The output layer

propagates values by an ordinary linear function. The

hidden layer contains 80 neurons, propagates values by

a hyperbolic tangent function, and uses a learning rate

noutputhidden , where n is the number of neurons of

the output layer. Sarsa(λ) is tuned so as to use a

learning rate αoutput=0.05 decaying by 10% at every

evaluation, a constant exploration rate ε=0.01, and an

eligibility trace λ=0.7.

4.1.3 Coordination and Reward Function

We tackle the issue of coordination experimentally by

testing two hypotheses: (1) Can some form of limited

communications between leaders of the same

hierarchical level improve performance? In the RL

framework, increased communications means a more

complex state space. So we study this trade-off here,

by including in the state description the orders (high-

level tasks combined with keys locations on the map)

given to same-level leaders in the previous game turn.

Three leaders that are present in the higher level of the

scenario used in this experiment share their previous

decisions with them; (2) How best can each leader be

rewarded for its order? Two simple options are

considered: on one hand, a global reward function for

which each leader is rewarded based on the game

points scored in the current turn by his entire army (the

score results from gaining control of objectives and

from the losses inflicted and received); on the other

hand, a local reward function where a leader is

rewarded for the score points that only the units it

controls obtained (taking in account objectives

conquered by its group, as well as losses suffered by its

group or inflicted on the opponent). The reward signal

r is computed at the end of each turn t as the change in

the game score between previous and current game

turns:

ttt scorescorer 11

where scoret+1 and scoret are computed in function of

conquered and lost objectives, and opponent and own

army losses by:

t

k

kkkkt ownLessoppLesslostObjconqObjscore
0

)(

4.2 Learning Results

In this section, we present experimental results

obtained when learning strategies for French and

Russian armies in the context of the Death in the

Flèches scenario.

4.2.1 French Offense

In this first experiment, our agents learn a behavioral

strategy for the French army. Their goal is to maximize

the score. Figure 8 shows the performance of four

setups for the learning agents: with and without

communication combined with global and local

rewards. The learning agents have as opponent the

bootstrap AI. The bootstrap AI is used both as

opponent and support to leave only a small part of the

decision making to be learned at any given time. The

learning AI takes control over a level of the French

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6

side, while the bootstrap AI takes control of

subordinate levels, in addition to all levels of the

opponent.

Evaluation Results of Learning Agents (French army on the attack)

-400

-300

-200

-100

0

100

200

300

400

500

0
50

0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

Number of Learning Episodes

A
v
e
ra

g
e
 S

c
o

re
 (

5
0
:1

)

Random Bootstrap
Human No communication and global reward
Communication and global reward No communication and local reward
Communication and local reward

Figure 8: Performance evolution for the French army

comparing learning agents with and without communication,

with local and global reward, and baselines (random,

bootstrap AI, human).

The performance achieved with these setups is

compared with that of the bootstrap AI, of the random

agent and of the human player. In the learning curves

provided, each point corresponds to one evaluation

phase whose value is the average score over the 50

corresponding episodes. We observe the following

results:

 Several setups achieve the same performance

as the bootstrap AI in only a few thousands of

episodes. They correspond to the ones using a

global reward (see normalized score in Figure

9). The strategy learned with these setups

consists in undertaking a frontal attack and

circumvent the territory dominated by the

opponent through the edges of the forest in

order to capture the most important objective

(see Figure 10);

 Communication of orders between agents has

little impact on the convergence point, but

seems to help to get a smoother progression of

performance;

 Local rewards do not lead to good results in

these experiments. They lead to an average

performance (somewhere between random

and bootstrap AI) with communication was

present, and to a very poor one without

communication. The strategy learned by this

setup shows that the agents do not cooperate

in the execution of their tasks. A group of

units prefers to beat a retreat instead of

helping the partner in the combat against

Russians since it undergoes heavy losses and

never conquer scenario objectives.

Consequently, the partner alone becomes

hopeless against the strength and the

privileged location of the Russian army.

Evaluation Results of Learning Agents (French army on the attack)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Different setups of agents

N
o

rm
a
li
z
e
d

 S
c
o

re

Random Bootstrap
Human No communication and global reward
Communication and global reward No communication and local reward
Communication and local reward

Figure 9: Normalized scores for all setups of learning agents

controlling the French army and baselines agents (random,

bootstrap AI, human).

These results are very interesting and significant

because they show us that a global reward is the key to

the attack winning when controlling the high level of

the hierarchy. This makes some sense in the context of

a 19
th

 century military offensive which generally

entailed at some point sacrificing numbers of soldiers

in headlong charges (fresh units, a reserve, would

eventually, at a later stage, overcome the defenders), a

behavior which would be naturally discouraged by a

local (selfish) reward.

Figure 10: General outline of the strategy learned for the

French army in the Death in the Flèches scenario. French

units are blue and Russian units are green (several units can

occupy the same location). Red circles are scenario

objectives.

4.2.2 Russian Defense

In this second experiment, we reverse the roles by

asking our agents to learn a strategy for the Russian

army. The goal for the Russian side is to minimize the

game score. Hence, the lowest curve is the best one.

Figure 11 shows the performance of four setups for the

learning agents: with and without communication

combined with global and local rewards. The learning

agents always have as opponent the bootstrap AI. We

observe the following results:

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7

Evaluation Results of Learning Agents (Russian army on the defense)

100

200

300

400

500

600

700

800

0
50

0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

Number of Learning Episodes

A
v
e
ra

g
e
 S

c
o

re
 (

5
0
:1

)

Random Bootstrap
Human No communication and global reward
Communication and global reward No communication and local reward
Communication and local reward

Figure 11: Performance evolution for the Russian army

comparing learning agents with and without communication,

with local and global reward, and baselines (random,

bootstrap AI, human). Russian goal is to achieve the lowest

game score.

 All setups obtain interesting performance (at

least the same level as the bootstrap AI and

the human player) with more stable curves

than the attacker side (see normalized score in

Figure 12). In Battleground, the defender side

is always placed on a privileged location. So,

defending strategies seem simpler as a result

of the relatively low mobility of the simulated

armies. It does not seem strange that the

learning agents in the defensive obtain better

performance than in the offensive.

 Communication of orders between agents

increases performance significantly. It helps

to get a smoother progression. Setups based

on communication achieve excellent results,

outperforming by far the bootstrap AI and the

human player;

 A key difference here is that local rewards are

not penalizing. This seems to indicate that it is

not as harmful to the army if agents follow a

selfish strategy while on a defensive position.

Evaluation Results of Learning Agents (Russian army on the defense)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Different setups of agents

N
o

rm
a
li
z
e
d

 S
c
o

re

Random Bootstrap
Human No communication and global reward
Communication and global reward No communication and local reward
Communication and local reward

Figure 12: Normalized scores for all setups of learning agents

controlling the Russian army and baselines agents (random,

bootstrap AI, human).

5. Related Work

We can mention here some works that have applied

different approaches to strategy games environments.

A number of researchers have focused on single

algorithms to a single aspect of the games. Guestrin et

al. [2003] proposed RMDP to generalize strategic

plans within the framework of multiple environments.

Marthi et al. [2005] proposed Concurrent ALisp, a

language that provides a natural manner to specify

behavior of the multithreaded systems. Kovarsky and

Buro [2006] used PDDL to explore the tactical

decisions involved in building orders. Chan et al.

[2007] provided planning mechanisms specialized to

resource production. Balla and Fern [2009] proposed

an adaptation of the UCT planning algorithm to the

domain of strategy games.

Other researchers have been interested in

approaches capable of playing entire games. Muñoz-

Avila and Aha [2004] used HTN planning. Ponsen et

al. [2006] proposed ESTG, a methodology based on

evolutionary learning for automatically generating

tactics with Dynamic Scripting. Sharma et al. [2007]

proposed CARL, a multilayered architecture that

combines Case-Based Reasoning (CBR) and RL to

achieve transfer while playing against the Game AI

across a variety of scenarios. McCoy and Mateas

[2008] integrated multiple specialist components by

incorporating expert high-level strategic knowledge.

Wintermute et al. [2007] proposed SORTS, a

middleware that interfaces the ORTS game engine to

the Soar cognitive architecture. Navarro and Corruble

[2009] employed dynamic tactical points and specific

training scenarios for the learning AI for ORTS.

Langley et al. [2005], Nason and Laird [2005],

Hinricks and Forbus [2007], and Wilson et al. [2008]

works have applied transfer learning in real-time game

environments using Markov logic networks and

bayesian techniques.

6. Conclusion and Future Work

In this paper, we described a multi-level abstraction

method based on terrain analysis that adapts semi-

automatically the level of detail of the state and action

representations to a distributed hierarchical decision-

making structure. This hierarchical structure does not

require either a strategy set or an evaluation function,

but rather only a set of abstract states and actions that

are provided along with the ability to simulate their

effects. We combined this method with RL techniques

and an innovative learning scenario to construct a

learning system for the automatic design of behavioral

strategies that can tackle the complexity of modern

strategy games.

 The results obtained are very encouraging since our

decision-making system achieves very good

performance when controlling the higher level of the

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 8

hierarchy and compared with the scripted-based

commercial AI. Only a few thousands of learning

episodes were needed to achieve these results. This

confirms the effectiveness of our approach, the

coherence of the state and action representations

designed, and validate in practice that it is possible to

improve the performance of a system by learning only

a part of a global strategy [Stone 2000].

We studied several setups for the learning agents by

combining coordination and rewarding strategies in the

framework of the some Battleground scenarios.

Encouraging initial results showed the importance of

using some form of communication between agents of

the same hierarchical level, and global rather than local

reward functions when learning attack strategies. We

are now studying in more detail the issue of

coordination in order to experiment more developed

techniques.

More generally, we believe that terrain analysis is

able to better support reinforcement learning in order

to permit strategic reasoning and that our method has a

relatively wide applicability and could be also used for

serious games where multiple units act together on a

map to achieve a common goal. Also the ideas and

concepts presented here are not specific to games, and

could be applied to most large multiagent simulations,

especially when the agents are naturally organized in a

form of hierarchical structure.

References

BALLA, R-K, AND FERN, A. 2009. UCT for Tactical Assault

Planning in Real-Time Strategy Games. In: Proceedings

of Twenty-First International Joint Conference on

Artificial Intelligence.

BLUM, A., AND LANGLEY, P. 1997. Selection of Relevant

Features and Examples in Machine Learning. Artificial

Intelligence, 97(1-2):245-271.

BURO, M. 2003. Real-Time Strategy Games: A new AI

Research Challenge. In: Proceedings of the Eighteenth

International Joint Conference on Artificial Intelligence.

CHAN, H., FERN, A., RAY, S., WILSON, N., AND VENTURA, C.

2007. Online Planning for Resource Production in Real-

Time Strategy Games. In: Proceedings of the

International Conference on Automated Planning and

Scheduling.

CLAUS, C., AND BOUTILIER, C. 1998. The dynamics of

reinforcement learning in cooperative multiagent

systems. In: Proceedings of the Fifteenth National

Conference on Artificial Intelligence, pp.746-752.

CORRUBLE, V., MADEIRA, C., AND RAMALHO, G. 2002. Steps

Toward Building a Good AI For Complex Wargame-

Type Simulation Games. In: Proceedings of the Third

International Conference on Intelligent Games and

Simulation.

DIETTERICH, T. 2000. Hierarchical Reinforcement Learning

with the MAXQ Value Function Decomposition. Journal

of Artificial Intelligence Research, 13:227-303.

FORBUS, K., MAHONEY, J., AND DILL, K. 2001. How

qualitative spatial reasoning can improve strategy game

AIs. In: Proceedings of the AAAI Spring Symposium on

Artificial Intelligence and Interactive Entertainment.

GIUNCHIGLIA, F., AND WALSH, T. 1992. A Theory of

Abstraction. Artificial Intelligence, 56(2-3):323-390.

GRINDLE, C., LEWIS, M., GLINTON, R., GIAMPAPA, J., OWENS,

S., AND SYCARA, K. 2004. Automating Terrain Analysis:

Algorithms for Intelligence Preparation of the Battlefield.

In: Proceedings of the Human Factors and Ergonomics

Society.

GUESTRIN, C., LAGOUDAKIS, M. AND PARR., R. 2002.

Coordinated Reinforcement Learning. In: Proceedings of

the Nineteenth International Conference on Machine

Learning.

GUESTRIN, C., KOLLER, D., GEARHART, C., AND KANODIA, N.

2003. Generalizing Plans to New Environments in

Relational MDPs. In: Proceedings of the Eighteenth

International Joint Conference on Artificial Intelligence.

HINRICHS, T., AND FORBUS K. 2007. Analogical Learning in a

Turn-Based Strategy Game. In: Proceedings of the

Twentieth International Joint Conference on Artificial

Intelligence.

JONG, N., AND STONE, P. 2005. State Abstraction Discovery

from Irrelevant State Variables. In: Proceedings of

Nineteenth International Joint Conference on Artificial

Intelligence.

LI, L., WALSH, T., AND LITTMAN, M. 2006. Towards a Unified

Theory of State Abstraction for MDPs. In: Proceedings

of the Ninth International Symposium on Artificial

Intelligence and Mathematics, pp.531-539.

MADEIRA, C., CORRUBLE, V., RAMALHO, G., AND RATITCH, B.

2004. Bootstrapping the Learning Process for the Semi-

automated Design of a Challenging Game AI. In:

Proceedings of the AAAI Workshop on Challenges in

Game AI, pp.72-76.

MARTHI, B., LATHAM, D., RUSSELL, S., AND GUESTRIN, C.

2005. Concurrent Hierarchical Reinforcement Learning.

In: Proceedings of the Nineteenth International Joint

Conference on Artificial Intelligence.

MCCOY, J., AND MATEAS M. 2008. An Integrated Agent for

Playing Real-Time Strategy Games. In: Proceedings of

the Twenty-Third AAAI Conference on Artificial

Intelligence.

MUÑOZ-AVILA, H., AND AHA, D. 2004. On the Role of

Explanation for Hierarchical Case-Based Planning in

Real-Time Strategy Games. In: Proceedings of ECCBR-

04 Workshop on Explanations in CBR.

NAREYEK, A. 2004. AI in Computer Games. ACM Queue, 1.

NASON, S., AND LAIRD, J. 2005. Soar-RL, Integrating

Reinforcement Learning with Soar. Cognitive Systems

Research, 6(1):51-59.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 9

http://www.cse.unsw.edu.au/~icml2002/
http://www.cse.unsw.edu.au/~icml2002/
http://www.cse.unsw.edu.au/~icml2002/

NAVARRO, L., AND CORRUBLE, V. 2009. Extending the Strada

Framework to Design an AI for ORTS. In: Proceedings

of the 8th International Conference on Entertainment

Computing.

PONSEN, M., MUÑOZ-AVILA, H., SPRONCK, P., AND AHA, D.

2006. Automatically Generating Game Tactics via

Evolutionary Learning. AI Magazine, 27(3):75-84.

RABIN, S. 2003. AI Game Programming Wisdom 2. Charles

River Media.

RABIN, S. 2006. AI Game Programming Wisdom 3. Charles

River Media.

SAITTA, L., AND ZUCKER, J.-D. 2001. A Model of Abstraction

in Visual Perception. Applied Artificial Intelligence,

15(8):761-776.

SHARMA, M., HOLMES, M., SANTAMARIA, J., IRANI, A.,

ISBELL, C., AND RAM, A. 2007. Transfer Learning in

Real-Time Strategy Games Using Hybrid CBR/RL. In:

Proceedings of the Twentieth International Joint

Conference on Artificial Intelligence.

STONE, P. 2000. Layered Learning in Multi-agent Systems: A

Winning Approach to Robotic Soccer. MIT Press.

SUTTON, R. S., AND BARTO, A. G. 1998. Reinforcement

Learning, An Introduction. MIT Press.

TESAURO, G. 2002. Programming Backgammon Using Self-

teaching Neural Nets. Artificial Intelligence, 134:181-

199.

WILSON, A., FERN, A., RAY, S., AND TADEPALLI, P. 2008.

Learning and Transferring Roles in Multi-Agent

Reinforcement Learning. In: Proceedings of the AAAI-08

Workshop on Transfer Learning for Complex Tasks.

WINTERMUTE, S., XU, J., AND LAIRD, J. 2007. SORTS: A

Human-Level Approach to Real-Time Strategy AI. In:

Proceedings of the Third Artificial Intelligence and

Interactive Digital Entertainment Conference.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 10

