
An Distributed Architecture for Mobile Digital Games Based on Cloud
Computing

Marcelo Zamith
UFF, Medialab

Mark Joselli
UFF, Medialab

Luis Valente
PUC-RIO, ICAD Games

Esteban Walter Gonzalez Clua
UFF, Medialab

Anselmo Montenegro
UFF, Medialab

Regina Celia P. Leal-Toledo
UFF, IC

Bruno Feijó
PUC-RIO, ICAD Games

Abstract

Several fields in Computer Science use distributed computing to
solve many intensive computational problems. Digital games use
this approach mainly in multiplayer games, where a mainframe or
cluster processes the majority of game logic. Single player games
can also use distribute computing to process game logic and visu-
alization algorithms, usually the tasks where digital games spend
most of the processing time. By applying an approach based on
distributed computing, games would have softer requirements re-
garding hardware, since the network cluster would be responsible
for processing parts of game loop tasks. With the concept of cloud
computing, games could rely on other computers to aid in pro-
cessing their tasks. This work presents game-loop architecture for
single-player or multiplayer games, using automatic load balancing
and distributing game logic computation among several computers.

Keywords:: Mobile Games, Cloud Computing, Distributed Sys-
tems, Parallel computing, Real-Time Systems

Author’s Contact:

mjoselli,mzamith,esteban,anselmo,leal@ic.uff.br
lvalente,bruno@inf.puc-rio.br

1 Introduction

Digital games are real-time interactive multimedia applications. In
other words, if the application is not able to perform the required
tasks on time, it will fail. For game applications, this means not
being able to sustain the interactive experience, due to factors like
the game taking too much time to process the tasks, or delayed
responses for user input.

Mobile games are applications that run on mobile devices as smart-
phones and tablets. Those devices offer opportunities to design
novel gaming experiences due to the distinct characteristics of those
devices, but at the same time, developing for those devices poses
another set of challenges. For example, mobile devices have more
constrained processing power and memory capacities than desktop
computers and dedicated consoles, although this has been improv-
ing greatly over time.

Mobile devices also have more limited input methods than desk-
top computers or dedicated game consoles. For example, mobile
phones were initially designed for making voice calls, meaning
that their input method (numerical keyboard) was optimized to dial
numbers. This has been changing as more and more devices have
touch screens.

The characteristics of current mobile devices (especially smart-
phones) make it possible to design novel game experiences. As an
example, smartphones provide a high degree of convergent features:
multimedia capacities (producing and consuming audio, video),
networking (local and global), and sensors (camera, accelerome-
ters, GPS, etc). This opens up the possibility to create games as
location based games [M1ndLab 2007], voice based games [Zyda
et al. 2008], accelerometer based games [Chehimi and Coulton
2008], camera based games [Park and Jung 2009] and touch based
games [Rohs 2007]. In order to develop good mobile games, they
must be designed to take advantages of such unique characteristics
into gameplay [Zyda et al. 2007].

Computer games are multimedia applications that employ knowl-
edge of many different fields, such as Computer Graphics, Artifi-
cial Intelligence, Physics, Computer Networks and others. More-
over, computer games are also interactive applications that exhibit
three general classes of tasks: data acquisition, data processing, and
data presentation. Data acquisition in games is related to gathering
data from input devices as keyboards, mice and joysticks, or any
other kind of interaction. Data processing tasks consist on applying
game rules, responding to user commands, simulating Physics and
Artificial Intelligence behaviors. Data presentation tasks relate to
providing feedback to the player about the current game state, usu-
ally through images, audio and vibration. In massive online games,
there is also one more class for tasks: game distribution. Game
distribution is the logical partitioning of the game world among
multiple servers, computation distribution management according
to actual game state, and communication [Glinka et al. 2008].

Games are interactive real-time systems and have time constraints
to execute all of their processes and to present the results to the
user. If the system is unable to do its work in real-time, it will lose
its interactivity and consequently it will fail. A common parameter
for measuring game and visual simulation performance is frames
per second (FPS). The general lower acceptable bound for a game
is 16 FPS. There are not higher bounds for FPS measurements, but
when the refresh rate of the video output (a computer monitor or the
mobile screen) is inferior to the game application refresh rate, some
generated frames will not be presented to the user (they will be
lost). One motivation for designing game loops is to better achieve
an optimal FPS rate for the application.

Mobile phones are connected devices by definition. This means
networking is an important component to consider for mobile appli-
cations, especially for games. Mobile phones are able to establish
connection with local (co-located) or global peers. Local peers are
connected through technologies as Bluetooth, while global peers
are reached through WiFi and the mobile operator network (e.g.
3G). This built-in feature makes developing mobile multiplayer
games a natural move.

Multiplayer online games have been contributing to increasing in-
ternet network traffic. In this kind of game, clients who are po-
sitioned across the Internet connect to a game server (or another
game client acting as a server) to interact with other clients in order
to be part of the game. In current architectures, clients and servers
exchange messages directly. The architecture this work proposes
shares similar concerns as cloud computing [Armbrust et al. 2009].
In cloud computing, computers across the internet share resources,
software and information, while in our approach the mobile client
is able to use resources available in the network to help in game
processing. In our approach, a mobile client with less computing
power could join a game session, by relaying the effort for game
processing to the network cloud.

1.1 Motivation and Contribution

The problem this work aims at helping to solve is to have lower-
powered devices taking part into complex games (e.g. with sophis-
ticated visual effects), as well as allowing many players to play
together through their mobile devices.

In face of improving the game quality (visual effects, AI and so
on) on mobile devices, the contribution of this work is a distribu-
tion architecture as cloud computing architecture. Basing on the
the work proposed by [Joselli et al. 2010], which has presented a
framework for game loops that use automatic task distribution be-

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1



tween CPU cores and the GPU. This work discusses an approach of
distribution game loop with mobile client through cloud computing
context, as well as the previous concepts presented in earlier works,
and new ones as follows:

• Overview of real-time game loops that can be applied in mo-
bile platforms;

• Task distribution among computers, related to game loops;

• Load balancing of tasks;

• Mobile clients using the cloud to process some of their tasks.

Finally, the organization of this work is as follows: Section 2
presents the related works. Section 3 discusses the architecture this
work proposes. Section 4 discusses and analyses the tests. Finally,
Section 5 presents the conclusions of this work.

2 Related Work

Mobile devices constraints are a challenge for developing complex
games. On the other hand, cloud computing services allow for pro-
cessing tasks that have high processing demands. The infrastructure
for those services could be based on computer clusters, for example.

Considering games, an ideal solution would be a cloud computing
service allowing many players to join a multiplayer game, while
being able to perform the heavy part of the information processing
on behalf of the mobile clients.

In this regard, some works have shared concerns similar to the
idea we have described, as the Onlive service (www.onlive.com).
The Onlive service runs game loop tasks inside a computer clus-
ter, while the clients are responsible for providing the visualization
part and gathering user input. This approach requires less process-
ing power from the game clients (as the servers perform the heavy-
weight part of processing), but it requires high-speed network con-
nections and is subject to high latency, which for mobile clients can
be a big issue.

The real-time loop represents the heart of real-time simulations
and games.However, there are few works that discuss this subject.
Among the few ones, are [Valente et al. 2005], Dalmau [Dalmau
2003], Dickinson [Dickinson 2001], Watte [Watte 2005], Gabb and
Lake [Gabb and Lake 2005], and Mönkkönen [Mönkkönen 2006].
None of them discuss game loop models with focus on mobile de-
vices.

The most straightforward approach to modeling real-time loops (for
single-player games) is the Simple Coupled Model. Basically, this
model consists of sequentially arranging the tasks in a main loop
as Figure 1 illustrates. This is a basic approach that mobile games
have already adopted in the past, due to its simplicity.

Figure 1: Simple Coupled Model

Dickinson [Dickinson 2001] proposed an extension to the Sim-
ple Coupled Model, named Single-thread Uncoupled Model. This
model is namely the single-thread uncoupled models. This model
has the rendering and updating stages uncoupled, i.e., rendering
and updating are running independently of the power processing
of CPU. Moreover, the single-thread uncoupled model tries to bring

determinism to the game execution by feeding the update stage with
a time parameter. For example, existing open-source game engines,
as [COCOS2D 2011] adopts this model.

Figure 2: Single-thread Uncoupled Model

Single-thread Uncoupled Model has been improved by making it
more adaptable to different machine capacities. In other words,
with this model the application has chance to adjust its execution
according to the capacity of the host machine, so the game runs the
same way in different devices. More powerful devices will be able
to run the game more smoothly, while less powerful ones should
still be able to provide some experience to the user.

Although these are working solutions, time measuring may vary
greatly in different hardware devices due to many reasons (such as
process load), making it difficult to reproduce it faithfully. For ex-
ample, a network module implementation and program debugging
[Dickinson 2001] may be easier to implement if the loop uses a de-
terministic model. Another issue is that running some simulations
too frequently, like AI and the game logic, may not yield better
results.

Hence, research works as [Valente et al. 2005] propose models that
try to address those issues. The Fixed-frequency Uncoupled Model
outlined in [Valente et al. 2005] features another update stage that
runs at fixed frequency, besides the time-based one. The work
by Dalmau [Dalmau 2003] presents a similar model, although not
naming it explicitly. Those works describe the model using a single-
thread approach. Figure 3 illustrates the Fixed-frequency Uncou-
pled Model.

Figure 3: Fixed-frequency Uncoupled Model

Finally, Dickinson [Dickinson 2001] discusses another approach
for fixed-frequency uncoupled models, which presents just one up-
date stage that runs at a xed-frequency. The main objective of this
model is to attain reproducibility.

Nowadays, mobile devices, like the Motorola Atrix, iPad 2, LG Op-
timus, HTC Pyramid and the Samsung Galaxy S-II, have multi-core
processors. For this reason, real-time loops for mobile games that
take advantage of those resources are likely to become important

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2



in the near future. Therefore, making the tasks parallel in multiple
threads is a natural step.

However, dealing with concurrent programming introduces another
set of problems, such as data sharing, data synchronization, and
deadlocks. Also, as Gabb and Lake [Gabb and Lake 2005] states,
that not all tasks can be fully parallelized due to dependencies
among them. As examples, in a game, characters cannot move un-
til the game logic is computed, and rendering cannot be performed
until the game state is updated. Hence, serial tasks represent a bot-
tleneck to parallelizing simulation computation.

The Asynchronous Function Parallel Model [Mönkkönen 2006],
which separates the tasks (input, update and render) in three
threads. Another example is the Synchronous Function Parallel
Model [Mönkkönen 2006], which processes the game physics in
a separated thread while the main thread process the characters an-
imations.

The Data Parallel Model [Mönkkönen 2006] uses a different
paradigm where data are grouped in parallel sections of the appli-
cation where they are processed. So, instead of using a main loop
with concurrent parts that process all data, the Data Parallel Model
proposes using separate threads for sets of data (like game objects).
This way, the objects run their own tasks (like AI and animation) in
parallel. Figure 4 depicts this approach.

Figure 4: Data Parallel Model

According to the author[Mönkkönen 2006], this model scales well
because it is able to allocate as many processing cores as they are
available. Performance is limited by the amount of data processing
that can run in parallel. An important issue is how to synchronize
communication of objects running in different threads. The author
states that the biggest drawback of this model is the requirement
to have components designed with data parallelism in mind. This
work has been inspirational for the distributed part of our architec-
ture, where it splits a task into threads that run across the cloud.

Barbosa and co-authors [Barboza et al. 2010a] propose a cloud-
computing approach for mobile devices, similar to the Onlive ar-
chitecture. In their proposal, a mobile device sends user input in-
formation to a server, and later receives back the rendered images
for the game as a streaming video. Figure 5 illustrates the game
loop for this approach.

Another approach for game loop architectures adopts the GPU as a
new resource in the computer. This resource can be used to process
physics or any other massively mathematics problems apart from
visualization task. This approach is based on GPGPU, whose im-
portance has been increasing since graphics hardware became pro-
grammable. There are some works that discuss using GPGPU with
game loops [Barboza et al. 2010b]. However, these works concen-
trate on game loops for desktop computers, and currently GPUs in
mobile devices (smartphones, tablets) do not have capabilities for
the GPGPU programming.

Figure 5: The cloud game loop

Using the GPU as a mathematics co-processor gives rise to a bal-
anced architecture, i.e., a game loop architecture that is able to dis-
tribute tasks between the CPU and the GPU [Zamith et al. 2007]. It
is possible to extend this approach for mobile devices, by proposing
a game loop framework that is able to distribute update tasks among
distributed computers (CPUs and GPUs), and mobile device CPUs,
as Figure 6 illustrates.

Figure 6: The Distributed Mobile Game Loop

3 A Cloud Computing approach for game
loops

This work proposes an architecture for game loops that applies
cloud computing concepts. This means that there is a server clus-
ter and a set of mobile devices. The mobile devices connect to the
server cloud to join multiplayer games and to use cloud computing
services.

The architecture is scalable, according to the number of mobile
clients. Each server is able to handle a certain number of mobile
clients. When a specific server is at full capacity, the cluster for-
wards client requests to another available server. The motivation
for this approach is to avoid having overloaded servers and to sup-
port having a huge amount of clients

The architecture has two main components: the game interface (i.e.
the game visualization, a component responsible for delivering the
results of processing visualization algorithms to clients), and a com-
ponent responsible for cluster processing that is responsible for im-
plementing the distributed game loop.

The current implementation uses HTML 5 for the mobile client and
C++ with MPI (Message Protocol Interface) for processing tasks
(as AI) in the cluster. The web server is Apache.

The mobile application uses HTML 5 to implement the user inter-
face, gather user input, rendering, and to connect to the server clus-
ter. The mobile application sends to the server the current game
state for each frame, and receives from the server a new version of
game state from de server. Basically, the game loop for the client

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3



includes those tasks. We have chosen HTML 5 as it is a portable
alternative for mobile device browsers.

The component responsible for cluster processing has two parts: the
master process, which is responsible for answering client requests,
and the slave process, which runs the distributed game loop.

Initially, the master process waits for incoming connections from
clients. When a client connects, it creates slave processes that run
game loop tasks such as physics simulations, AI processing, and
other related to the game update stage. The Figure 7 illustrates the
proposed architecture.

For each game loop step, the master process receives the current
game state from a client, and updates it in each slave process, divid-
ing the problem with all slave processes. Then, the master process
merges the solution of each slave process, composing a new game
state. Finally, the master process sends to client this new game state.

The processes communicate among themselves using MPI. MPI is
a powerful framework for developing parallel and distributed appli-
cations. Among its features are dynamic process creation, different
synchronization object types, and different communication modes
(asynchronous and synchronous).

In summary, the master processes communicates with clients
(through sockets) and slave processes (through the MPI library).

The architecture has some constraints, as it needs to copy some
game information to the cluster and client applications. For in-
stance, in the test application (a pac-man game) presents the game
scene in clients and in the cluster. The motivation for this approach
is to minimize communication between cluster and clients.

In order to guarantee the real-time requirements for the game loop,
the master process is able to create other master processes, as a
master process can handle a limited number of clients. Hence,
whenever a master process notices the game loop update has slowed
down, the master process creates another master process from one
of the existing slave ones. When this happens, it creates another
slave process to replace the one that has been transformed.

The motivation for this strategy is to decrease the communication
between master process and clients, balancing the load dynami-
cally.

3.1 Load Balancing Strategy

The load balancing strategy aims at providing a management layer
analyzes the hardware performance dinamically and adjusts the
amount of tasks to be processed by the resources ( computers, CPUs
and GPUs).

To make a correct task distribution, it is necessary to run an al-
gorithm. In the current implementation, a script is responsible for
this. The load balancing applies the scripting approach because the
loop can be used in many simulations, and each simulation requires
different algorithms and parameters.

The load balancing core corresponds to the Task Manager and
Hardware Check classes. The Task Manager schedules tasks in
threads and changes which processor handles them whenever it
is necessary. The Hardware Check detects the available hardware
configuration capabilities.

Additionally, the load balancing cores applies heuristics presented
in work develop by Joselli [Joselli et al. 2008]. Whereas, work
[Joselli et al. 2010] discuss the concept of tasks. A task corresponds
to some processing that the application need to execute. Examples
of tasks include reading player input, rendering and updating game
objects, as illustrated by Figure 8.

In this work, as in previous approach, task represents anything that
the application should process. However, not all types of proces-
sors are able to process any type of tasks. Usually, the application
defines three groups of tasks. The first group consists of tasks that
only CPUs are able to run. The second group consists of tasks suit-
able for running in the GPU, like presenting a scene. The third
group consists of tasks that both CPUs and GPUs are able to run.

The tasks in this group can be distributed among computers, and
are responsible for processing operations as Physics and AI.

The Task class is an abstract base class and has six subclasses: In-
put Task, Update Task, Presentation Task, Hardware Check Task,
Network Check Task, and Task Manager. The first three classes
are also abstract classes. The Hardware Check Task and Network
Check Task classes are responsible for checking hardware and net-
work connection speeds. The Task Manager class is a special class
that performs the task distribution. The Automatic Update Task
and Distribution Task use the Task Manager class services. The
first one distributes tasks between CPU cores and GPU, while the
second distributes tasks among computers.

The Input Task classes and subclasses handle user input related is-
sues. The Update Task classes and subclasses are responsible for
updating the game loop state. Tasks related to CPUs should use
the CPU Update, while tasks related to GPUs should use the GPU
Update class. Tasks that run in multiple CPU cores should use the
CPU Multithread task class.

The Presentation Task and its subclasses are responsible for pre-
senting information to the user, which can be: visual (Render Task),
with images, 3D models and visual effects; audio (Sound Task),
with music and sound effects, or motion (Vibrate Task), with vibra-
tion feedback on the mobile phone.

The Update Task classes and its subclasses are responsible for up-
dating the game loop state. In this case, there is only one subclass
the Network Update class.

3.2 The Mobile Architecture

The mobile architecture applies the task concepts that the previous
Section discussed.

For mobile devices, the Input Task classes handle user input that
comes from several sources. For example, the accelerometer sen-
sor, microphone (voice commands), keyboard, touch screens, cam-
era (using camera images to estimate device motion), and location
(using GPS and WiFi, for example).

As stated earlier, the Presentation Task and subclasses are respon-
sible for presenting information to the user. This information can
reach the user through several modalities, as visual (Render Task,
with images, 3D models and visual effects), aural (Sound Task, with
music and sound effects), or haptics (Vibrate Task, controlling the
vibration motors in mobile phones).

The Update Task classes and subclasses are responsible for updat-
ing the game loop state. In this case there is only one subclass, the
Network Update Task class.

3.3 The Network Update Task

The Network Update Task is the core component in the architecture.
It is responsible for interacting with Distributed Architecture and
updating the game state according to the data received from it.

This task acts as a client for the Distributed Architecture. It gathers
player input and send this information to the distributed architecture
through the network.

Network Update Task includes as socket as MPI. In doing so,
Network Update Task uses socket to communication with mo-
bile client. Whereas, the master e slaves processes communicates
thought MPI.

3.4 The Distributed Architecture

The core of the proposed architecture corresponds to the Task Man-
ager and the Hardware Check class. The Task Manager schedules
tasks in threads and changes which processor handles them when-
ever it is necessary. The Hardware Check detects the available hard-
ware configuration capabilities.

In the proposed architecture, like in the mobile architecture, a task
can be anything that the application should process. The Task class

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4



Update Cluster
(Communication 

and
Processing)

Master process

Slave process

Slave process
Mobile client

Update Mobile
(Communication)

Player Input

Visualization

Mobile game loopCluster game loop

Figure 7: Distributed Game Loop Architecture

is the abstract base class and has four subclasses: Update Task,
Hardware Check Task, Network Check Task and Task Manager.
The first is also an abstract class. The second and third is a special
classes are special classes to check the hardware and network con-
nection speed. The Task Manager is a special class that is respon-
sible for performing the task distribution. This special class is used
by the Automatic Update Task, which distributes tasks between
CPU cores and GPU, and Distribution Task, which distributes tasks
among computers.

The Update Task classes and subclasses are responsible for process-
ing the new loop state, which are presented by the mobile device.
The CPU Update class should be used for tasks that run on the
CPU, the GPU Update class corresponds to tasks that run on the
GPU, and the CPU Multithread task class correspond to task that
can be distributed among CPUs cores.

4 Test Case: Distributed Pac-man

The test case consists of an example classic game: pac-man. The ar-
chitecture is composed of four computers: one is dedicated to a web
server and the three others compose the cluster. This cluster is re-
sponsible for running the AI for the ghosts in pac-man. Figure 9 de-
picts the architecture. The web server, the cluster and mobile clients
are connected through the internet. In spite of native code in mo-
bile device provides better performance, the authors chose HTML
5 as client mobile. This language is portable and also provides the
proposed architecture with necessary features [W3C 2011].

Web server
html5

Cluster
executing AI (A*)

Mobile
Client 

Internet

Figure 9: The Cluster Architecture

The architecture is composed of two parts: The first is the web

server which hosts a HTML 5 web page with the pac-man game.
The second part is the cluster. This cluster executes the ghost AIs,
where each process corresponds to an instance of the AI algorithm.
Each instance corresponds to one ghost. However, only one pro-
cess is responsible for communicating with the mobile client. Fi-
nally, the ghost AIs are based on the A* path-finding algorithm.
The web server hardware consists of three computers. All of them
have an Intel Core 2 Duo CPU (E6750) running at 2.66GHz, 4MB
of cache memory and 1GB of RAM memory. The operating sys-
tem is Ubuntu 4.4.1-4ubuntu9 64 bits, and the Apache server is of
version 2.2.

The cluster is composed of three computers: two are Intel Core 2
Duo CPU (E6750) with 2.66GHz, 4MB cache memory and 1GB
RAM memory; and one has an Intel, Core 2 Quad CPU (Q6600)
with 2.40GHz, 4MB cache memory and 4GB RAM memory. All
cluster computers run Ubuntu 4.4.1-4ubuntu9 64 bits. The graphics
card is a NVIDIA GTX480. The cluster uses a chance message
protocol to execute the communication among them. Although all
processes are similar, there is one that is responsible for the mobile
client connection. This process is named as master process and the
others are named as slaver processes. The test case uses an iPhone
second generation, with 16GB of memory and iOS is 4.3.3, as the
mobile device.

A possible scenario for this architecture is as follows: the mobile
client connects to the web server, which sends the client a HTML
5 page with the pac-man game. When the game is loading in the
mobile client, the HTML 5 page requests a socket connection to
the cluster, using TCP/IP. On the cluster side, there is a process that
answers mobile client requests.

After the game has started, the master process receives mobile
client requests (e.g. update pac-man position), distributes the re-
quest to the slave processes, and waits for new positions of the
ghosts. Each slave process is responsible for one ghost in the game.
In other words, each slave process runs the A* path-finding algo-
rithm for one ghost.

The slave processes send the updated ghost position to the master
process, after the results of the path-finding algorithm. The master
process then attaches a time stamp to this information and sends it
to the mobile clients. Finally, the mobile clients update the game
presentation with this information received from the cluster.

The basis for the test case is varying the number of ghosts in a
game. A dedicated cluster process is responsible for running the AI
for each ghost. The test starts with 2 ghosts and ends with 32. The
test disregards the time it takes for mobile clients and the cluster
to communicate, as this counts for less than 1% of the game loop
elapsed time. Also, the size of message should not be taken in
account, because of 32 ghosts do not represent a large message.
Thus, table 1 depicts performance based on number of ghost. The
columns are:

• NG: Number of ghosts;

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5



Figure 8: Framework UML Diagram

• RB: Total received bytes from mobile client;

• SB: Total sent bytes to the mobile client;

• AI : Time elapsed in the AI processes;

• COMM : Time elapsed in the communication between cluster
and mobile client;

• ET: Game loop elapsed time, considering time elapsed in ar-
tificial intelligence (AI) and communication between cluster
and mobile client (COMM).

• FPS: Frames per second rate in the game loop.

According to the tests, even when there are twice as many ghosts,
the performance remains satisfactory. As the worst-case scenario
has 32 ghosts and the FPS rate corresponds to 270.5, the architec-
ture is scalable both in number of CPUs and ghosts. An environ-
ment with 32 ghosts is similar to an environment of crowd simula-
tion [Passos et al. 2008]. In this case, the ghosts would correspond
to people (the crowd).

NG RB SB AI COMM ET FPS
2 8 8 1.94209 0.00850 1.95059 512.67
4 8 20 2.39055 0.00800 2.39855 416.92
8 8 44 2.94858 0.00800 2.95658 338.23

16 8 92 1.86514 0.00833 1.87347 533.77
32 8 212 3.61611 0.01367 3.62978 275.50

Table 1: Cluster performance based on number of ghosts

Finally, message optimization collaborates to the architecture per-
formance. Each mobile client sends the cluster the pac-man posi-
tion, which corresponds to 8 bytes (column RB in Table 1). On the
other hand, the cluster sends to mobile clients the current position

of each ghost. This represents a byte quantity that is proportional
linearly to the number of ghosts (column SB in Table 1). Moreover,
the cluster should have a copy of the scene to calculate collisions
of ghosts and walls. The game loads this information when it is
starting.

0.00000 

0.50000 

1.00000 

1.50000 

2.00000 

2.50000 

3.00000 

3.50000 

4.00000 

2 4 8 16 32 

Elapsedtime 

Figure 10: Performance based on elapsedtime (ms)

The Figures 10 and 11 illustrate the performance fluctuation when
the message increases in size. The communication between master
process and mobile client increases linearly according to the num-
ber of ghosts.

However, the tests also suggested a fluctuation in the game loop
elapsed time. This happened because the cluster library the test
application has used. The cluster library is MPI (Message Protocol
Interface), which changes the way it encapsulates messages accord-
ing to the message size. In this case, message size has increased
according the number of ghosts, as each ghost is associated with a
dedicated process.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6



0.00 

100.00 

200.00 

300.00 

400.00 

500.00 

600.00 

2 4 8 16 32 

FPS 

Figure 11: Performance based on FPS

Furthermore, the test results have suggested that this approach looks
promising, as the communication part does not consume significant
time in the game loop. This opens up opportunities to improve the
quality of physics simulation or visual details on the mobile device,
for example, as cluster can take care of the heavy-weight tasks.

5 Conclusions

With the evolution of networks and mobile devices, distributing
computation will become more in evidence, even for mobile games.

This work has discussed the concept of game loops with focus on
mobile games a subject that has not been discussed in the literature,
to the best of our knowledge.

This paper contribution lies on extending a previous work, by pro-
viding an architecture for game loops that is able to distribute tasks
in mobile device games among computers in a network, which in
turn uses CPUs, CPU cores, and GPUs for processing. With this
approach a game is able to use more resources (local and remote),
reducing the system requirements.

The framework and concepts this work has presented can be ap-
plied to any game or real-time simulation task that is able to run
in a parallel mode. With distributing tasks across the internet, mo-
bile devices could run more processing-hungry games with softer
minimum requirements.

Finally, the architecture this work has proposed is scalable in num-
ber of ghosts, as in a crowd simulation. This means it is possible to
increase the number of processors (CPUs) and the number of mas-
ter processes. Moreover, two aspects of this work will extend as
cloud computing server as mobile client developed based on native
code.

References

ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D.,
KATZ, R. H., KONWINSKI, A., LEE, G., PATTERSON, D. A.,
RABKIN, A., STOICA, I., AND ZAHARIA, M. 2009. Above
the clouds: A berkeley view of cloud computing. Tech. Rep.
UCB/EECS-2009-28, EECS Department, University of Califor-
nia, Berkeley, Feb.

BARBOZA, D. C., JUNIOR, H. L., CLUA, E., AND REBELLO,
V. E. F. 2010. A simple architecture for digital games on de-
mand using low performance resources under a cloud computing
paradigm. Proceedings of the IX Brazilian Symposium on Com-
puter Games and Digital Entertainment, 38–45.

BARBOZA, D. C., JUNIOR, H. L., CLUA, E. W. G., AND RE-
BELLO, V. E. 2010. A simple architecture for digital games
on demand using low performance resources under a cloud com-
puting paradigm. Games and Digital Entertainment, Brazilian
Symposium on 0, 33–39.

CHEHIMI, F., AND COULTON, P. 2008. Motion controlled mobile
3d multiplayer gaming. In ACE ’08: Proceedings of the 2008 In-

ternational Conference on Advances in Computer Entertainment
Technology, ACM, New York, NY, USA, ACE, 267–270.

COCOS2D, 2011. Cocos2d. Avalible at:
http://www.cocos2d-iphone.org/games/.
30/09/2011.

DALMAU, D. S. C. 2003. Core Techniques and Algorithms in
Game Programming. New Riders Publishing.

DICKINSON, P., 2001. Instant replay: Building a
game engine with reproducible behavior. Available
at http://www.gamasutra.com/features/
20010713/dickinson 01.htm/ .

GABB, H., AND LAKE, A., 2005. Thread-
ing 3d game engine basics. Available at
http://www.gamasutra.com/features/
20051117/gabb 01.shtml/ .

GLINKA, F., PLOSS, A., GORLATCH, S., AND MÜLLER-IDEN,
J. 2008. High-level development of multiserver online games.
International Journal of Computer Games Technology 2008, 5,
1–16.

JOSELLI, M., ZAMITH, M., CLUA, E., PAGLIOSA, P., CONCI,
A., MONTENEGRO, A., AND VALENTE, L. 2008. An adapta-
tive game loop architecture with automatic distribution of tasks
between cpu and gpu. Proceedings of the VII Brazilian Sympo-
sium on Computer Games and Digital Entertainment, 115–120.

JOSELLI, M., ZAMITH, M., CLUA, E., LEAL-TOLEDO, R.,
MONTENEGRO, A., VALENTE, L., FEIJO, B., AND PAGLIOSA,
P. 2010. An architeture with automatic load balancing for real-
time simulation and visualization systems. JCIS - Journal of
Computational Interdisciplinary Sciences, 207–224.

M1NDLAB, 2007. Alien revolt: Location-based
massive-multiplayer online rpg. Avalible at:
http://www.alienrevolt.com.

MÖNKKÖNEN, V., 2006. Multithreaded game engine architectures.
Available at http://www.gamasutra.com/features/
20060906/monkkonen 01.shtml .

PARK, A., AND JUNG, K. 2009. Flying cake: Augmented game
on mobile devices. Comput. Entertain. 7, 1, 1–19.

PASSOS, E., JOSELLI, M., ZAMITH, M., ROCHA, J., MONTENE-
GRO, A., CLUA, E., CONCI, A., AND FEIJÓ, B. 2008. Su-
permassive crowd simulation on gpu based on emergent behav-
ior. In Proceedings of the VII Brazilian Symposium on Computer
Games and Digital Entertainment, 81–86.

ROHS, M. 2007. Marker-Based Embodied Interaction for Hand-
held Augmented Reality Games. Journal of Virtual Reality
and Broadcasting 4, 5 (Mar.). urn:nbn:de:0009-6-7939,
ISSN 1860-2037.

VALENTE, L., CONCI, A., AND FEIJÓ, B. 2005. Real time game
loop models for single-player computer games. In Proceedings
of the IV Brazilian Symposium on Computer Games and Digital
Entertainment, 89–99.

W3C, 2011. The websocket api. Available at
http://dev.w3.org/html5/websockets/.

WATTE, J., 2005. Canonical game loop. Avail-
able at www.mindcontrol.org/h̃plus/
graphics/game loop.html/ .

ZAMITH, M., CLUA, E., PAGLIOSA, P., CONCI, A., MONTENE-
GRO, A., AND VALENTE, L. 2007. The gpu used as a math
co-processor in real time applications. Proceedings of the VI
Brazilian Symposium on Computer Games and Digital Enter-
tainment, 37–43.

ZYDA, M., THUKRAL, D., JAKATDAR, S., ENGELSMA, J., FER-
RANS, J., HANS, M., SHI, L., KITSON, F., AND VASUDEVAN,

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7



V. 2007. Educating the next generation of mobile game de-
velopers. IEEE Computer Graphics and Applications 27, 2, 96,
92–95.

ZYDA, M. J., THUKRAL, D., FERRANS, J. C., ENGELSMA, J.,
AND HANS, M. 2008. Enabling a voice modality in mobile
games through voicexml. In Sandbox ’08: Proceedings of the
2008 ACM SIGGRAPH symposium on Video games, ACM, New
York, NY, USA, Sandbox, 143–147.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 8




