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Figure 1: Evolutionary game of Checkers developed in this paper. 

 

Abstract  

 

The difficulty of a game‟s Artificial Intelligence is one 

of the determining factors of its success or failure. To 

define how the machine-opponent will behave is a hard 

and complex task. This paper aims to present an 

application of the Game of Checkers that tries to solve 

the matter of presenting an adversary which is 

convincing and of a similar level to the player, using 

Genetic Algorithm‟s techniques.  
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1. Introduction 
 

In the world of electronic games, a smart and 

innovative interaction with the user is one of the 

biggest motives of a game‟s acceptance. Driven by the 

billions of dollars that the entertainment global 

industry moves every year, there was a great amount of 

attention towards researches that focus on improving 

the choices of the machine, increasing its learning 

ability. The idea of a computer assisting the learning of 

students was also a strong motivation, and this thought 

was proven correct in more than one occasion [Silva 

2008]. 

 

The use of evolutionary algorithms to improve the 

performance of machine controlled characters, known 

as NPCs (Non-Player Characters), was suggested and 

researched before [Carvalho 2008]. This behavior, 

called AI, can be understood as the part of the code 

responsible for computationally controlling the 

movements of opponents and allies, making it appear 

as this last two are making intelligent decisions about 

the world around them, when in reality it is a 

predefined option for certain situation [Taitai 2003, 

Scwab 2004]. 

 

Although the use of evolutionary algorithms is 

applicable in many game styles, it was chosen to work 

with a game among those with strategy based on turns. 

Some games of such kind that were previously 

researched, successfully or not, are Tic Tac Toe, 

Chess, Checkers and Go. The AI techniques applied to 

them were: Neural Networks [Kecman 2001], Genetic 

Algorithms [Lopes 2003], Alpha-Beta Pruning [Russel 

and Novig 2004], and Finite State Machine [Wagner et 

al 2006]. 

 

This paper aims to propose the utilization of 

Genetic Algorithms (GA) to create an evolutionary 

game of Checkers. However, it is important to 

highlight that the goal is not to obtain an invincible 

machine-opponent, but one that allow the player to 

improve its abilities. It would, too, decrease the 

chances of the game becoming boring to the user, since 

the difficulty would always be changing to challenge 

the gamer. 

 

This paper is organized into seven sections.  

Section 2 presents the set of rules used in the 

developed game of Checkers. Section 3 presents the 

application itself, and its functionalities; while section 

4 discusses technical aspects of the application and the 

Genetic Algorithm used in the development of the 

game. Section 5 contains the results, which are 

discussed in section 6. Finally, section 7 presents a 

brief conclusion about the work. 

 

2. Rules of the game of Checkers 
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The developed system uses the official rules of Brazil. 

These are described as follows: 

 

1- The game is played on a chess board with 64 

intercalated dark and light squares. The longest 

diagonal of dark squares of the board should be at the 

left side of each player. The goal is to immobilize or 

capture all the pieces of the opponent. 

 

2- Two contestants play the game, each one with 12 

pieces. One player uses white pieces, while the other 

uses Black ones. The first movement belongs to the 

white pieces. Figure 2 illustrates this situation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Inicial arrangement of the board. 

 

3- The man, an uncrowned piece also called a 

Checker, moves itself diagonally, and always forward, 

one square at a time. When it reaches the farthest row 

of the board - the 8
th

 row – it is promoted to king. 

 

4- The king has a bigger movement, being able to 

move backward and forward as many squares as it 

wants. However, it cannot jump over a piece of its 

same color. 

 

5- The capture is mandatory. Two or more pieces 

side by side at the same diagonal cannot be captured. 

Figure 3 shows both scenarios, being that the scenario 

of an unpermitted capture is show by the king (marked 

with a D on top of it, from “Dama”, the name used in 

Brazil). 

 
Figure 3: Capture of pieces at the game. 

 

6- The man captures the king and the king captures 

the man. Man and king have the same value to capture 

or to be captured.  

 

7 – The man and the king can capture both 

forwards and backwards one or more pieces. 

  

8- The man that jumps over a crowning row during 

the capture of various opponents, but does not ends it 

movement at that row, shall not be promoted to king, 

as can be seen in Figure 4. 

 

 
Figure 4: Capture jumping through a crowning row. 

 

9- While performing the capture of multiple pieces, 

it is allowed to jump over the same empty square, but it 

is not possible to capture twice the same piece. It can 

be seen in Figure 5. 

 
Figure 5: Capture of several pieces jumping over a same 

empty square. 

 

10- The captured pieces shall not be removed from 

the board until the move has been finished, as shown in 

Figure 6. 

 

 
Figure 6: Capture and removal of several pieces. 
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11- After the kings have been played 20 

successively times, without a man have been played or 

without a capture, the match is declared a draw. 

 

12- End of matches of 2 kings against 2 kings; 2 

kings against one king; 2 kings against one king and 

one man; one king against one king; or one king 

against one king and one man are declared a draw after 

five consecutive plays. 

 

There is one last rule, called “rule of majority” in 

Brazil. If in a single playing movement it is possible to 

capture in more than one way, it‟s compulsory to 

execute the move that captures the most number of 

pieces. This rule was not implemented in order to 

allow the player and the genetic algorithm a greater 

freedom of choice of action to take in order to better 

assess whether the action it chooses is really the one 

that will bring more benefits. 

 

3. Application 
 

3.1 User Interface 
 

When the application is launched, the user must 

write one username and choose either to perform or not 

the first move. The username will be used to maintain a 

configuration file about the successful movements of 

the player. 

  

The user can, then, interact with the graphical 

interface, dragging the pieces from their origins to 

desired destinations. The moves are validated using the 

rules described in section 2.  

Figure 7: Application‟s Graphic User Interface 
 

The right middle section of the interface shows the 

match move‟s history according to characters that will 

be presented in section 4. The upper left section shows 

the current number of pieces of each player. In the 

upper right section is shown the turn owner or the 

match result at its end. This is all shown in Figure 7. 

 

3.2 Control of current turn and end of match 
 

A model of finite state machine (FSM) is used to 

control the match‟s turns. The turns are defined as 

states of the application. The FSM of the application is 

in accordance with the proposals of Moore and Mealy, 

because it contradicts the traditional model, which is a 

model of acceptance/recognition and does not work 

with actions. The formal definition of the FSM is a 

tuple <, , S, S0, , >, where [Wagner et al. 2006]: 

 

  is the input alphabet: a non-empty set of finite 

symbols; 

 

  is the output alphabet: a non-empty set of 

finite symbols; 

 

 S is a non-empty set of finite states; 

 

 S0 is the initial state, and is one element of S; 

 

  is the transition function for the states: S x  

 S; 

 

  is the output function. For Mealy model, the 

output function depends on the input alphabet 

(: S x  ) and the current state. For Moore 

Model, the output depends only on the current 

state (: S  ). 

 

The state machine developed in this application 

accords with Moore model. It has four game states, 

defined as: Game Start, User‟s Turn, Computer‟s Turn 

and Game Over. 

 

The Game Start is the initial state of the 

application. In it is asked the username and who should 

have the first move. This response is taken as input and 

based on this it defines who has the first move. Reset 

the game is one action that destroys the current 

executions, forces the restart of the application and 

switches the value of the last initialization, changing 

the order of players‟ turns. 

 

In the User‟s Turn, the FSM awaits the trigger of a 

transition to the corresponding state through a valid 

move. The state, then, shall make the move, which 

was, until then, merely a visual representation. It shall, 

also, verify if the turn is composed by more than one 

movement, validating its conclusion or not. The next 

step is to remove the captures pieces from the board, 

and check whether the match is over, using as grounds 

the rules in Section 2. 

 

During the Computer‟s Turn there will be executed 

tasks relevant to the computer‟s movements. Initially, 

the state will make a selection of the best move, which 

characterizes the decision making of the machine. This 

is achieved through a genetic algorithm that shall be 

discussed further along in section 4. Similarly to the 

User‟s Turn, it is also verified if the match is over. 

 

The Game Over state is achieved when the User‟s 

Turn state or the Computer‟s Turn state verifies, 

positively, that the match ended according to the game 
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rules. The following actions are, then, remove captured 

pieces, that are still visible, from the board, perform 

the animation relative to the match‟s finish, and end 

the FSM. 

 

It is important to highlight that the transition 

function connecting states is not explicit. In the 

application‟s domain, the set of operations that 

evaluates a move is considered a transition function. 

This evaluation operations use the rules presented 

previously and the verification of the match‟s end, 

whether it is a victory or a draw. 
 
4. The Genetic Algorithm 
 

The Genetic Algorithm, or GA, is an evolutionary 

approach that uses a metaphor regarding its basic 

genetic material. It searches to use principles found in 

nature, based on Darwin‟s natural selection model, in 

order to obtain solutions for algorithmic problems. 

That being said, gene and chromosome are used to 

represent inputs of the problem in question. 

 

Genetic algorithms are indicated in situations that 

require the analysis of a large number of variables, or 

moments that allow one or more satisfactory solution 

[Lopes 2001]. 

 

In the developed application, it was used the 

following definitions [Carvalho 2008]: 

 

 Individual: represents a possible configuration 

of the board; 

 

 Chromosome: is the data structure that 

represents the individual, being the current 

configuration of the board; 

 

 Population: vector of chromosomes that 

represents the set of possible outcomes; 

 

 Adaptation of the individual: defines how 

good is the chromosome as a solution for a 

given problem; 

 

 Selection: a set of criteria that determines 

which individuals in the population will be 

reused in the search for a result of higher 

quality. 

  

The GA is applied to a population P of individuals 

that evolves through the action of genetic operators in 

order to obtain a population P’, which would be a 

descendent of P [Lopes 2003]. The genetic operators 

are selection, mutation, crossover, inversion and 

substitution. This application‟s GA uses only the 

mutation operator, using two different types of it: 

mutation by sub-exchange and mutation by 

replacement. The mutation operator guarantees the 

creation of features in the individuals of the population 

that did not exist before. 

 

The mutation by sub-exchange [Lopes 2003] 

receives a chromosome a = <a1, a2, ..., ai, aj, ..., a64> 

and returns a chromosome a’ = <a1, a2, ..., aj, ai, ..., 

a64>, where 1   x1 < x2  64. 

 

The mutation by replacement is an extension of the 

mutation proposed by Holland, which used a binary 

alphabet. It receives a chromosome a = <a1, a2, ...,, 

a64> and an alphabet U, and returns a chromosome a’ 

= <a1, a2, ..., ai, ..., aj, ..., a64>, where i and j are 

random positions in the vector with 1   i < j  64. The 

bold characters correspond to the chromosome 

complement of the characters ai and aj, in the U 

alphabet. 

 

4.1 About the application’s GA 
 

The initial population of the game consists of only 

one chromosome, due to the fact that the chromosome 

is a representation of the configuration of the board. In 

the implemented GA, the chromosomes are represented 

by a vector of 64 characters. It was agreed that the 

characters would be as follows: “B” would be a square 

with a white man in it; “P” would be a black man; “A” 

represents a white king; “E” would be a black king; “-” 

represents an empty square; “#” is a square that cannot 

be occupied; “X” is a square occupied by a computer‟s 

piece that was captures; and “Y” is a square occupied 

by an user‟s piece that was captured. They would obey 

the following restrictions: 

 

 The maximum number of white or black pieces 

is 12; 

  

 Each character occupies a position i from the 

vector that represents the chromosome, such 

that 0  i  64; 

 

 If the ratio of i per 8 is even, the odd positions 

of the board will be occupied by the character 

“#”, and the even positions will be occupied by 

the remaining characters; 

 

 If the ratio of i per 8 is odd, the even positions 

of the board will be occupied by the character 

“#”, and the odd positions will be occupied by 

the remaining characters. 

 

Thus, the chromosome corresponding to the initial 

configuration of the board may be represented as <#, 

P, #, P, #, P, P, #, P, #, P, #, P, #, #, P, #, P, #, P, #, P, 

-, #, -, #, -, #, -, #, #, -, #, -, #, -, #, -, B, #, B, #, B, #, B, 

#, #, B, #, B, #, B, #, B, B, #, B, #, B, #, B, #, B, #>, 

which is shown in Figure 1. 

 

4.2 Creation of new chromosomes and 
adaptation factor of the individual 

 

During the creation of new chromosomes, the GA 

performs a few tasks. Initially, it analyses whether or 
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not it is possible to move a piece. Then, it verifies if it 

is possible to capture an opponents‟ piece. The second 

action has priority over the first and, if it is satisfied, 

there will be generated only chromosomes that perform 

a capture. Finally, the most adapted individual will 

correspond to the computer‟s move. 

 

Since the application lies in the domain of 

Checkers, it is necessary to modify some operations of 

the GA, in order to allow certain peculiarities of the 

game. For instance, in the context of the game, a move 

must always be executed. Although it may seem 

obvious, for the GA it means that a new chromosome 

always shall be generated to replace the current one. 

This replacement has to be made even when the new 

individual creates a bad scenario – of piece loss -, or 

else it will incapacitate the end of the match. 

 

The adaptation factor of the individual is calculated 

in order to evaluate how good is the movement 

represented by the chromosome. For such, the GA 

considers the weights described in Table 1. Such 

values were assigned according to tests that aimed the 

best performance of the application. 

 
Table 1: Weights W of the application 

MOVE WEIGHT 

Simple move 1 

Move that results in the lost of a piece to 

the opponent 

-5 

Move that results in saving a piece from 

being captured 

2 

Move that results in the capture of a piece 3 

 

The developed game uses a storage system to allow 

a bigger evolution of the AI. Initially, the computer 

may only follow one of these strategies, in order of 

priority: to capture the greater number of opponents‟ 

pieces that results in the minimum number of 

computer‟s losses; to lose the minimum amount of 

pieces possible; or to make a random move. 

 

When the computer starts playing against the user, 

its database is filled. The database, in the beginning 

stage of developments, was a simple archive system. 

Each line in the archive is divided into two columns. 

The first contain the initial configuration of the board, 

and the second has the configuration achieved after 

making the move. These configurations of size t, 1 < t 

 64, would be windows of parts of the board that were 

affected by moving the pieces. 

 

When the user makes a move that results in the 

capture of a virtual player‟s piece, the algorithm would 

save the configuration before and after that specific 

movement. 

 

Due to the fact that the pieces of the players chance 

color – and representations – at the end of each match, 

there were agreed standard values to represent the 

pieces in the saved files. The pieces of the computer 

would change from “B” and “P” to “c” – lower case – 

and from “A” and “E” to “C” – upper case. Similarly, 

the user‟s pieces would go from “B” and “P” to “j” and 

“A” and “E” to “J”. These characters, when compared 

to the chromosomes of the game, would change back 

to their original values. 

 

With these data, the GA‟s system can maximize the 

number of computer‟s pieces in the board, and 

minimize the number of user‟s pieces. To achieve this, 

it is used Equation 1. 

 

 
 

Where W is the weight that represents how good is 

a move, according to Table 1. The chromosome fitness, 

calculated through Equation 1, shall be maximized 

when the move is one of capture, and there is not such 

a configuration in the database that result in a 

computer‟s piece being lost.  The value of X is defined 

in Equation 2: 

 

 
 

This implies that the evaluation process, using the 

database, can be defined as follows: 

 

1. Scan the database retrieving all records; 

2. For each record found: 

a. While there are new records or the match is 

not over, do: 

i. If there is an initial scenario equals to 

the given final scenario, recursion to 

item 1 with this final scenario as initial 

scenario; 

ii. Otherwise, apply Equation 1 and return 

the results; 

3. Count the total number of pieces of each 

contestant on the final scenario. Apply Equation 

1 and return the results. 

 

When applied to a game of Checkers, the algorithm 

aims to minimize the number of pieces lost by the 

computer; avoiding moves that have previously lead to 

an undesirable outcome. In other words, its objective is 

to maximize the computer‟s pieces (“C” e “c”)) and 

minimize the user‟s ones (“J”, “j” e “-”). The empty 

square “-” is included in the minimization due to the 

increasing of empty spaces be a consequence of the 

capture. 

  
5. Results 
 
There were performed two series of tests with this 

algorithm. The first consisted of using a human player 

against the AI. There were played 40 games, in which 

the computer won 52,5% of times. In Table 2 can be 

 

 

(1) 

(2) 
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found the number of configurations in the database at 

the beginning of each match; the average evaluation of 

the chromosomes, with and without Equation 1; the 

average evaluation of the selected individuals of 

population; and, finally, the game‟s result. 

 

The second series of tests used a different approach 

of Genetic Algorithm to compare performance and 

average time obtained, in milliseconds, of the 

algorithms. The algorithm was the one that originated 

this study, and was proposed by Carvalho [2008]. In 

Table 3 is described who initiated the game, the 

average time of this paper‟s algorithm, the average 

time of Carvalho‟s algorithm and the result of the 

game, which is Defeat if Carvalho‟s win, and Victory 

if this paper‟s agent win. 

 
Table 3: Test‟s Results 

First Move Average 

Time  

Carvalho’s 

Average 

Time  

Result 

Our algorithm 10.13 76.56 Defeat 

Carvalho's 46.45 42.27 Defeat 

Our algorithm 91.16 0.78 Victory 

Carvalho's 62.74 28.39 Victory 

Our algorithm 13.85  11.29 Victory 

Carvalho's 70.77 39.85 Victory 

Our algorithm 0.57 79.09 Defeat 

Carvalho's 52.67 59.86 Defeat 

Our algorithm 4.25 71.54 Defeat 

Carvalho's 0.61 95.83 Defeat 

Our algorithm 0.64 92.20 Defeat 

Carvalho's 61.29  0.032 Victory 

Our algorithm 76.65 17.42 Victory 

Carvalho's 45.59 25.73 Victory 

Our algorithm 79.95 0.00 Victory 

Carvalho's 138.26 20.33 Victory 

Our algorithm 33.46 30.60 Defeat 

Carvalho's 1.0 3.20 Victory 

Our algorithm 121.0 24.44 Victory 

Carvalho's 40.68 38.39 Victory 
 

The final results, regarding the games played 

against others AI techniques and against human 

players, are described in Table 4. 

 
Table 4: Test‟s Results 

Regarding games against other AI techniques 

Number of victories of the computer against 

other AI techniques 

12 

Number of defeats of the computer against 

other AI techniques 

8 

Total 20 

Regarding games against human players 

Number of victories of the computer against 

human player 

21 

Number of defeats of the computer against 

human player 

19 

Victories in which there were differences 

between columns A and B (Table 2) 

11 

Defeats in which there were differences 9 

between columns A and B (Table 2) 

Victories in which there were not differences 

between columns A and B (Table 2) 

10 

Defeats in which there were not differences 

between columns A and B (Table 2) 

10 

Total 40 
 

6. Discussions 
 
The application showed a good performance, being 

able to confront nicely a common user. It also showed 

a significant improvement when using the decision 

rules along with the weights of the GA, rather than just 

using the weights to evaluate chromosomes. 

 

About the selection of pieces, the application 

showed a better performance with the moves of man 

instead of kings. This is because the range of action of 

the man is smaller, therefore being easier to predict the 

possible movements. It made clear that the algorithm 

can generate moves in which the computer just delivers 

its king to be captured, even though it was possible to 

perform a different movement. However, when using 

Equation 1 these situations became far less frequent. 

 

Table 2 presents the results of 40 matches. Initially 

the database had 267 board configurations saved. This 

quantity increased during tests, and turned into 579 by 

the end of analysis. After a few games, it was possible 

to notice that the average evaluation of the 

chromosomes, with and without Equation 1, began to 

differentiate. The values obtained using the equation 

were superior to those obtained without it. 

 

In the tests executed by a human player the 

machine began winning the matches. As the user 

improved, the machine‟s and the user‟s levels began to 

normalize. Even still, the virtual opponent presented a 

satisfactory result, showing that the system served its 

purpose of assisting the gamer to improve its abilities. 

 
7. Conclusion 
 
This paper proposed the use of genetic algorithm to 

improve the artificial intelligence of a virtual 

adversary, and, so, improve the user‟s experience. This 

thought lead to the development of a game of Checkers 

that used the GA in its decision-making process. 

 

It was achieved, then, a tool that compel the user to 

evolve as he/she plays, having a progressive 

improvement of his/hers abilities. Although the results 

were satisfactory, the random factor of the algorithm 

makes the application unstable, being able or not to 

perform the best movement for a certain configuration 

of the board. Since the goal, however, was not to 

obtain an invincible game, but one that helps the user 

to develop, this fault shows little importance. 

 

It stays as a future goal to continue to develop the 

system in order to make it able to classify the user 
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according to his/hers abilities in game, and to use this 

information to improve the realism and entertainment 

levels of games. The next approach would be 

increasing the trees of movements, since this 

methodology only used one level of search. The 

performance of the algorithm would significantly 

improve with a deeper tree search, therefore obtaining 

a better analysis of which piece to move and where. 
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Table 2: Algorithm performances against a human player 
Configura-

tions 

Configura-

tions without 

repetition 

A: Average 

evaluation of the 

chromosomes using 

only the weights 

B: Average 

evaluation of the 

chromosomes 

using Equation 1 

Average 

evaluation of 

the selected 

chromosomes  

Computer 

Results  

267 243 -2.04 -2.04 1.0 Victory 

269 245 -3.13 -3.13 -0.70 Defeat 

279 254 -2.65 -2.65 0.41 Victory 

282 257 -2.95 -2.97 -0.19 Defeat 

291 264 -3.57 -3.57 0.47 Victory 

295 268 -3.29 -3.60 -0.66 Defeat 
304 277 -4.66 -4.66 -0.75 Defeat 
311 284 -2.90 -2.90 -0.88 Defeat 
319 292 -2.89 -2.89 -0.65 Victory 
324 297 -1.21 -1.22 0.81 Victory 
329 302 -3.80 -3.80 0.67 Defeat 

338 311 -2.31 -2.42 0.35 Victory 

347 320 -2.68 -2.68 -0.24 Defeat 

355 328 -1.49 -1.49 0.68 Victory 

360 333 -3.87 -3.87 0.00 Defeat 
367 340 3.73 3.73 0.10 Defeat 

376 348 -3.83 -3.86 -0.48 Defeat 

383 354 -3.02 -3.17 -0.62 Defeat 

391 362 -2.82 -2.82 0.07 Victory 

399 368 -1.40 -1.43 0.21 Victory 

458 421 -2.65 -2.65 0.56 Victory 

458 422 -4.30 -4.30 -0.65 Defeat 

468 429 -2.17 -2.17 0.54 Victory 

470 431 -2.58 -2.58 1.09 Victory 

474 435 -2.41 -2.42 1.02 Victory 

477 438 -2.47 -2.47 1.08 Victory 

480 441 -2.94 -2.95 0.57 Defeat 

488 446 -1.43 -1.44 1.19 Victory 

498 456 -4.88 -4.89 -1.18 Defeat 

506 464 -2.54 -2.55 0.48 Victory 

509 466 -4.91 -4.91 -0.82 Defeat 

519 473 -1.79 -1.80 0.93 Victory 

532 483 -3.86 -3.86 0.16 Victory 

541 491 -2.59 -2.78 1.13 Victory 

545 494 -3.70 -4.09 -0.18 Defeat 

554 501 -4.56 -4.77 -0.17 Defeat 

561 506 -1.13 -1.39 0.21 Defeat 

570 515 -3.68 -3.84 -0.72 Defeat 

577 521 -4.21 -4.65 -0.23 Victory 

579 523 -2.68 -2.89 0.40 Victory 
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