
An Application of Genetic Algorithm to the Game of Checkers

Gabriella A. B. Barros Leonardo F. B. S. Carvalho Vitor R. M. Silva Roberta V. V. Lopes*

Universidade Federal de Alagoas, Instituto de Computação, Brazil

Figure 1: Evolutionary game of Checkers developed in this paper.

Abstract

The difficulty of a game‟s Artificial Intelligence is one

of the determining factors of its success or failure. To

define how the machine-opponent will behave is a hard

and complex task. This paper aims to present an

application of the Game of Checkers that tries to solve

the matter of presenting an adversary which is

convincing and of a similar level to the player, using

Genetic Algorithm‟s techniques.

Keywords: Artificial Intelligence, Genetic Algorithm,

Chess Games, Games

Authors’ contact:
{gabyshini,lfilipebsc,vrafael1812}@gmail.

com

*rv2l@hotmail.com

1. Introduction

In the world of electronic games, a smart and

innovative interaction with the user is one of the

biggest motives of a game‟s acceptance. Driven by the

billions of dollars that the entertainment global

industry moves every year, there was a great amount of

attention towards researches that focus on improving

the choices of the machine, increasing its learning

ability. The idea of a computer assisting the learning of

students was also a strong motivation, and this thought

was proven correct in more than one occasion [Silva

2008].

The use of evolutionary algorithms to improve the

performance of machine controlled characters, known

as NPCs (Non-Player Characters), was suggested and

researched before [Carvalho 2008]. This behavior,

called AI, can be understood as the part of the code

responsible for computationally controlling the

movements of opponents and allies, making it appear

as this last two are making intelligent decisions about

the world around them, when in reality it is a

predefined option for certain situation [Taitai 2003,

Scwab 2004].

Although the use of evolutionary algorithms is

applicable in many game styles, it was chosen to work

with a game among those with strategy based on turns.

Some games of such kind that were previously

researched, successfully or not, are Tic Tac Toe,

Chess, Checkers and Go. The AI techniques applied to

them were: Neural Networks [Kecman 2001], Genetic

Algorithms [Lopes 2003], Alpha-Beta Pruning [Russel

and Novig 2004], and Finite State Machine [Wagner et

al 2006].

This paper aims to propose the utilization of

Genetic Algorithms (GA) to create an evolutionary

game of Checkers. However, it is important to

highlight that the goal is not to obtain an invincible

machine-opponent, but one that allow the player to

improve its abilities. It would, too, decrease the

chances of the game becoming boring to the user, since

the difficulty would always be changing to challenge

the gamer.

This paper is organized into seven sections.

Section 2 presents the set of rules used in the

developed game of Checkers. Section 3 presents the

application itself, and its functionalities; while section

4 discusses technical aspects of the application and the

Genetic Algorithm used in the development of the

game. Section 5 contains the results, which are

discussed in section 6. Finally, section 7 presents a

brief conclusion about the work.

2. Rules of the game of Checkers

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

The developed system uses the official rules of Brazil.

These are described as follows:

1- The game is played on a chess board with 64

intercalated dark and light squares. The longest

diagonal of dark squares of the board should be at the

left side of each player. The goal is to immobilize or

capture all the pieces of the opponent.

2- Two contestants play the game, each one with 12

pieces. One player uses white pieces, while the other

uses Black ones. The first movement belongs to the

white pieces. Figure 2 illustrates this situation.

Figure 2: Inicial arrangement of the board.

3- The man, an uncrowned piece also called a

Checker, moves itself diagonally, and always forward,

one square at a time. When it reaches the farthest row

of the board - the 8
th

 row – it is promoted to king.

4- The king has a bigger movement, being able to

move backward and forward as many squares as it

wants. However, it cannot jump over a piece of its

same color.

5- The capture is mandatory. Two or more pieces

side by side at the same diagonal cannot be captured.

Figure 3 shows both scenarios, being that the scenario

of an unpermitted capture is show by the king (marked

with a D on top of it, from “Dama”, the name used in

Brazil).

Figure 3: Capture of pieces at the game.

6- The man captures the king and the king captures

the man. Man and king have the same value to capture

or to be captured.

7 – The man and the king can capture both

forwards and backwards one or more pieces.

8- The man that jumps over a crowning row during

the capture of various opponents, but does not ends it

movement at that row, shall not be promoted to king,

as can be seen in Figure 4.

Figure 4: Capture jumping through a crowning row.

9- While performing the capture of multiple pieces,

it is allowed to jump over the same empty square, but it

is not possible to capture twice the same piece. It can

be seen in Figure 5.

Figure 5: Capture of several pieces jumping over a same

empty square.

10- The captured pieces shall not be removed from

the board until the move has been finished, as shown in

Figure 6.

Figure 6: Capture and removal of several pieces.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

11- After the kings have been played 20

successively times, without a man have been played or

without a capture, the match is declared a draw.

12- End of matches of 2 kings against 2 kings; 2

kings against one king; 2 kings against one king and

one man; one king against one king; or one king

against one king and one man are declared a draw after

five consecutive plays.

There is one last rule, called “rule of majority” in

Brazil. If in a single playing movement it is possible to

capture in more than one way, it‟s compulsory to

execute the move that captures the most number of

pieces. This rule was not implemented in order to

allow the player and the genetic algorithm a greater

freedom of choice of action to take in order to better

assess whether the action it chooses is really the one

that will bring more benefits.

3. Application

3.1 User Interface

When the application is launched, the user must

write one username and choose either to perform or not

the first move. The username will be used to maintain a

configuration file about the successful movements of

the player.

The user can, then, interact with the graphical

interface, dragging the pieces from their origins to

desired destinations. The moves are validated using the

rules described in section 2.

Figure 7: Application‟s Graphic User Interface

The right middle section of the interface shows the

match move‟s history according to characters that will

be presented in section 4. The upper left section shows

the current number of pieces of each player. In the

upper right section is shown the turn owner or the

match result at its end. This is all shown in Figure 7.

3.2 Control of current turn and end of match

A model of finite state machine (FSM) is used to

control the match‟s turns. The turns are defined as

states of the application. The FSM of the application is

in accordance with the proposals of Moore and Mealy,

because it contradicts the traditional model, which is a

model of acceptance/recognition and does not work

with actions. The formal definition of the FSM is a

tuple <, , S, S0, , >, where [Wagner et al. 2006]:

  is the input alphabet: a non-empty set of finite

symbols;

  is the output alphabet: a non-empty set of

finite symbols;

 S is a non-empty set of finite states;

 S0 is the initial state, and is one element of S;

  is the transition function for the states: S x 

 S;

  is the output function. For Mealy model, the

output function depends on the input alphabet

(: S x  ) and the current state. For Moore

Model, the output depends only on the current

state (: S  ).

The state machine developed in this application

accords with Moore model. It has four game states,

defined as: Game Start, User‟s Turn, Computer‟s Turn

and Game Over.

The Game Start is the initial state of the

application. In it is asked the username and who should

have the first move. This response is taken as input and

based on this it defines who has the first move. Reset

the game is one action that destroys the current

executions, forces the restart of the application and

switches the value of the last initialization, changing

the order of players‟ turns.

In the User‟s Turn, the FSM awaits the trigger of a

transition to the corresponding state through a valid

move. The state, then, shall make the move, which

was, until then, merely a visual representation. It shall,

also, verify if the turn is composed by more than one

movement, validating its conclusion or not. The next

step is to remove the captures pieces from the board,

and check whether the match is over, using as grounds

the rules in Section 2.

During the Computer‟s Turn there will be executed

tasks relevant to the computer‟s movements. Initially,

the state will make a selection of the best move, which

characterizes the decision making of the machine. This

is achieved through a genetic algorithm that shall be

discussed further along in section 4. Similarly to the

User‟s Turn, it is also verified if the match is over.

The Game Over state is achieved when the User‟s

Turn state or the Computer‟s Turn state verifies,

positively, that the match ended according to the game

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

rules. The following actions are, then, remove captured

pieces, that are still visible, from the board, perform

the animation relative to the match‟s finish, and end

the FSM.

It is important to highlight that the transition

function connecting states is not explicit. In the

application‟s domain, the set of operations that

evaluates a move is considered a transition function.

This evaluation operations use the rules presented

previously and the verification of the match‟s end,

whether it is a victory or a draw.

4. The Genetic Algorithm

The Genetic Algorithm, or GA, is an evolutionary

approach that uses a metaphor regarding its basic

genetic material. It searches to use principles found in

nature, based on Darwin‟s natural selection model, in

order to obtain solutions for algorithmic problems.

That being said, gene and chromosome are used to

represent inputs of the problem in question.

Genetic algorithms are indicated in situations that

require the analysis of a large number of variables, or

moments that allow one or more satisfactory solution

[Lopes 2001].

In the developed application, it was used the

following definitions [Carvalho 2008]:

 Individual: represents a possible configuration

of the board;

 Chromosome: is the data structure that

represents the individual, being the current

configuration of the board;

 Population: vector of chromosomes that

represents the set of possible outcomes;

 Adaptation of the individual: defines how

good is the chromosome as a solution for a

given problem;

 Selection: a set of criteria that determines

which individuals in the population will be

reused in the search for a result of higher

quality.

The GA is applied to a population P of individuals

that evolves through the action of genetic operators in

order to obtain a population P’, which would be a

descendent of P [Lopes 2003]. The genetic operators

are selection, mutation, crossover, inversion and

substitution. This application‟s GA uses only the

mutation operator, using two different types of it:

mutation by sub-exchange and mutation by

replacement. The mutation operator guarantees the

creation of features in the individuals of the population

that did not exist before.

The mutation by sub-exchange [Lopes 2003]

receives a chromosome a = <a1, a2, ..., ai, aj, ..., a64>

and returns a chromosome a’ = <a1, a2, ..., aj, ai, ...,

a64>, where 1  x1 < x2  64.

The mutation by replacement is an extension of the

mutation proposed by Holland, which used a binary

alphabet. It receives a chromosome a = <a1, a2, ...,,

a64> and an alphabet U, and returns a chromosome a’

= <a1, a2, ..., ai, ..., aj, ..., a64>, where i and j are

random positions in the vector with 1  i < j  64. The

bold characters correspond to the chromosome

complement of the characters ai and aj, in the U

alphabet.

4.1 About the application’s GA

The initial population of the game consists of only

one chromosome, due to the fact that the chromosome

is a representation of the configuration of the board. In

the implemented GA, the chromosomes are represented

by a vector of 64 characters. It was agreed that the

characters would be as follows: “B” would be a square

with a white man in it; “P” would be a black man; “A”

represents a white king; “E” would be a black king; “-”

represents an empty square; “#” is a square that cannot

be occupied; “X” is a square occupied by a computer‟s

piece that was captures; and “Y” is a square occupied

by an user‟s piece that was captured. They would obey

the following restrictions:

 The maximum number of white or black pieces

is 12;

 Each character occupies a position i from the

vector that represents the chromosome, such

that 0  i  64;

 If the ratio of i per 8 is even, the odd positions

of the board will be occupied by the character

“#”, and the even positions will be occupied by

the remaining characters;

 If the ratio of i per 8 is odd, the even positions

of the board will be occupied by the character

“#”, and the odd positions will be occupied by

the remaining characters.

Thus, the chromosome corresponding to the initial

configuration of the board may be represented as <#,

P, #, P, #, P, P, #, P, #, P, #, P, #, #, P, #, P, #, P, #, P,

-, #, -, #, -, #, -, #, #, -, #, -, #, -, #, -, B, #, B, #, B, #, B,

#, #, B, #, B, #, B, #, B, B, #, B, #, B, #, B, #, B, #>,

which is shown in Figure 1.

4.2 Creation of new chromosomes and
adaptation factor of the individual

During the creation of new chromosomes, the GA

performs a few tasks. Initially, it analyses whether or

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

not it is possible to move a piece. Then, it verifies if it

is possible to capture an opponents‟ piece. The second

action has priority over the first and, if it is satisfied,

there will be generated only chromosomes that perform

a capture. Finally, the most adapted individual will

correspond to the computer‟s move.

Since the application lies in the domain of

Checkers, it is necessary to modify some operations of

the GA, in order to allow certain peculiarities of the

game. For instance, in the context of the game, a move

must always be executed. Although it may seem

obvious, for the GA it means that a new chromosome

always shall be generated to replace the current one.

This replacement has to be made even when the new

individual creates a bad scenario – of piece loss -, or

else it will incapacitate the end of the match.

The adaptation factor of the individual is calculated

in order to evaluate how good is the movement

represented by the chromosome. For such, the GA

considers the weights described in Table 1. Such

values were assigned according to tests that aimed the

best performance of the application.

Table 1: Weights W of the application

MOVE WEIGHT

Simple move 1

Move that results in the lost of a piece to

the opponent

-5

Move that results in saving a piece from

being captured

2

Move that results in the capture of a piece 3

The developed game uses a storage system to allow

a bigger evolution of the AI. Initially, the computer

may only follow one of these strategies, in order of

priority: to capture the greater number of opponents‟

pieces that results in the minimum number of

computer‟s losses; to lose the minimum amount of

pieces possible; or to make a random move.

When the computer starts playing against the user,

its database is filled. The database, in the beginning

stage of developments, was a simple archive system.

Each line in the archive is divided into two columns.

The first contain the initial configuration of the board,

and the second has the configuration achieved after

making the move. These configurations of size t, 1 < t

 64, would be windows of parts of the board that were

affected by moving the pieces.

When the user makes a move that results in the

capture of a virtual player‟s piece, the algorithm would

save the configuration before and after that specific

movement.

Due to the fact that the pieces of the players chance

color – and representations – at the end of each match,

there were agreed standard values to represent the

pieces in the saved files. The pieces of the computer

would change from “B” and “P” to “c” – lower case –

and from “A” and “E” to “C” – upper case. Similarly,

the user‟s pieces would go from “B” and “P” to “j” and

“A” and “E” to “J”. These characters, when compared

to the chromosomes of the game, would change back

to their original values.

With these data, the GA‟s system can maximize the

number of computer‟s pieces in the board, and

minimize the number of user‟s pieces. To achieve this,

it is used Equation 1.

Where W is the weight that represents how good is

a move, according to Table 1. The chromosome fitness,

calculated through Equation 1, shall be maximized

when the move is one of capture, and there is not such

a configuration in the database that result in a

computer‟s piece being lost. The value of X is defined

in Equation 2:

This implies that the evaluation process, using the

database, can be defined as follows:

1. Scan the database retrieving all records;

2. For each record found:

a. While there are new records or the match is

not over, do:

i. If there is an initial scenario equals to

the given final scenario, recursion to

item 1 with this final scenario as initial

scenario;

ii. Otherwise, apply Equation 1 and return

the results;

3. Count the total number of pieces of each

contestant on the final scenario. Apply Equation

1 and return the results.

When applied to a game of Checkers, the algorithm

aims to minimize the number of pieces lost by the

computer; avoiding moves that have previously lead to

an undesirable outcome. In other words, its objective is

to maximize the computer‟s pieces (“C” e “c”)) and

minimize the user‟s ones (“J”, “j” e “-”). The empty

square “-” is included in the minimization due to the

increasing of empty spaces be a consequence of the

capture.

5. Results

There were performed two series of tests with this

algorithm. The first consisted of using a human player

against the AI. There were played 40 games, in which

the computer won 52,5% of times. In Table 2 can be

(1)

(2)

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5

found the number of configurations in the database at

the beginning of each match; the average evaluation of

the chromosomes, with and without Equation 1; the

average evaluation of the selected individuals of

population; and, finally, the game‟s result.

The second series of tests used a different approach

of Genetic Algorithm to compare performance and

average time obtained, in milliseconds, of the

algorithms. The algorithm was the one that originated

this study, and was proposed by Carvalho [2008]. In

Table 3 is described who initiated the game, the

average time of this paper‟s algorithm, the average

time of Carvalho‟s algorithm and the result of the

game, which is Defeat if Carvalho‟s win, and Victory

if this paper‟s agent win.

Table 3: Test‟s Results

First Move Average

Time

Carvalho’s

Average

Time

Result

Our algorithm 10.13 76.56 Defeat

Carvalho's 46.45 42.27 Defeat

Our algorithm 91.16 0.78 Victory

Carvalho's 62.74 28.39 Victory

Our algorithm 13.85 11.29 Victory

Carvalho's 70.77 39.85 Victory

Our algorithm 0.57 79.09 Defeat

Carvalho's 52.67 59.86 Defeat

Our algorithm 4.25 71.54 Defeat

Carvalho's 0.61 95.83 Defeat

Our algorithm 0.64 92.20 Defeat

Carvalho's 61.29 0.032 Victory

Our algorithm 76.65 17.42 Victory

Carvalho's 45.59 25.73 Victory

Our algorithm 79.95 0.00 Victory

Carvalho's 138.26 20.33 Victory

Our algorithm 33.46 30.60 Defeat

Carvalho's 1.0 3.20 Victory

Our algorithm 121.0 24.44 Victory

Carvalho's 40.68 38.39 Victory

The final results, regarding the games played

against others AI techniques and against human

players, are described in Table 4.

Table 4: Test‟s Results

Regarding games against other AI techniques

Number of victories of the computer against

other AI techniques

12

Number of defeats of the computer against

other AI techniques

8

Total 20

Regarding games against human players

Number of victories of the computer against

human player

21

Number of defeats of the computer against

human player

19

Victories in which there were differences

between columns A and B (Table 2)

11

Defeats in which there were differences 9

between columns A and B (Table 2)

Victories in which there were not differences

between columns A and B (Table 2)

10

Defeats in which there were not differences

between columns A and B (Table 2)

10

Total 40

6. Discussions

The application showed a good performance, being

able to confront nicely a common user. It also showed

a significant improvement when using the decision

rules along with the weights of the GA, rather than just

using the weights to evaluate chromosomes.

About the selection of pieces, the application

showed a better performance with the moves of man

instead of kings. This is because the range of action of

the man is smaller, therefore being easier to predict the

possible movements. It made clear that the algorithm

can generate moves in which the computer just delivers

its king to be captured, even though it was possible to

perform a different movement. However, when using

Equation 1 these situations became far less frequent.

Table 2 presents the results of 40 matches. Initially

the database had 267 board configurations saved. This

quantity increased during tests, and turned into 579 by

the end of analysis. After a few games, it was possible

to notice that the average evaluation of the

chromosomes, with and without Equation 1, began to

differentiate. The values obtained using the equation

were superior to those obtained without it.

In the tests executed by a human player the

machine began winning the matches. As the user

improved, the machine‟s and the user‟s levels began to

normalize. Even still, the virtual opponent presented a

satisfactory result, showing that the system served its

purpose of assisting the gamer to improve its abilities.

7. Conclusion

This paper proposed the use of genetic algorithm to

improve the artificial intelligence of a virtual

adversary, and, so, improve the user‟s experience. This

thought lead to the development of a game of Checkers

that used the GA in its decision-making process.

It was achieved, then, a tool that compel the user to

evolve as he/she plays, having a progressive

improvement of his/hers abilities. Although the results

were satisfactory, the random factor of the algorithm

makes the application unstable, being able or not to

perform the best movement for a certain configuration

of the board. Since the goal, however, was not to

obtain an invincible game, but one that helps the user

to develop, this fault shows little importance.

It stays as a future goal to continue to develop the

system in order to make it able to classify the user

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6

according to his/hers abilities in game, and to use this

information to improve the realism and entertainment

levels of games. The next approach would be

increasing the trees of movements, since this

methodology only used one level of search. The

performance of the algorithm would significantly

improve with a deeper tree search, therefore obtaining

a better analysis of which piece to move and where.

References

CARVALHO, L.F. B. S. 2008. Um Jogo de Damas

Evolutivo. Trabalho de Conclusão de curso, Instituto de

Computação, Universidade Federal de Alagoas. Maceió.

KECMAN, V. 2001. Learning And Soft Computing - Support

Vector Machines, Neural Networks, And Fuzzy Logic

Models, The MIT Press.

LOPES, R. V. V. 2001. Um algoritmo genético em hardware

para monitoramento de sinais vitais, Dissertação de

doutorado em informática, Centro de Informática,

Universidade Federal de Pernambuco.

LOPES, R. V. V. 2003. Um Algoritmo Genético Baseado em

Tipos Abstratos de Dados e sua Especificação em Z.

Tese de Doutorado. Universidade Federal de

Pernambuco. Recife, PE.

RUSSUEL, S. AND NORVIG, P. 2004, Inteligência

Artificial, 2ª Edição, Editora Campos.

SCHWAB, B. 2004. AI Game Engine Programming,

Charles River Media.

SILVA, M. R. 2008. O Jogo De Damas para a Educação.

Dissertação Pós Graduação, Universidade de Franca –

UNIFRAN, Franca.

TATAI, V. K. 2003, Técnicas de sistemas inteligentes

aplicadas ao desenvolvimento de jogos de computador,

Dissertação de mestrado em engenharia elétrica,

Faculdade de Engenharia Elétrica e de Computação,

Universidade de Campinas.

WAGNER, F. AND SCHMUKI, R. AND WAGNER, T.

AND WOLSTENHOLME, P. 2006. Modeling Software

with Finite State Machines: A Practical Approach. CRC

Press.

Xadrez Regional. 2002, „Jogo de Damas - Regras Oficias‟.

Available in:

http://www.xadrezregional.com.br/regrasdm.html, last

accessed on August 03, 2011

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7

Table 2: Algorithm performances against a human player
Configura-

tions

Configura-

tions without

repetition

A: Average

evaluation of the

chromosomes using

only the weights

B: Average

evaluation of the

chromosomes

using Equation 1

Average

evaluation of

the selected

chromosomes

Computer

Results

267 243 -2.04 -2.04 1.0 Victory

269 245 -3.13 -3.13 -0.70 Defeat

279 254 -2.65 -2.65 0.41 Victory

282 257 -2.95 -2.97 -0.19 Defeat

291 264 -3.57 -3.57 0.47 Victory

295 268 -3.29 -3.60 -0.66 Defeat
304 277 -4.66 -4.66 -0.75 Defeat
311 284 -2.90 -2.90 -0.88 Defeat
319 292 -2.89 -2.89 -0.65 Victory
324 297 -1.21 -1.22 0.81 Victory
329 302 -3.80 -3.80 0.67 Defeat

338 311 -2.31 -2.42 0.35 Victory

347 320 -2.68 -2.68 -0.24 Defeat

355 328 -1.49 -1.49 0.68 Victory

360 333 -3.87 -3.87 0.00 Defeat
367 340 3.73 3.73 0.10 Defeat

376 348 -3.83 -3.86 -0.48 Defeat

383 354 -3.02 -3.17 -0.62 Defeat

391 362 -2.82 -2.82 0.07 Victory

399 368 -1.40 -1.43 0.21 Victory

458 421 -2.65 -2.65 0.56 Victory

458 422 -4.30 -4.30 -0.65 Defeat

468 429 -2.17 -2.17 0.54 Victory

470 431 -2.58 -2.58 1.09 Victory

474 435 -2.41 -2.42 1.02 Victory

477 438 -2.47 -2.47 1.08 Victory

480 441 -2.94 -2.95 0.57 Defeat

488 446 -1.43 -1.44 1.19 Victory

498 456 -4.88 -4.89 -1.18 Defeat

506 464 -2.54 -2.55 0.48 Victory

509 466 -4.91 -4.91 -0.82 Defeat

519 473 -1.79 -1.80 0.93 Victory

532 483 -3.86 -3.86 0.16 Victory

541 491 -2.59 -2.78 1.13 Victory

545 494 -3.70 -4.09 -0.18 Defeat

554 501 -4.56 -4.77 -0.17 Defeat

561 506 -1.13 -1.39 0.21 Defeat

570 515 -3.68 -3.84 -0.72 Defeat

577 521 -4.21 -4.65 -0.23 Victory

579 523 -2.68 -2.89 0.40 Victory

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 8

