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Figure 1: Steps to construct an octree from a depth map (a) depth map used as input; (b) cloud of points; (c) resulting octree

Abstract

Efficient collision detection is a requirement for a large number of
games. With the release of devices that enable full-body interac-
tion, new challenges arise in this area. In this paper we present a
technique for dynamic construction of octrees for collision detec-
tion, based on a cloud of points using GPGPU techniques. Since
some algorithms are not suitable for the GPU processing model,
our technique splits the processing task between GPU and CPU for
greater efficiency. The paper includes performance results from an
implemented prototype.
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1 Introduction

Digital games often rely on some form of intersection or collision
between game entities as a means to perform interaction with play-
ers or as part of the game mechanics. From the contact between
paddle and ball in “Pong” [Barton and Loguidice 2009] to pick
up items by walking over them in modern first-person shooters,
countless and varied examples may be found. Efficient computa-
tion of such collisions is not straightforward and thus the develop-
ment of optimized collision detection methods has been a challenge
throughout the history of digital games.

The problem of collision detection has also applications in other
domains, such as simulation of physical behavior in virtual reality
environments and digital prototyping of mechanisms. In the case of
games, there is specific interest in the techniques that may be exe-
cuted at interactive rates, usually referred to as real-time collision
detection. A comprehensive review of the problem in this context
can be found in [Ericsson 2005]. The problems may be broadly
divided into two categories: determining if there is a collision be-
tween two entities and finding all collisions within a set of entities.

Considering the broader domain of interactive 3D applications, the
ability of detecting collisions between entities is used to implement
different interaction techniques, as described by [Bowman et al.

2005]. There is also research that relates proper collision detec-
tion and response to a greater sensation of presence [Uno and Slater
1997]. These results are particularly relevant to digital games given
the recent availability of devices that allow unencumbered, full-
body 3D interaction in the form of the Kinect sensor [Microsoft
2011]. These devices map a region of space as a dense cloud of
points in camera coordinates. Therefore, it is necessary to process
those points in order to extract some form of shape representation
for collision detection. As will be discussed in section 2, there
are already machine learning-based implementations that build hu-
manoid articulated rigid body models from the point cloud. How-
ever, as efficient as these may be, they also limit the applications of
the device and motivate the development of an alternative solution.
One example to motivate this use is the “Kick Ass Kung Fu” project
by [Hämäläinen et al. 2005], which allows players to interact using
different implements and even to throw objects.

Our proposal is to dynamically build an octree-based volumetric
model from the cloud of points, so that this model may be used for
collision detection tests. An octree may be understood as a data
structure for hierarchical partitioning of 3D space that allows effi-
cient collision detection tests [Ericsson 2005]. This way, a general
3D volume model of the scene may be employed for interaction
within the game. To use this approach for collision detection with
data captured from the scene requires building an octree for each
new point cloud provided by the device.

The use of general purpose computing in graphics processing units
(GPGPU) techniques has been increasing with the evolution of ded-
icated graphics hardware. Given their architectural characteristics,
graphics processing units (GPUs) are well suited to problems that
can be expressed under the single instruction, multiple data (SIMD)
framework, also referred to as data parallel model, for instance,
by [Mönkkönen 2006]. GPGPU seem appealing for processing the
elements of the point cloud. However, due to interdependency be-
tween data, part of the octree-building process may not be suitable
for GPGPU implementation. Furthermore, it is desirable to make
balanced use of GPU and the computer main processors (CPU) as
pointed out by [Silva Jr. et al. 2010]. For these reasons, we pur-
sue a parallel CPU-GPU technique. Figure 1 shows the point cloud
obtained from the 3D sensor as a set of static images and a visual-
ization of the resulting processed octree.

The rest of this paper is organized as follows: section 2 presents
works found in the literature related to our project in terms of
GPGPU approaches to collision detection, octree processing or hy-
brid implementation involving GPU and CPU. Section 3 details the
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algorithm for building the octree from the cloud of points.

Section 4 describes the proposed collision detection system using
the CPU-GPU approach. Section 5 presents performance results
from a prototype implementation and section 6 concludes the paper
with a discussion of the results and future works.

2 Related Work

The use of octrees for collision detection involves three main deci-
sions: the data structure used to represent the octree, the algorithm
to build it and the algorithm to perform a collision query on the
tree. Factors affecting these decisions include limits to memory
and processing power, the form through which 3D data is available
for processing, as well as the need for updating the octree structure
in run time. [Ericsson 2005] includes a discussion on the use of
octrees for collision detection in games, which is mostly aimed at
situations where the geometry is fixed.

The Kinect sensor uses a technique based on structured light pro-
jection to obtain 3D data from the environment. This data is made
available as a “dense depth map”, which is a 2D single-channel im-
age where the value of each pixel is proportional to the distance of
the observed surface to the camera. The development kits available
to the Kinect sensor provide the ability of fitting and tracking up
to two humanoid skeletons onto the captured data [Microsoft Re-
search 2011]. If only collision with the player’s body is desired,
a number of rigid bodies may be attached to the skeleton repre-
sentation and well-known techniques, such as described by [Eberly
2001] may be employed. However, as discussed in the introduc-
tion, the purpose of this work is to allow collision testing with the
general 3D data obtained from the sensor.

Building an octree from the data obtained from the Kinect sensor in-
volves processing the dense depth map, classifying each point into
the space partitioned by the octree. A proposal for processing the
octree on the GPU was presented by [Lefebvre et al. 2005]. Those
authors implement a data structure where the tree nodes correspond
to pixels in a texture image, in which color data represents indexes
or pointers to child nodes. In that case, construction is performed
from the root to the leaves, in a top-bottom manner. One approach
discussed by [Nakamura and Tori 2008] involves the use of a linear
static data structure for the octree. Each leaf node is addressed us-
ing a technique based on the calculation of “Morton codes”, which
are a type of space-filling curve. Points are classified into the oc-
tree leaves and then the values of the internal nodes are recursively
determined by moving from the leaves to the root of the tree. How-
ever, those authors do not discuss the feasibility of a GPGPU imple-
mentation. A related bottom-up GPU-based construction technique
was presented by [Ajmera et al. 2008], who also report the use of
space-filling curves to increase the parallelization of the building
process.

One proposal for the efficient query of octrees using the GPU is
presented by [Madeira et al. 2009]. Those authors make use of
enhanced capabilities of modern GPUs to represent data structures.
The authors use a hash table indexed by Morton codes, thus being
similar to the choice adopted in the previously mentioned works.

3 The octree-building algorithm

One approach for detecting collision between two entities is to use
an octree to model them. In this case, the octree is a hierarchical
data structure that can be organized as a tree, whose root is a finite
volume in a 3D space that can be subdivided into three perpendicu-
lar planes that create eight new volumes represented as its children,
called octants. This subdivision process occurs recursively for each
child until some stop criteria is reached. [Ericsson 2005] states that
usually the maximum depth of the octree is limited to 5 or 6 levels,
due to the large number of nodes required to represent higher depth
levels. This recursive process to subdivide the octree is illustrated
in 2.

The terminal nodes, called leaves of the octree, represent areas in
space completely filled by the entity it represents. The internal
nodes represent areas with children that are at least partially filled

Figure 2: Representation of the subdivision of a octree [Nakamura
and Tori 2008]

Figure 3: Reconstruction of the points from depth map using the
equations from [Chen et al. 2002]

by the entity. The resolution of the collision model generated by
the octree depends directly on its maximum depth. The deepest
leaf from a octree with N levels has volumes with size 1

2N+1 in
relation to the root volume. Therefore a cubic octree with size L
and with N depth levels can be partitioned into cubic volumes with
size L0 calculated using Equation 1.

L0 =
L

2N−1
(1)

In this work, the octree is built from a depth map represented in gray
scale in which brighter pixels represent closer objects. Initially, the
pixels of the depth map are converted into three-dimensional coor-
dinates using Equations 2, 3 and 4 where α and β are parameters
used for calibration of the image source (usually a video camera)
and W and H are the dimension of the captured image in pix-
els [Chen et al. 2002]. Figure 3 illustrates this process.

xij = dij · tanα ·
i− W

2
W
2

(2)

yij = dij · tanβ ·
H
2
− j
H
2

(3)

zij = dij (4)

After conversion, each point (xij , yij , zij) is classified within the
volume represented by the octree nodes to obtain a model that rep-
resents this entity. The intuitive process to build the octree consists
in recursively generating the tree structure using dynamic alloca-
tion of memory. This representation is efficient but can be slow due
to the cost to allocate and to deallocate memory each time the tree
is built. An alternative process is to allocate all the memory used by
all nodes and manage this memory as the tree is built or modified.
This approach, however, negates the advantage of efficient memory
usage. These problems encourage the use of a linear representa-
tion of the octree through a vector. In this case, each node at each
level of the octree is allocated in advance in this structure. For an
octree with depth D, the number of nodes can be calculated using
Equation 5.
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Figure 4: Linear representation of an octree in the memory

N =

D∑
i=0

8i (5)

Equation 5 shows that the number of nodes grows exponentially
with the increase of the depth level of the tree. The size of the vector
to be allocated in the memory is equal to this number multiplied
by the size of the data type used to store the octree information.
Figure 4 illustrates how the nodes of the octree are stored in the
vector. To facilitate understanding, the figure is simplified, showing
only 4 children per node in a structure called quadtree, a similar
approach to octree but suitable for 2D space. The same principle,
however, can be applied to the octree, where if the node occupies
position P in the vector its children will occupy positions 8P + 1
to 8P + 8. This relationship allows iteration over the nodes of the
octree in the vector.

The octree leaves can be accessed using a hashed-based technique
called Morton code [Ericsson 2005], similarly to the approaches
described by [Madeira et al. 2009] and [Ajmera et al. 2008] which
converts a point (x, y, z) from a 3D space into an index of the vector
that stores the octree, since its children are stored in a consistent
order with the code obtained.

The Morton code can be calculated using Equations 6, 7 and 8
and the values (x, y, z)min and (x, y, z)maxcorrespond to the lim-
its of octree volumetric boundaries in 3D space. In these equa-
tions, N is an integer equal or greater than the depth of the oc-
tree. The function trunc(x) returns an integer corresponding to
x without the fractional part. The function intercalate(A,B,C)
returns a number obtained by the composition of bits from A, B
and C successively merged. In other words, if A = (a1a2a3...)2,
B = (b1b2b3...)2 and C = (c1c2c3...)2, the return from this func-
tion is (a1b1c1a2b2c2a3b3c3...)2.

Mx = trunc
(

x− xmin

xmax − xmin
· 2N

)
(6)

My = trunc

(
y − ymin

ymax − ymin
· 2N

)
(7)

Mz = trunc
(

z − zmin

zmax − zmin
· 2N

)
(8)

M = intercalate (Mx,My,Mz) (9)

The use of Morton code allows the classification of the points from
the depth map in the octree structure to be carried out in the fol-
lowing way: first, the Morton code corresponding to the position
of a point is calculated. Then, the value of the leaf indexed by that
code is modified, indicating that the volume in this space is filled.
After all points have been classified, the information present in the
leaves should be recursively propagated to their parent nodes in the
tree. The number of operations needed to build the tree according
to this approach is given by Equation 10, where P is the number of
points to be classified. The second part of the equation corresponds
to the number of nodes that need to be accessed for propagating
information recursively.

NOP = P +

D∑
i=0

8i (10)

The usual approach to classify the points in an octree to detect the
collision is to recursively test if the point is contained in the volume
represented in each node until it reaches a leaf. In this case, the
classification of each point requires D operations, where D is the
depth of the tree and P is the number of points to be classified as
shown in Equation 11.

N ′OP = P ·D (11)

This approach to classify the octree leaves with Morton code uses
only one read access on the depth map and a write access on each
octree leaf so that the classification of each point is independent of
the other, facilitating the use of parallel processing techniques. The
second step involves the recursive propagation from the leave in-
formation can also be implemented in a parallel manner; however,
it requires some procedures to synchronize the information because
the final state of each node depends on the value of its eight chil-
dren.

4 System architecture

The market demand for real-time and high definition graphics made
GPUs evolve from dedicated graphics units into a highly parallel
multi threaded processor [Nvidia 2011]. This evolution allowed
the use of techniques to enable the process of non-graphical algo-
rithms with high-density arithmetic in order to take advantage of
the specializer multi-processor architecture of the GPU used to ren-
der graphics. This set of techniques called GPGPU requires some
knowledge of the graphics pipeline for its use [Owens et al. 2007].

The CUDA (Computer Unified Device Architecture) is an architec-
ture that allows the execution of parallel general purpose algorithms
in the GPU, acting as a co-processor to the CPU. The parallelism
is possible by the use of an architecture classified as SIMT (Sin-
gle Instruction Multiple Thread), a simplification of SIMD (Single
Instruction Multiple Data), in which the same program is run by
several parallel threads. These programs are called kernels. With
CUDA, there is no need to deeply know the graphics pipeline to
exploit the GPU resources, since features are provided to facilitate
access to resources of the GPU [Nvidia 2010].

Another important concept in this architecture refers to the organi-
zation of the threads in the GPU multiprocessor. This organization
can be explained in terms of the computational grids and block of
threads. A block is composed by up to 512 threads that can be refer-
enced in 1, 2 or 3 dimensions. The computational grid is composed
of up to 65,536 blocks in each dimension. These blocks can be
identified in 1 or 2 dimensions. The number of threads allocated in
each block and the number of blocks in each grid is set during the
kernel execution. Figure 5 shows their hierarchical organization.

The CUDA program establishes the existence of two main entities:
the host, represented by the CPU, and the device, represented by
the GPU. The device accounts for implementing and executing the
kernel. In general, the host is responsible for the initial call to the
program, its serial execution and for the calls to the kernels, which
are executed in parallel in the GPU, as shown in Figure 6. Usually,
the routines that have little or no parallelism is implemented to run
in the CPU, while the routines that have a large amount of data that
can be safely processed in parallel are implemented to be executed
in the GPU.

To develop the prototype, two modules were evaluated. The first
implements the octree to be fully executed in CPU, while the sec-
ond implements two kernels to be executed in GPU. One kernel
accounts for extracting the points from the depth map and classify-
ing the leaves on the octree using the Morton code approach. The
other kernel accounts for propagating the results from the leaves to
their parents. The goal was to compare the performance of each of
these scenarios.
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Figure 5: Hierarchical organization of the grid and the blocks of
threads. Based on [Nvidia 2010]

For the GPU implementation, the analysis of the depth map for
building the octree leaves was performed by allocating a two-
dimensional block with 16x16 threads, totaling 256 threads, where
each thread is responsible for examining a pixel in the depth map.
This approach allows greater parallelization of activities. Each
thread is also responsible for classifying the leaves of the octree
according to the algorithm used to calculate the Morton code. The
kernel that implements the propagation algorithm to the octree root
considers that each thread is responsible for classifying the current
node from the values of their children, using 512 threads aligned as
a vector. This approach guarantees high performance in the calcula-
tion of child nodes, but to the extent that the results are propagated
to parent nodes, the number of threads effectively used decreases
due to the limitation of allocating the amount a fixed number of
threads during program execution.

The algorithm used to propagate the results to the parents nodes
had to be adapted to the kernel, since the CUDA does not support
recursion in its older versions. Thus, the algorithm computes all
the nodes of a certain level before propagating the results to their
parents. For example, for an octree with depth level 6, the leaves are
classified from the depth map; at the end of this classification, all
the nodes from level 5 are built using the results from level 6, and
so on, until reaching the root node. In CPU, the same approach was
used instead of a recursive function aiming at a proper comparison
of the results.

5 Experiments and Results

The system specification used for the implementation and execution
of the prototype is shown in Table 1.

Table 1: System specifications

Processor Intel Core i7 860 2.8GHz (4 cores + HT)
RAM 4GB DDR3 667 MHz
Video Card Nvidia GeForce GTX 580 1536 Mbytes
Video Driver Version 275.33
OS Windows 7 64-bit SP1
IDE/Compiler Visual C++ 2008 SP1 Professional
CUDA Toolkit Version 3.2
Compute Capability 2.0

Figure 6: Programming model using CUDA. In this model, serial
code executes in the host (CPU) while the parallel code executes in
the device (GPU). Based on [Nvidia 2010]

Figure 7 shows the result of the execution of the two first modules
mentioned in Section 4, using a synthetic depth map with 320x240
pixels as input.

The initial analysis of these results shows that the performance gain
occurs during the construction of the octree leaves, built directly
from the depth map. However, during the propagation of results to
their parents, the time used by the CPU is lower than that of the
GPU.

After these initial tests, a third module was developed in order to
take advantage of both approaches. In this new module, the analysis
of the depth map and build of the leaves are targeted to run in the
GPU, while the propagation and build of the intermediate nodes are
performed in the CPU.

Figure 8 compares the processing time obtained with the execution
of each module (GPU+CPU hybrid module, only CPU and only
GPU). For these experiments, the depth map used was obtained
from Kinect device (as shown in Figure 1) in an off line manner,
i.e., the depth map was captured through the sensor and stored as
images, which were later used as input data. The depth map has a
640x480 pixel resolution.

The results of experiments show the advantage in using the GPU to
build the octree, both for processing solely in the GPU or in combi-
nation with the CPU. The treatment of the depth map is the critical
step that gets the most benefit with the use of parallel processing,
since its pixels can be processed in parallel by different threads, as
opposed to running in the CPU, where each pixel is treated individ-
ually through the use of a loop that runs through the image.
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Figure 7: Chart showing the process time used to compute each
depth level of an octree in the GPU and in the CPU, where Level
6 indicates the leaves from octree and the Level 1 the children of
the root node. The bottom chart shows the detail of the same result
excluding the time elapsed to process the leaves (level 6)

The fact that the propagation of the results has lower performance
in the GPU as the proximity of the root can be explained that the
GPU architecture allocates a minimum number of thread blocks,
regardless of the number of threads that will be used. Thus, for the
processing of the children node at level 1, even if only one thread
is effectively used, the entire block is executed. This is evidenced
by almost constant times during the building of levels closest to the
root (explicitly from level 3).

Using this approach, other tests were performed by varying the
maximum depth of the octree. Figure 9 shows the total process-
ing time to build the entire octree, considering all the approaches
presented in this work and ranging the maximum octree depth. The
results show that using the GPU for the classification of leaves from
the depth map also provides a significant performance increase for
lower values of the maximum depth. Note that it was not possible
to execute tests using a value of depth greater than or equal to 7 due
to limitations of the GPU in allocating all the necessary threads and
memory space. From Figure 9 it is possible to calculate the speed
up rate comparing the use of GPU with the pure CPU implementa-
tion. These rates are shown in Table 2.

6 Conclusion

An implementation for the creation of the octree using a mixed ap-
proach between GPU and CPU to build octree representing a spa-
tial volume was presented, used here for the purpose of collision
detection. The results show the advantage of using GPGPU tech-
niques, specifically the CUDA language, to process large data vol-

Table 2: Speed up rate compared to CPU implementation

Max Depth GPU+CPU GPU only
D=6 29.79 27.89
D=5 28.19 18.97
D=4 31.10 20.34

Figure 8: Chart showing the process time used to compute each
depth level of an octree in GPU, CPU and CPU-GPU, where Level
6 indicates the leaves from the octree and Level 1 indicates the chil-
dren of the root node. The bottom chart shows the detail of the same
result excluding the leaves from the octree

umes such as the depth map used as input, since problems involving
image processing are generally parallelizable and suitable to run in
the GPU.

In this prototype, the depth map was previously obtained using
Kinect, but future work may involve the task of video capturing
and its processing in real time, since the presented processing time
of the creation of the octree is adequate to this. Another future
possibility is the implementation and integration with the algorithm
proposed by [Madeira et al. 2009], in order to execute the search in
the octree in the GPU too.
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