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Figure 1: Procedurally generated content; from left: Hnaidi et al. 2010; Zhou et al. 2007; Parish and Müller 2001.

Abstract

The development of a complex game is a time consuming task that
requires a significant amount of content generation, including ter-
rains, objects, characters, etc that requires a lot of effort from the
designing team. The quality of such content impacts the project
costs and budget. One of the biggest challenges concerning the
content is how to improve its details and at the same time lower the
creation costs. In this context procedural content generation tech-
niques can help to reduce the costs associated with content creation.
This paper presents a survey of classical and modern techniques
focused on procedural content generation suitable for game devel-
opment. They can be used to produce terrains, coastlines, rivers,
roads and cities. All techniques are classified as assisted (require
human intervention/guidance in order to produce results) or non-
assisted (require few or no human intervention/guidance to produce
the desired results).
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1 Introduction

One of the main components of modern games production is the
content design. The outcome of that effort are the objects and the
environments the player will interact with, for instance. The quality
of such content generation directly impacts the cost of the project
and the final content often requires a team composed of several
artists and 3D modelers in order to be produced. The environ-
ment generation, for instance, demands the creation of the main
area (where player will spend most of them time) and the surround-
ings arenas (places that may not be visited by the player). If the
surrounding areas are not so important the creation process of such
content can be tedious and a waste of time for the team. The time
invested on such peripheral areas could be better used if applied to
the main area instead.

In this context procedural techniques have been emerging as a po-
tential solution for content creation. In opposition to the traditional
creation method, which involves human interaction though all the
process (e.g. handmade drawing), the procedural generation ap-
proach relies on automated content creation. Such content is the

result of a mathematical function, for instance. An example of pro-
cedural generation was the one introduced by Ken Perlin [Perlin
1985], when he developed a method to generate parametrized val-
ues that could be used to create realistic terrains, for instance. Even
though procedural content generation can produce a complete and
polished environment that can be used with no modifications, it can
also be used as a starting point for the designing team. The artist or
the game designer can enhance the procedurally generated content
in order to make it suitable for the game context, avoiding the te-
dious task of creating surrounding areas from scratch, for instance.
The evolution of procedural generation techniques may allow the
creation of more complex content such as whole scenes, saving
working hours and decreasing the project cost.

The study focused on procedural content generation has been evolv-
ing and resulting in several techniques that can be applied to game
development. The purpose of such techniques covers the genera-
tion of several types of contents such as continents, terrains, rivers,
roads, cities and even complete worlds. The knowledge of such
techniques and their results can help the creation of new ones and
also facilitate the evaluation of what procedural content generation
method suits better for different game development scenarios.

This paper presents a survey of procedural content generation tech-
niques that can be used in game development. All techniques are
grouped according to the their resulting content type (e.g. terrains,
rivers, etc) and after categorized as assisted (heavily relies on hu-
man intervention/guidance in order to produce the desired results)
or non-assisted (requires a few or no human intervention/guidance
in order to produce the desired results). Every technique is de-
scribed and followed by an image that illustrates the visual result of
such technique; information regarding processing time is provided
when available in the reviewed paper, so it is possible to identify
techniques that are suitable for a real-time approach, for instance.

In the scope of this paper a technique is classified as non-assisted
when the method produces a satisfying result with no human inter-
vention and/or guidance. If the technique must be provided with
a few adjustments/parameters such as the number of iterations, a
height limit, etc and there is no need to readjust those elements
during the iteration process, the technique is also classified as non-
assisted. If the method requires a significant amount of time for
adjustment and/or parametrization or if human decisions or inter-
ventions must be performed during most of the process in order to
generate a satisfying result, then the technique is classified as as-
sisted.

The remainder of this paper is organized as follows: section 2
presents techniques related to terrain and continents generation;
section 3 presents techniques related to roads and rivers; section 4
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Figure 2: Rendered height maps affected by erosion simulation.
[Olsen 2004]

Figure 3: A canyon with rocks detached from the cliffs. [Peytavie
et al. 2009b]

shows techniques related to cities and urban spaces; finally section
5 presents a conclusion and some thoughts about the applicability
and evolution of procedurally content generation techniques related
to game development.

2 Terrains and Continents

The terrain is a fundamental part of the content of several games
and it plays an important role in the replayability process. An inter-
esting terrain will keep the player motivated to explore new places
and spend more time playing. The procedural generation of terrains
and continents has proved to be feasible and can be seen in several
prior works (e.g. [Greuter et al. 2004; Nitsche et al. 2006; Togelius
et al. 2007]).

Some of the techniques used in procedural generation of ter-
rains and continents include noise [Perlin 1985], L-systems
[Prusinkiewicz and Lindenmayer 1996] and fractals [Mandelbrot
1977]. Those techniques can be used alone, combined among each
other [Dollins 2002; Haggström 2006; Lintermann and Deussen
1998; Linda 2007; Prusinkiewicz and Hammel 1993] or combined
with other techniques such as erosion simulation e.g [Musgrave
et al. 1989; Olsen 2004; Kelley et al. 1988; Roudier et al. 1993;
Chiba et al. 1998; Nagashima 1998; Benes and Forsbach 2001].
The procedural generation can also be parametrically controlled in
order to avoid completely random content. The parametrization
can be achieved in different ways such as adjusting division lim-
its [Kamal and Uddin 2007] or controlling distortion using splines
[Szeliski and Terzopoulos 1989]. The terrain can also be generated
interactively though high level tools using volumetric discrete data
structure in order to make the representation of overhangs, caves
and arches easier [Peytavie et al. 2009b]. Figures 2 and 3 show
some of the previously mentioned techniques.

An assisted method that uses a compact vector-based model can
be used to efficiently and accurately control the terrain generation
process [Hnaidi et al. 2010]. As pointed by the authors when a
constraint is used the vicinity of that constraint can lack in control
[Gain et al. 2009; Rusnell et al. 2009] or depends on the character-

istics of another terrain image [Zhou et al. 2007]. In order to avoid
that problem the method uses control curves with the correspond-
ing elevation, gradient and noise constraint parameters attached to
them, which generates a set of maps that are further combined in
order to produce the final terrain. Those curves are based on Bezier
and diffusion curves [Orzan et al. 2008] and they are created and
adjusted by the operator responsible for the terrain creation. The
curves parameters must be tweaked by the operator according to
the terrain characteristics so the method can produce the desired
outcome. This method allows the creation of terrains with fine con-
trol over the content and can incrementally add/remove as many
details as needed by adjusting the control curves. Even though the
use of diffusion curves demands a significant amount of time dedi-
cated to parameters adjustment, causing the operator to spend more
time to achieve any results, this approach is able to produce much
more predictable and controllable results compared to a pure fractal
or non-assisted method. As exemplified by the authors the operator
took almost 45 minutes to carefully edit all the details needed to
produce a complex terrain. Figure 4 illustrates the use of control
curves and their results.

Other assisted approach to terrain generation guided by constraints
is the synthesis from digital elevation models [Zhou et al. 2007]. In
that technique the resulting terrain is automatically generated based
on the visual style of a real terrain data (e.g. a model provided by
a government geological agency) and meets the feature constraints
of the sketch made by the user. The algorithm breaks the sketch
map into small patch regions and searches through the real terrain
height field for structural feature matches. The extraction of fea-
tures (valleys, ridges, hills, etc) from the real terrain height field is
achieved using an adapted Profile recognition and Polygon break-
ing Algorithm (PPA) [Song and Hsu 1998]. After those features
are extracted (in form of patches), they are combined into the re-
sulting terrain according to the matches against the user sketch. A
procedure is applied to smooth the transition between the different
patches. Figures 5 and 6 illustrate the technique applied to the
Grand Canyon and Mount Jackson elevation models using a user
sketch based on the Half-Life game logo.

Another assisted technique used to terrain and continent genera-
tion is based on interactive genetic algorithms [Walsh and Gade
2010]. The author states that some genetic algorithms used in ter-
rain generation techniques overwhelm the user with parameters and
adjustments that may not be easy to master and often rely on deep
knowledge about the tool or are required to use real world data as
input, such as Digital Terrain Elevation Data (DTED)[Ong et al.
2005; Frade et al. 2009; Saunders 2006]. The idea of the author
is to make the user not aware of parameters and configurations as
numbers but as images instead. The terrain generation is achieved
by an interactive genetic algorithm that can be defined as the pro-
cess of selecting and combining members of a population in order
to produce a new population (descendants). In the context of this
paper, the population members are complete scenes featuring wa-
ter, terrain, illumination and clouds that are presented to the user
as a rendered image. Each of those elements (water, terrain, etc) is
internally represented as an 8 bit chromosome, so every population
member has a set of chromosomes that defines how the scene it rep-
resents is rendered. Starting with a randomly generated population
of 8 members (complete scenes), the user selects 3 of them that best
describe the desired resulting scene (e.g. if a scene featuring lower
mountains is desired, the user will choose members of the popula-
tion that feature such characteristic). After that a new population
is generated based on the combination of genes (crossover) among
the members the user selected and the rest of the population. Since
the members the user selected have high priority to combine and
transmit theirs genes to further descendants the next generation of
members are more likely to have theirs characteristics, which are
the features the user is looking for. In order to increase the variabil-
ity of content each member may suffer a mutation operation which
changes the value of a random bit of any of its features. The se-
lection and combination process are repeated by the user until a
member of the population with the desired features is found. Fig-
ure 7 shows the initial randomly generated population of 8 members
available for user selection.

Evolving the concept of user input there is a non-assisted approach
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Figure 4: Different kinds of landscapes (lake and desert) created
with 45 and 26 control curves respectively. [Hnaidi et al. 2010]

Figure 5: Grand Canyon terrain syntetization. On the left: the user
sketch, the Grand Canyon elevation model and the resulting height
map. [Zhou et al. 2007]

Figure 6: Mount Jackson (Colorado) terrain syntetization. On the
right: the user sketch, the Mount Jackson elevation model and the
resulting height map. [Zhou et al. 2007]

Figure 7: Initial population of terrains available for user selection.
[Walsh and Gade 2010]
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Figure 8: Several scenes produced with different agents configura-
tion. [Doran and Parberry 2010]

that makes a controlled procedural terrain generation using software
agents [Doran and Parberry 2010]. Using a set of six different agent
types (coastline, smoothing, beach, mountain, hill and river agent)
parametrized according to designer-defined constraints, the agent
walks in the map generating content. Depending on the number
of agent and their constraints/types the user can generate different
maps. The agent interacts with the environment according to its
type so a coastline agent will produce land and coastlines, a moun-
tain agent will rise the height of the points it visits, a beach agent
will decrease and smooth the height of points near the coastline, etc.
The agents work on the resulting map simultaneously and the ac-
tion of one agent can interfere in the actions of the others. The con-
straints each agent carries avoid unnatural terrain patterns, such as
a river climbing a mountain (river agents tend to avoid high points
when they walk through the map). A terrain designer can adjust
the amount of agents, their types and constraints in order to pro-
duce the desired terrain (e.g. a generation without river agents will
show no river in the result, a mountain agent carrying low height
attributes will produce low mountains, etc). Figure 8 shows a set
of 512 x 512 heightmaps generated using different agents settings;
each terrain takes about 20 seconds to be produced by the agents.

Other non-assisted technique generates pseudo-infinite terrain and
continent and is mainly based on Perlin [Bevilacqua et al. 2009].
The terrain and the coastline are created based on a procedurally
generated matrix that globally describes the features of every region
in the terrain (continents, coastlines, etc). The matrix is generated
with no human intervention or guidance. The matrix contains low
detail information that servers as a seed to the rest of the algorithm
that generates high detail information. Every point in the terrain
is mapped to an entry in that matrix and then adjusted to meet the
description found. The point receives its height value based on the
matrix description and on a series of transformation and interpola-
tions influenced by its neighbors. The content generation of every
point is controlled by Perlin noise. The matrix size is much smaller
than the terrain size so several points of the terrain are mapped to
the same entry in the matrix. It forces the content generation of each
point to rely mostly on its neighbors, using the matrix description
as a clue to guide the content generation. Figure 9 shows a terrain
generated by this technique.

Another non-assisted technique proposes a tiling method for gen-
erating piles of rocks without any computationally demanding
physically-based simulation [Peytavie et al. 2009a]. According to
the authors previous periodic techniques that use tiling of rocks tend
to generate repetitive patterns, which produces unrealistic terrains.
In order to solve that problem aperiodic tiles of rocks into contact
are used, based on a modified corner cube generation algorithm [La-
gae and Dutré 2006]. The technique has two main steps: generation
of a set of rock tiles and the generation of the rock piles. In the first
step a set of aperiodic tiles of rocks are generated, ensuring the
rocks are touching each other. An aperiodic tile of rock can be de-
scribed as a cube filled with small rocks, each one generated by ran-

Figure 9: Terrain generated by Charack featuring coastlines and
beaches. [Bevilacqua et al. 2009]

Figure 10: A virtual canyon with piles of rocks and boulders lying
in the river (25313 rocks). [Peytavie et al. 2009a]

dom points distributed inside the cube and associated with Voronoi
cells; the final rocks geometry is created by eroding the surface of
Voronoi cells. In the last step the technique fills a volumetric model
with some of the pre-generated set of rock tiles; the rocks that do
not satisfy a certain contact threshold with the volumetric model
are removed. The result is a volumetric model filled with rocks that
are not likely to produce a repetitive patterns. Figures 10 and 11
demonstrate the technique results.

3 Roads and Rivers

A realistic landscapes is composed of different objects such as trees,
roads and rivers. The two latters are important artifacts to break the
artificial homogeneity that sometimes is created by procedural ter-
rain generation techniques. A landscape featuring roads and rivers

Figure 11: A Zen garden scene featuring 94658 small stones orga-
nized into lines and circular patterns. [Peytavie et al. 2009a]
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Figure 12: Roads procedurally generated and influenced by the
environment (river, mountains, etc). [Galin et al. 2010]

seems to be a more compelling and convincing environment to the
player. The generation of such features, however, is a complex task
that involves the consideration of elements such as path planning,
trajectory cost calculation, constraint analysis to avoid unreal pat-
terns, discretization of points and so on. Several procedural tech-
niques have been proposed to generate roads such as tensor fields to
guide the road graph generation [Chen et al. 2008], interactive syn-
thesis of urban street networks [Aliaga et al. 2008; Vanegas et al.
2008] and template patterns combined with Voronoi diagrams [Sun
et al. 2002].

A non-assisted method for roads generation is based on a weighted
anisotropic shortest path algorithm [Galin et al. 2010]. The method
finds the path between two pre-defined points performing a compu-
tation on a continuous domain; the space existing among the origin
and the end points of the road is discretized in a grid composed
of several aligned points that are analyzed as a graph. The method
restricts the search to paths formed by the concatenation of straight-
line segments between those points, computing a path between two
points that minimizes the line integral of a cost-weighting function
along the road path. The line integral calculation is made by the ap-
proximation of a finite sum by discretizing the integration domain
into n intervals. A set of parametrized cost functions is required
and is used to evaluate the line integral of the cost-weighting func-
tion along the road. Those function are defined by the user and
they influence the road trajectory by constraining the shortest path
research. After the path is calculated the road is generated by ex-
cavating the terrain along the path and generating the road mesh as
well as bridges and tunnels with the appropriate size and character-
istics. Figure 12 shows two roads generated using this approach.

An assisted technique introduces the concept of procedural natural
systems, an approach aimed at reducing the time needed to cre-
ate natural phenomena features in game maps [Huijser et al. 2010].
As pointed by the authors, a large natural phenomenon such as a
river requires several work hours of a designing team in order to be
realistic and visually acceptable. Using a level editing tool, for in-
stance, the operator must excavate the river course, apply the right
textures to the river/riverbed and add complementing objects to the
area (trees, bushes, etc). If the course of the river must be changed,
the whole process have to be repeated and often none of the already
created content can be reused. The approach of a procedural nat-
ural system relies on the idea that natural phenomena consists of
three parts: footprint (the appearance of the phenomenon, includ-
ing height and texture definition), shape (the area in the map the
phenomenon takes place) and procedure (the interpolation between
the two formers in order to create the natural system). The footprint
is discretized in four types of environmental features that must be
adjusted to create the desired natural systems: height (how the ter-
rain height is modified, lowering or raising the nearby area of the
shape, for instance), soil (how the surface looks like), vegetation
(plants and their location) and water (how much water is available).
The shape is described as a set of connected control points; a shape
can be a curve (first and last control points not connected) or an
area (first and last points connected). The footprint and the shape
are independent elements, so it is possible to design footprints and
shapes separately and mix then according to the game requirements.
In order to design a river, for instance, the operator must create a
footprint that has the river characteristics e.g. lower heights in the
center of the shape, mud between the water and the rest of the sur-
rounding surface, small plants close to the mud and water to fill
the lower height part. After the footprint creation, the operation
has to define the shape (place the control points in the map). The
procedure will combine the footprint and the shape, resulting in a

Figure 13: Creating a meander using natural systems: designing
the shape in the game world then applying the height/soil, water
and vegetation features. [Huijser et al. 2010]

complete river (with water, plants, mud, etc) following the defined
path. If the river course must be changed, the operator just need to
adjust the control points; if the river appearance must be tweaked,
the operator can change the footprint and all shapes using that foot-
print in the map will automatically be updated to reflect the new
appearance. This technique is not limited to rivers, it can be used
to other natural phenomena such as canyons. Figure 13 shows the
creation of a meander using natural systems.

4 Cities

Cities detonates the human presence in the environment and they
are widely used in games such as fly simulators. The process of
modeling a whole city is a time consuming task and it requires the
analysis of many aspects since the city is rich in details, build over
human influences and have historical background. The major as-
pects behind the urban areas are population, environment, trans-
ports, vegetation, streets, architecture, elevation, geology and cul-
ture. In addition to that, cities have buildings and roads as their
main components. As a consequence of that in order to create
a complex and a convincing urban area it is important to gener-
ate a wide diversity of buildings and roads. Those elements must
be generated according to the city cultural and geographic back-
grounds, so they are difficult objects to generate automatically be-
cause of their individual characteristics like style and function. The
city generation subject is recurrent and it is the focus of several re-
lated works [Lynch 1960; Alexander et al. 1977; Kelly and McCabe
2006; Watson et al. 2008].

An assisted approach for generating complex road networks for
cities is based on Bezier curves and real world data [Gang and
Guangshun 2010]. Using an aerial image of the road network of a
real city, the operator marks the paths using Bezier curves placed at
the center of the road. After that the method interpolates the curves
finding important characteristics and enhancing them such as inter-
ceptions. Those intersections and junction are created using curve
approximation. During the process new elements are added based
on the curves such as the sidewalks. Those elements are generated
using a process of polygonal approximation. Figure 14 shows a
generated road network and its usage on a real-time application.

Another assisted approach for road generation in cities is the
procedural interactive method based on template techniques and
parametrization algorithms [Dou et al. 2009]. The method con-
sists of a random traveling algorithm to connect attributed points
and uses templates to define the growing patterns for road net-
works. The template mechanism is like a simplified L-system. The
work-flow is described by three main steps. In the first one the
primary roads are created based on the specified points. The sec-
ondary roads are created though templates applied to the area or
using parametrization mapping. In the last step is the generation of
the third level of roads. The interactive part of that system allows
the user to control the creation aspects and enables modification of
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Figure 14: Road network generation on the top; below the same
road network applied to a real-time application. [Gang and Guang-
shun 2010]

Figure 15: Urban map generation. On the left the grid style only.
On the right the mixed styles (grid, radial, user defined). [Dou et al.
2009]

road patterns, generation of new roads, tweaking road density and
defining a new population parameter. Most of the operations are
fully interactive, so the user intervention can improve the reality of
the road network generated. Figure 15 illustrates a generated urban
map.

An assisted approach to procedurally generate urban ecosystems is
the interactive procedural system [Beneš et al. 2011]. That sys-
tem consists of two main processes: urban model generation and
plant model generation. A socio-economical and geometrical sim-
ulation approach is used in order to generate the urban model e.g
[Vanegas et al. 2009; Beneš et al. 2011]. The plant management
algorithm determines the manageability level of contained plants
for each city block. The manageability level determines the per-
centage of wild plants allowed in each area that later will be used
by ecosystem simulation. A procedural planting algorithm seeds
the plants and a competition based ecosystem simulation is used to
determine the plants that will remain. In order to handle the simu-
lation of the plants development a symmetric and asymmetric plant
competition approach can be used e.g. [Alsweis and Deussen 2005;
Prusinkiewicz 2002; Deussen et al. 1998]. Figure 16 shows the il-
lustration of an urban ecosystem that is still evolving over the time
(trees are growing).

Another assisted approach for city generation is called CityEngine,
a system capable of modeling a complete city using a small set of
statistical and geographical input data and is highly controllable by
the user [Parish and Müller 2001]. Instead of generating all the con-
tent procedurally it creates the city based on a pipeline composed
of several tools. The first step is the road-generation system that
receives the user input (e.g. water, elevation and population den-
sity maps). After the network of streets is created the remaining
areas (between the roads) are subdivided in allotments and filled
with buildings. The first two steps are based on a L-system. Fig-
ure 17 shows a virtual city generated based on imaginary water,
elevation and population density maps. Figure 18 shows a virtual
representation of Manhattan.

Figure 16: Urban ecosystem that evolved over the time. [Beneš
et al. 2011]

Figure 17: A virtual city with approximately 26000 buildings.
[Parish and Müller 2001]

Figure 18: Virtual Manhattan (Maya render). [Parish and Müller
2001]
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Figure 19: A procedurally generated environment. [Silva and
Coelho 2010]

Figure 20: Real-time procedural virtual city. [Greuter et al. 2003]

A non-assisted approach for city generation is demonstrated in a
system called PG3D [Silva and Coelho 2010]. The tool was de-
signed to create realistic urban environments based in a spatial
database engine. The process works through a set of stored pro-
cedures in a database and it’s able to generate virtual environments
with real content. In order to achieve that goal PG3D uses its own
grammar and shapes; the grammar is used to define the production
and structures rules that are used in the process of procedural urban
environment generation. The production uses a set of shapes that
contains geometries that represent several types of element such as
surfaces, streets, buildings and so on. Figure 19 shows a large envi-
ronment procedurally generated using this technique.

Another non-assisted approach is the creation of pseudo-infinite
cities generated on demand as the user walks through the terrain
area [Greuter et al. 2003]. The entire city is divided in equally sized
square cells (blocks of the city). Each cell has a set of buildings that
are determined and generated based on a seed related to the cell po-
sition. The generation process is also influenced by a global seed.
Since every building is created based on a seed (cell position) if
the user returns to a particular location the same buildings will be
present. All geometrical components of the city are generated as
they are encountered by the user. Figure 20 shows a procedurally
generated city achieved with this approach.

5 Conclusion

This paper presented an overview of several procedural content
generation techniques. All techniques were grouped according to
their resulting content such as terrains/continents, roads/rivers and
cities. Additionally each technique was classified as assisted or no-
assisted highlighting the need of human interaction or guidance in
order to produce content using the referenced technique. Classical
and modern methods were reviewed providing substantial informa-
tion that can be used directly in the game development industry or
as a starting point for further research and creation of new tech-
niques.

In section 2 six approaches were presented. Three of them were
assisted methods and both the assisted and non-assisted tech-
niques presented unique approaches to procedural content gener-

ation. Those techniques combine different methodologies such as
control curves, real images, genetic algorithms, software agents and
the definition of pixel values based on neighbors comparisons. Sec-
tion 3 presented the complexity of roads and rivers generation, a
process influenced and guided by elements such as trajectory cal-
culation and realistic patterns. Two papers were reviewed demon-
strating assisted and non-assisted methods. Finally section 4 pre-
sented techniques related to city generation. Six papers were re-
viewed and more than three were assisted methods. The featured
techniques used Bezier curves, template techniques, urban ecosys-
tem and pseudo-random numbers in order to produce convincing
procedurally generated cities.

Non-assisted techniques are more suitable to be used when a large
amount of content must be generated and such content may not im-
pact in the game play directly e.g. the very distant surrounding
areas of an air base in a flight simulator game. A non-assisted ap-
proach can also be used as a starting point for further designing
tasks such as the creation of raw data for a terrain that will be later
refined by the game designer. However a non-assisted approach is
mandatory in cases where part of the game content is generated on-
the-fly according to the user decisions; in such cases the content is
not predictable for the game designer (for any reason) and needs
to be procedurally generated according to the player context. The
creation of a virtual infinite world requires the use of non-assisted
techniques for instance.

Assisted techniques are more suitable to be used when a well de-
fined and constrained content set is required. Assuming the player
will spend most of the time deeply exploring and interacting with
such content it must contain a high rate of details. The assisted tech-
niques can decrease the creation time because they help the operator
to design detailed content using a guided generation that fully cre-
ates or enhances the final content. Since the assisted techniques re-
quire human intervention and guidance they are more likely to pro-
duce easily predictable content, but their usage may not be adapted
for on-the-fly generation of content in games. Some assisted ap-
proaches demand a significant amount of time and effort from the
user in order to produce the desired result, so they tend to be better
used if integrated as part of designing tools such as level editors.

Analyzing the evolution of procedurally content generation tech-
niques over the years one can notice a tendency of combination be-
tween assisted and non-assisted methods. Even if a technique relies
heavily on human guidance to produce results, it uses that guidance
as a constraint in order to generate detailed content. The use of
control curves based on diffusion equations, for instance, requires
the operator to place the curves and to adjust its parameters (noise,
height, etc) in order to produce a terrain. However the technique is
the main responsible for the interpolation and application of such
parameters in order to produce the result. That modus operandi
is an evolution and a combination of completely procedural genera-
tion approaches (e.g. a height map created purely with Perlin noise)
and human-only generation approaches (e.g. a map designed exclu-
sively by an artist). The amount of effort the operator must spend in
adjustments defines how independent the method is during the gen-
eration process. Despite of that there is always the concern about
the content randomness, because a procedurally generated content
is useful mainly if it fits the context of the game it is inserted into.
A completely random content has no meaning because it is not pre-
dictable and as a consequence it has no context.

This survey can help studies focused on procedural content gen-
eration targeted for game development. It can be used to analyze
techniques that are able to decrease the costs of game production as
well as enriching the featured content.
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