
A GPU-Based Data Structure for a Parallel Ray Tracing Illumination
Algorithm

Diego Cordeiro Barboza Esteban Walter Gonzalez Clua

Universidade Federal Fluminense, Instituto de Computação - Media Lab, Brasil

Abstract

Ray tracing is a largely employed technique for

generating computer images with high fidelity and

realism. However, this technique is very costly, mainly

because of the intersection calculations made by the

algorithm. Still, ray tracing is a highly parallelizable

algorithm, since the calculations for a single light ray

are independent from the others. This way, the

implementation of the ray tracing on the GPU is a

natural process. Data structures can be employed for

reducing the processing load of the ray tracing

algorithm, minimizing the number of intersection

calculations. In recent works, these structures are being

ported to the GPU, so they can be used to accelerate

various parallel algorithms. In this work, we proposed

a GPU ray tracing implementation using an octree as

acceleration structure. Every single step of the

algorithm runs in parallel on the GPU, so the

communication bottleneck between the GPU and the

CPU is eliminated. This work also proposes the study

of which is the best way to represent the octree on the

GPU, by comparing two different approaches.

Keywords: Data structures, Octree, Ray tracing, GPU

Authors’ contact:

{dbarboza,esteban}@ic.uff.br

1. Introduction

Ray tracing is a well known illumination algorithm for

generating synthetic images, due its high visual

fidelity. Movies and non-interactive applications, such

as medical visualization systems, may employ the ray

tracing technique to generate high quality and complex

images. However, this is a very costly recursive pixel

per pixel illumination technique, which makes it hard

to employ in real time applications, such as digital

games.

 The ray tracing algorithm simulates the physical

light behavior to generate images. The typical usage is

the inverse ray tracing, where rays are cast from the

view point and each ray is followed through the scene

towards a light source. It is necessary to calculate

intersections of every ray with all the primitives that

composes the scene in order to find out the color of

each pixel, so the cost for high resolution images in

complex scenes makes it impracticable for real time

applications.

 This algorithm is naturally parallelizable, since the

computations for a single ray are independent from

others. So, the modern graphics processors are

employed to run the ray tracing in parallel with as

much rays being processed at the same time as the

number of available processors.

 But the parallelization itself should be not enough.

The individual processing of each ray is still an

expansive task, especially because of the intersection

tests. Spatial structures are be used to reduce these

intersection tests. Instead of testing every single ray

with every primitive in the scene, we first traverse the

structure where every step reduces the remaining

primitives. At the end, only a small amount of the

original primitive list remains, so the ray-primitive

intersection is done.

 In this paper, we propose the usage of an octree – a

data structure where each node has none or eight

children nodes and the data is stored in the leaves – to

partition the space and reduce the amount of

intersection calculations done by the ray tracing

algorithm. Since the ray tracing runs in parallel in the

GPU, this octree needs to be modeled so it can be

stored in GPU memory and accessed from there,

without any data search in the main memory. This

paper also presents a comparison of two approaches for

modeling the octree, an indexed octree and a hash table

based octree. We discuss the advantages and

disadvantages of each one.

 The section 2 presents some related work about this

paper’s subject. The section 3 presents some

information regarding octrees and section 4 describes

the ray tracing technique. Section 5 shows the data

modeling developed for the parallel ray tracing on the

GPU and section 6 describes the octree usage itself for

the ray tracing. Finally, section 7 presents the

conclusions and suggestions for future works.

2. Related Work

Ray tracing and acceleration structures are highly

studied fields. [Purcell 2002] presents a GPU-based ray

tracing implementation and compares it to the CPU

one, taking in account points like data traffic and

processing power of each device. [Wald and Slusallek

2001] presents the state-of-art of ray tracing, including

its parallel implementation in computer clusters.

 [Horn et al. 2007] and [Revelles et al. 2000]

presents studies of acceleration structures for ray

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

tracing and efficient octree traversal. [Garanzha and

Loop 2010] presents a ray tracing implementation

using a breadth-first bounding volume hierarchy

traversal.

 A hash table based octree implementation for GPUs

is presented by [Madeira 2010]. The author focuses in

optimized search that can’t be directly applied to the

ray tracing algorithm, since hierarchy is very important

in this case, so some adaptations have been done over

his structure.

3. Octree

An octree is a hierarchical data structure for

tridimensional space partition, where each element is

represented by a cube and may have none or eight

children in a level immediately bellow [Castro 2008].

The octree is built from its root, where a bounding box

is created. The root is then divided into eight children

and for each resultant node, we verify if it intersects

the scene’s primitives. If so, the node is internal and

will be subdivided again until the max tree level is

reached or the node contains desired primitive count.

 There are some ways to represent an octree. The

most usual are: the pointer representation, where each

node has pointers to its children; the linear

representation, where the tree is stored in an array and

the access to the children is done by manipulating the

parent’s index (the child index is given by 8 * parent

index + child index); and a hash table representation,

where the children access is done by applying a hash

function to the parent’s key.

 The pointer-based and the linear octree are pretty

straightforward. The hash table representation is

proposed for GPU usage by [Madeira 2010]. The tree

is also stored in an array, but the index of each node is

given by its key. In order to navigate through the

octree, we need to use a hash function that will result

in the child’s key, based on its geometric position

inside the octree.

 The node’s keys are coded with the Morton Code,

as used by [Castro 2008] and [Madeira 2010]. The tree

root has the key 1 and the key for each child is created

by adding three bits correspondent to its geometric

position. Figure 1 shows how it works for a quadtree,

but the process is analogous for an octree.

Figure 1: Morton code for each node in a quadtree [CASTRO

2008].

4. Ray tracing

Ray tracing was introduced in the late sixties by [Appel

1968]. It reduces the generation of computer images to

finding intersections of rays casted from a view point

and the employment of an illumination model at these

points [Kuchkuda 1988].

The resulting color of each pixel in the

visualization area is determined by the used

illumination model, which is flexible enough for

adding or removing components as it is needed. [Phong

1975] presents a very basic model that has been

improved over the years with the addition of new

components. [Hall and Greenberg 1983] and [Whitted

1980] presents models that takes in account various

components, such as diffuse, specular, diffraction,

reflection, transmittance and so on.

In the ambient, there are infinite light rays emitted

from light sources. The reproduction of this number of

rays is impractical is simulation systems. Usually, we

use the reverse ray tracing, where rays are cast from

the view point and tracked back to the light source.

Figure 2 shows a schematic view of the ray tracing,

where:

O = Observer;

P = Sampled pixel in the visualization area;

F = Light source;

S = Shadow ray;

R = Reflected rays;

T= Transmitted ray.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

Figure 2: Schematic view of the ray tracing components

[Santos 1994].

[Whitted 1980] observes that around 75%

processing time of the ray tracing algorithm is spent in

intersection calculations. This cost is associated with

the fact that the exhaustive ray tracing tests

intersections between the rays with every object in the

scene. The usage of an acceleration structure, as the

octrees, is recommended for reducing the algorithm

cost.

5. Data modeling

The following sections presents the data modeling

developed in this work for using the octrees in the

GPU together with the parallel ray tracing.

5.1 Scene representation

In this work, we represent the scene in two different

ways: a polygonal mesh or a point cloud.

 A polygonal mesh is created from a set of triangles,

each composed by three vertices in the tridimensional

space. A vertex may be shared by different faces,

which results in some memory saving.

An issue resulting from this representation is that a

single face may belong to more than one octree node,

resulting in a higher polygon count to the scene.

[Madeira 2010] uses only the triangle center to

determine if it is inside the node or not. In his system,

there is no mention to hierarchy, so it works ok. But

here, the hierarchy must be respected, so a triangle

should be replicated in all nodes that contain it.

A point cloud is a structure composed by a set of

vertices in the tridimensional space. This

representation reduces the amount of stored data, since

only the vertices coordinates are stored, opposed to the

mesh where we also need to store the vertices’ index

for each triangle.

For the construction of octrees in the tests proposed

by this paper, we created a regular grid and populated

its cells with points. Each point is treated as a sphere of

radius R by the ray tracing algorithm. The smaller

octree node – the leaves in the deeper level – have

length equal to R all the points are always centered

within its grid cell, so a “sphere” is never contained by

two different octree nodes.

The usage of a point cloud is explored in works like

[Linsen et al. 2007] and [Deul et at. 2010]. It is used

here for testing the octree performance without

interference from other issues, such as the higher

polygon count resulted from the usage of polygonal

meshes.

Whatever the chosen scene representation, we need

to populate its data into an octree so the ray tracing

algorithm can traverse the scene with a lower cost. In

this paper, we propose the usage of a hash table and a

linear octree, presented in the following sections.

5.2 Octree representation in a hash table

A hash table is a data structure that uses a hash

function to map keys into positions inside a table.

Given a key, the function is applied to find out the

position of the data inside the table.

Depending on the data volume and the hash

function, more than one key may be mapped into the

same position. When this happens, a new function is

used to treat the collision. There are basically two

approaches for treating collisions: open chaining,

where a list stores the collided data and the new one in

stored at the end of the list (this is more useful for CPU

implementations with a linked list. On the GPU, it is

needed to allocate a fixed size array, which raises the

memory usage); and closed chaining, where a second

hash function is used until a free space is found and the

data is stored.

In this work, we use the hash function as the

modulus function, given by h(k) = k mod m, where m

is the hash table size and k is the item key. But, instead

of using the rehash function h’(k) = h(k) + 1, as

proposed by [Madeira 2010], we use a fixed size list

for collision treatment. This avoids the worst case

where the whole hash table is searched to find a node.

The key of each node is coded with the Morton

Code. The octree traversal is done by acquiring the

code for each child and applying the hash function in

this code to find where it is stored in the table.

5.3 Octree representation in a linear list

An octree may also be stored in a linear list, where the

parenthood relations between the nodes are given by its

indexes. In this model, the root is stored at the position

0 and the position p of each child is given by p = 8 *

parent index + child index, where each child is given

an index ranging from 1 to 8. The children of a node

are always stored at adjacent memory positions.

 Figure 3 shows an example of a linear octree. The

root node is at position 0 and its children occupy the

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

position 1 to 8. The children of node 1 are at positions

9 (8 * 1 + 1) to 16 (8 * 1 + 8), and so on.

Figure 3: Example of linear octree.

5.4 Octree data storage on the GPU

The octree is stored on the GPU using some data

structures to reduce memory usage at the same time

that it doesn’t incur in great performance loss.

 Each octree node has a key, an index to a primitive

list, a type (internal, leaf, empty leaf or invalid), a

depth level and a bounding box. The primitives are not

stored in the nodes because we want to use CUDA’s

texture memory for faster access and also we need to

store primitives only for leaves nodes, so the internal

or empty nodes doesn’t occupy unnecessary space.

 For the polygonal mesh, the primitives are stored in

two different lists: the first stores each triangle and the

second stores the vertices. The access to the primitives

takes two steps, first we need to fetch the triangle and

read its vertices indices. Then, we fetch the vertices

and make the intersections tests. For point cloud, we

can access the vertices directly and apply the

intersection test.

 Since the octree stores a high amount of internal

and empty nodes, if every node had a fixed allocated

space for a list of primitives, too much unused memory

would be lost. To solve this problem, only the leaves

have a primitive list. Each leaf node has an index to an

array allocated in the global memory.

 Figure 4 presents an overview of this system. The

node 2 is a leaf, so its primitiveIndex field points to the

memory position where its primitives are stored.

Whenever the primitives for this node should be

consulted, the data will be fetched from the

corresponding position in the memory. This approach

still brings some memory loss, since not every leaf will

have a full primitive list, but the memory space is fixed

in the used GPU architecture. Still, the used space is

smaller than the trivial solution where every node has

its own internal primitive list.

Figure 4: Primitive list representation for each leaf node.

6. Parallel ray tracing with octree

The developed ray tracing system starts with the

construction of the octree in the main memory and its

upload to the GPU memory. Then, the system runs in a

loop of the following steps: upload of visualization

data, such as camera and light positions, to the GPU;

running of the ray tracing algorithm in parallel on the

GPU; acquisition an exhibition of the generated image;

update of the visualization data.

 The ray tracing algorithm itself runs as follows: for

each pixel on the screen a GPU thread is created and a

ray is casted. For each ray, we check its intersections

with the scene and find the smallest intersection

distance. At this point, the illumination model is

applied and the pixel color is found.

 The intersection calculations depend on the used

method. The exhaustive ray tracing tests the ray with

each primitive. The octree ray tracing first checks the

intersection with the scene root, then tests if there are

intersections with its children. Each intersected child is

queued for new recursive tests. The recursion stops

whenever a leaf, an empty leaf or an invalid node is

found, or no intersection happens.

 The following listing describes each step of the

octree traversal.

Function: OctreeTraversal

Input: ray, currentNode

If Intersects(ray, currentNode)

 If(currentNode.type == Internal)

 For each child F of currentNode

 OctreeTraversal(ray, F)

 Else if(currentNode.type == Leaf)

 For each primitive P in currentNode

 If(Intersects(ray, P))

 d = IntersectionPoint(ray, P)

 minDistance=min(minDistance,d)

 return minDistance

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

7. Results

Here we present the results obtained from the tests with

the parallel implementation of the ray tracing algorithm

using an octree as acceleration structure. The tests were

carried out with a GeForce 9800 GT graphics card with

1 GB of memory and 112 stream processors at 1350

MHz running on a PC with Windows Seven and

CUDA 3.0 installed.

 We tested the algorithm with both point clouds and

polygonal meshes with varied complexity. We also

tested three ray tracing implementations: the trivial

exhaustive one, the hash table based and the linear

octree based. Here we present a performance

comparison between each one.

 The ray tracing was always run to generate a

512x512 pixels image. All the timing results are

presented in seconds.

7.1 Point cloud tests

The point cloud tests were made with the point count

varying from 1000 to 64000 (for the exhaustive

method), 32000 (for the hash table method) and 16000

(for the linear method).

 There is a high cost increase related to the data

growth with the exhaustive ray tracing. Figure 5 shows

how processing time increases fast as the data amount

becomes larger. This performance loss is more stable

with the hash table octree (Figure 6), even though it is

still slower because of the overhead related to the

octree traversal and the index manipulation.

Figure 5: Results for exhaustive ray tracing with point cloud

(time in seconds).

Figure 6: Results for ray tracing with hash table and point

cloud.

The linear octree presents a similar performance

gain as the cost increase slows as the data volume

becomes larger. The exhaustive ray tracing almost

doubles its processing time as the data volume doubles,

at the same time the linear octree algorithm doubles its

processing time as the data volume is increased by 16

times (Figure 7).

Figure 7: Results for ray tracing with linear octree and point

cloud (time in seconds).

If the data volume is high enough, the traversal

overhead is compensated and the algorithm presents a

great gain compared to the linear scene traversal.

Figure 8 presents a comparison between the exhaustive

and the octree implementations that demonstrates this.

The exhaustive method is faster only with a small data

volume where the overhead makes it slower to traverse

the octree than to test intersections with the entire

scene.

Figure 8: Comparison between the exhaustive (blue) and

octree (red) implementations (time in seconds).

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5

7.2 Polygonal mesh tests

We also made some testing with different polygonal

meshes. Four meshes were tested with the exhaustive

and the linear octree. Because of some faces appear in

more than one octree node, the total face count differs

from the face number in the raw model, as shown in

Table 1.

Table 1: Number of vertices and faces for each polygonal

mesh used in the tests.

Name Vertices Faces Octree faces

Cubes 104 156 609

blackmage 824 1644 4757

House 1460 3028 10979

Ant 486 912 4967

Again, the octree implementation is faster with

larger models. In Figure 9 the red columns represents

the processing time for the exhaustive method and the

blue ones are the octree tests. Only the cubes model

that has a low polygon count is faster with the

exhaustive method.

Figure 9: Comparison of the exhaustive (red) and linear

octree (blue) implementations with polygonal meshes (time

in seconds).

Conclusion

This paper presented a parallel implementation with

the ray tracing algorithm using an octree as an

acceleration structure for decreasing the number of

intersection calculations and increasing its

performance. We studied different ways to represent

the octree in video memory and presented a

representation of indexed primitives for octree leaves,

reducing the memory usage.

 We tested different traversal algorithms for the ray

tracing, such as the usage of linear octrees, hash tables

and exhaustive ray tracing. Tests show that the linear

octree implementation is more efficient, even though

its higher memory load. The linear implementation is

faster than the hash table because of the great overhead

related to the index manipulation necessary to traverse

the hash table.

 As future work, we propose the usage of Fermi

graphics cards that allows the usage of pointers and

recursion. This solves some problems of the presented

solution. Also, the usage of a GPU cluster is advised,

since the ray tracing is implemented in a way that

every ray runs in a separate thread and all the structure

is stored on GPU memory, so this adaptation shouldn’t

be problematic, while a great gain is expected.

References

AKENINE-MOLLER, T. FAST 3D TRIANGLE-BOX OVERLAP

TESTING. IN:• PROCEEDING SIGGRAPH '05. NEW YORK,

NY, 2005.

APPEL, A. SOME TECHNIQUES FOR SHADING MACHINE

RENDERINGS OF SOLIDS. SJCC, P27–45, 1968.

BARBOZA, D., CLUA, E. RAY TRACING ALGORITHM USING A

GPU-BASED DATA STRUCTURE. IN: X SIMPÓSIO

BRASILEIRO DE JOGOS E ENTRETENIMENTO DIGITAL, 2011,

SALVADOR. PROCEEDINGS OF THE X SIMPÓSIO BRASILEIRO

DE JOGOS E ENTRETENIMENTO DIGITAL - COMPUTING -

FULL PAPERS, 2011. (EM PROCESSO DE SUBMISSÃO)

CASTRO, R. ET AL. STATISTICAL OPTIMIZATION OF OCTREE

SEARCHES. COMPUTER GRAPHICS FORUM, V. 27, P. 1557-

1566, 2008.

DEUL, C., BURGER, M., HILDENBRAND, D., KOCH, A.

RAYTRACING POINT CLOUDS USING GEOMETRIC ALGEBRA.

PROCEEDINGS OF THE GRAVISMA WORKSHOP, 2010.

GARANZHA, K., LOOP, C. FAST RAY SORTING AND

BREADTH-FIRST PACKET TRAVERSAL FOR GPU RAY

TRACING. EUROGRAPHICS 2010.

HALL, R. A., GREENBERG, D. P. A TESTBED FOR

REALISTIC IMAGE SYNTHESIS. IEEE COMPUTER GRAPHICS

AND APPLICATIONS, V.3, N.8, P10-20, 1983.

HORN, D., SURGEMAN, J., HOUSTON, M., HANRAHAN,

P. INTERACTIVE K-D TREE GPU RAYTRACING. I3D '07

PROCEEDINGS OF THE 2007 SYMPOSIUM ON INTERACTIVE

3D GRAPHICS AND GAMES. ACM NEW YORK, NY, 2007.

KIRK, D; CUDA MEMORY MODEL. 2008.

KUCHKUDA, R. AN INTRODUCTION TO RAY TRACING.

THEORETICAL FOUNDATIONS OF COMPUTER GRAPHICS

AND CAD, SPRINGER-VERLAG, BERLIN, P1039-1060,

1988.

LINSEN, L., MULLER, K., ROSENTHAL, P. SPLAT-BASED

RAY TRACING OF POINT CLOUDS. JOURNAL OF WSCG,

15(1-3), 51–58, 2007.

MADEIRA, D. UMA ESTRUTURA BASEADA EM HASH TABLE

PARA BUSCAS OTIMIZADAS EM OCTREE EM GPU.

DISSERTAÇÃO DE MESTRADO, UNIVERSIDADE FEDERAL

FLUMINENSE, 2010.

MORTON, G. M. A COMPUTER ORIENTED GEODETIC DATA

BASE AND A NEW TECHNIQUE IN FILE SEQUENCING. [S.L.],

1966.

NVIDIA. NVIDIA CUDA. BEST PRACTICES GUIDE. 2011.

PHONG, B. T. ILLUMINATION FOR COMPUTER GENERATED

PICTURES. COMMUN. ACM 18, 6 (JUNE 1975), P311-317,

1975.

DOI=HTTP://DOI.ACM.ORG/10.1145/360825.360839.

PURCELL, T. J., BUCK, I., MARK, W. R., HANRAHAN, P.

RAY TRACING ON PROGRAMMABLE GRAPHICS HARDWARE.

IN ACM TRANSACTIONS ON GRAPHICS 21, 3 (JULY 2002),

703-712.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6

REVELLES, J. URENA, C., LASTRA, M. AN EFFICIENT

PARAMETRIC ALGORITHM FOR OCTREE TRAVERSAL.

JOURNAL OF WSCG, P.212-219, 2000.

SEGENCHUK, S. IMPLEMENTATION OF AN ACCELERATED

RAY TRACER. 1997.

WALD, I., SLUSALLEK, P. STATE OF THE ART IN

INTERACTIVE RAY TRACING. EUROGRAPHICS ’01.

2001.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7

