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Abstract 
 

Ray tracing is a largely employed technique for 

generating computer images with high fidelity and 

realism. However, this technique is very costly, mainly 

because of the intersection calculations made by the 

algorithm. Still, ray tracing is a highly parallelizable 

algorithm, since the calculations for a single light ray 

are independent from the others. This way, the 

implementation of the ray tracing on the GPU is a 

natural process. Data structures can be employed for 

reducing the processing load of the ray tracing 

algorithm, minimizing the number of intersection 

calculations. In recent works, these structures are being 

ported to the GPU, so they can be used to accelerate 

various parallel algorithms. In this work, we proposed 

a GPU ray tracing implementation using an octree as  

acceleration structure. Every single step of the 

algorithm runs in parallel on the GPU, so the 

communication bottleneck between the GPU and the 

CPU is eliminated. This work also proposes the study 

of which is the best way to represent the octree on the 

GPU, by comparing two different approaches.  
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1. Introduction 
 

Ray tracing is a well known illumination algorithm for 

generating synthetic images, due its high visual 

fidelity. Movies and non-interactive applications, such 

as medical visualization systems, may employ the ray 

tracing technique to generate high quality and complex 

images. However, this is a very costly recursive pixel 

per pixel illumination technique, which makes it hard 

to employ in real time applications, such as digital 

games. 

  

 The ray tracing algorithm simulates the physical 

light behavior to generate images. The typical usage is 

the inverse ray tracing, where rays are cast from the 

view point and each ray is followed through the scene 

towards a light source. It is necessary to calculate 

intersections of every ray with all the primitives that 

composes the scene in order to find out the color of 

each pixel, so the cost for high resolution images in 

complex scenes makes it impracticable for real time 

applications. 

 

 This algorithm is naturally parallelizable, since the 

computations for a single ray are independent from 

others. So, the modern graphics processors are 

employed to run the ray tracing in parallel with as 

much rays being processed at the same time as the 

number of available processors.  

 

 But the parallelization itself should be not enough. 

The individual processing of each ray is still an 

expansive task, especially because of the intersection 

tests. Spatial structures are be used to reduce these 

intersection tests. Instead of testing every single ray 

with every primitive in the scene, we first traverse the 

structure where every step reduces the remaining 

primitives. At the end, only a small amount of the 

original primitive list remains, so the ray-primitive 

intersection is done.       

  

 In this paper, we propose the usage of an octree – a 

data structure where each node has none or eight 

children nodes and the data is stored in the leaves – to 

partition the space and reduce the amount of 

intersection calculations done by the ray tracing 

algorithm. Since the ray tracing runs in parallel in the 

GPU, this octree needs to be modeled so it can be 

stored in GPU memory and accessed from there, 

without any data search in the main memory. This 

paper also presents a comparison of two approaches for 

modeling the octree, an indexed octree and a hash table 

based octree. We discuss the advantages and 

disadvantages of each one.  

 

 The section 2 presents some related work about this 

paper’s subject. The section 3 presents some 

information regarding octrees and section 4 describes 

the ray tracing technique. Section 5 shows the data 

modeling developed for the parallel ray tracing on the 

GPU and section 6 describes the octree usage itself for 

the ray tracing. Finally, section 7 presents the 

conclusions and suggestions for future works. 

 

2. Related Work 
 

Ray tracing and acceleration structures are highly 

studied fields. [Purcell 2002] presents a GPU-based ray 

tracing implementation and compares it to the CPU 

one, taking in account points like data traffic and 

processing power of each device. [Wald and Slusallek 

2001] presents the state-of-art of ray tracing, including 

its parallel implementation in computer clusters. 

  

 [Horn et al. 2007] and [Revelles et al. 2000] 

presents studies of acceleration structures for ray 
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tracing and efficient octree traversal. [Garanzha and 

Loop 2010] presents a ray tracing implementation 

using a breadth-first bounding volume hierarchy 

traversal. 

 

 A hash table based octree implementation for GPUs 

is presented by [Madeira 2010]. The author focuses in 

optimized search that can’t be directly applied to the 

ray tracing algorithm, since hierarchy is very important 

in this case, so some adaptations have been done over 

his structure. 

 

3. Octree 
 

An octree is a hierarchical data structure for 

tridimensional space partition, where each element is 

represented by a cube and may have none or eight 

children in a level immediately bellow [Castro 2008]. 

The octree is built from its root, where a bounding box 

is created. The root is then divided into eight children 

and for each resultant node, we verify if it intersects 

the scene’s primitives. If so, the node is internal and 

will be subdivided again until the max tree level is 

reached or the node contains desired primitive count. 

 

 There are some ways to represent an octree. The 

most usual are: the pointer representation, where each 

node has pointers to its children; the linear 

representation, where the tree is stored in an array and 

the access to the children is done by manipulating the 

parent’s index (the child index is given by 8 * parent 

index + child index); and a hash table representation, 

where the children access is done by applying a hash 

function to the parent’s key. 

 

 The pointer-based and the linear octree are pretty 

straightforward. The hash table representation is 

proposed for GPU usage by [Madeira 2010]. The tree 

is also stored in an array, but the index of each node is 

given by its key. In order to navigate through the 

octree, we need to use a hash function that will result 

in the child’s key, based on its geometric position 

inside the octree. 

 

 The node’s keys are coded with the Morton Code, 

as used by [Castro 2008] and [Madeira 2010]. The tree 

root has the key 1 and the key for each child is created 

by adding three bits correspondent to its geometric 

position. Figure 1 shows how it works for a quadtree, 

but the process is analogous for an octree. 

 

 
Figure 1: Morton code for each node in a quadtree [CASTRO 

2008]. 

 

4. Ray tracing 
 

Ray tracing was introduced in the late sixties by [Appel 

1968]. It reduces the generation of computer images to 

finding intersections of rays casted from a view point 

and the employment of an illumination model at these 

points [Kuchkuda 1988].  

 

The resulting color of each pixel in the 

visualization area is determined by the used 

illumination model, which is flexible enough for 

adding or removing components as it is needed. [Phong 

1975] presents a very basic model that has been 

improved over the years with the addition of new 

components. [Hall and Greenberg 1983] and [Whitted 

1980] presents models that takes in account various 

components, such as diffuse, specular, diffraction, 

reflection, transmittance and so on. 

 

In the ambient, there are infinite light rays emitted 

from light sources. The reproduction of this number of 

rays is impractical is simulation systems. Usually, we 

use the reverse ray tracing, where rays are cast from 

the view point and tracked back to the light source. 

Figure 2 shows a schematic view of the ray tracing, 

where: 

 

O = Observer; 

P = Sampled pixel in the visualization area; 

F = Light source; 

S = Shadow ray; 

R = Reflected rays; 

T= Transmitted ray. 
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Figure 2: Schematic view of the ray tracing components 

[Santos 1994]. 

 

[Whitted 1980] observes that around 75% 

processing time of the ray tracing algorithm is spent in 

intersection calculations. This cost is associated with 

the fact that the exhaustive ray tracing tests 

intersections between the rays with every object in the 

scene. The usage of an acceleration structure, as the 

octrees, is recommended for reducing the algorithm 

cost.  

 

5. Data modeling 
 
The following sections presents the data modeling 

developed in this work for using the octrees in the 

GPU together with the parallel ray tracing. 
 
5.1 Scene representation 
 
In this work, we represent the scene in two different 

ways: a polygonal mesh or a point cloud. 

  

 A polygonal mesh is created from a set of triangles, 

each composed by three vertices in the tridimensional 

space. A vertex may be shared by different faces, 

which results in some memory saving.  

 

An issue resulting from this representation is that a 

single face may belong to more than one octree node, 

resulting in a higher polygon count to the scene. 

[Madeira 2010] uses only the triangle center to 

determine if it is inside the node or not. In his system, 

there is no mention to hierarchy, so it works ok. But 

here, the hierarchy must be respected, so a triangle 

should be replicated in all nodes that contain it.  

 

A point cloud is a structure composed by a set of 

vertices in the tridimensional space. This 

representation reduces the amount of stored data, since 

only the vertices coordinates are stored, opposed to the 

mesh where we also need to store the vertices’ index 

for each triangle.  

 

For the construction of octrees in the tests proposed 

by this paper, we created a regular grid and populated 

its cells with points. Each point is treated as a sphere of 

radius R by the ray tracing algorithm. The smaller 

octree node – the leaves in the deeper level – have 

length equal to R all the points are always centered 

within its grid cell, so a “sphere” is never contained by 

two different octree nodes. 

 

The usage of a point cloud is explored in works like 

[Linsen et al. 2007] and [Deul et at. 2010]. It is used 

here for testing the octree performance without 

interference from other issues, such as the higher 

polygon count resulted from the usage of polygonal 

meshes.  

 

Whatever the chosen scene representation, we need 

to populate its data into an octree so the ray tracing 

algorithm can traverse the scene with a lower cost. In 

this paper, we propose the usage of a hash table and a 

linear octree, presented in the following sections.   

 

5.2 Octree representation in a hash table  
 
A hash table is a data structure that uses a hash 

function to map keys into positions inside a table. 

Given a key, the function is applied to find out the 

position of the data inside the table.  

 

Depending on the data volume and the hash 

function, more than one key may be mapped into the 

same position. When this happens, a new function is 

used to treat the collision. There are basically two 

approaches for treating collisions: open chaining, 

where a list stores the collided data and the new one in 

stored at the end of the list (this is more useful for CPU 

implementations with a linked list. On the GPU, it is 

needed to allocate a fixed size array, which raises the 

memory usage); and closed chaining, where a second 

hash function is used until a free space is found and the 

data is stored. 

 

In this work, we use the hash function as the 

modulus function, given by h(k) = k mod m, where m 

is the hash table size and k is the item key. But, instead 

of using the rehash function h’(k) = h(k) + 1, as 

proposed by [Madeira 2010], we use a fixed size list 

for collision treatment. This avoids the worst case 

where the whole hash table is searched to find a node. 

 

The key of each node is coded with the Morton 

Code. The octree traversal is done by acquiring the 

code for each child and applying the hash function in 

this code to find where it is stored in the table.   

 

5.3 Octree representation in a linear list  
 

An octree may also be stored in a linear list, where the 

parenthood relations between the nodes are given by its 

indexes. In this model, the root is stored at the position 

0 and the position p of each child is given by p = 8 * 

parent index + child index, where each child is given 

an index ranging from 1 to 8. The children of a node 

are always stored at adjacent memory positions. 

 

 Figure 3 shows an example of a linear octree. The 

root node is at position 0 and its children occupy the 

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3



position 1 to 8. The children of node 1 are at positions 

9 (8 * 1 + 1) to 16 (8 * 1 + 8), and so on.    

 

 
Figure 3: Example of linear octree. 

 

5.4 Octree data storage on the GPU  
 

The octree is stored on the GPU using some data 

structures to reduce memory usage at the same time 

that it doesn’t incur in great performance loss. 

 

 Each octree node has a key, an index to a primitive 

list, a type (internal, leaf, empty leaf or invalid), a 

depth level and a bounding box. The primitives are not 

stored in the nodes because we want to use CUDA’s 

texture memory for faster access and also we need to 

store primitives only for leaves nodes, so the internal 

or empty nodes doesn’t occupy unnecessary space. 

 

 For the polygonal mesh, the primitives are stored in 

two different lists: the first stores each triangle and the 

second stores the vertices. The access to the primitives 

takes two steps, first we need to fetch the triangle and 

read its vertices indices. Then, we fetch the vertices 

and make the intersections tests. For point cloud, we 

can access the vertices directly and apply the 

intersection test. 

 

 Since the octree stores a high amount of internal 

and empty nodes, if every node had a fixed allocated 

space for a list of primitives, too much unused memory 

would be lost. To solve this problem, only the leaves 

have a primitive list. Each leaf node has an index to an 

array allocated in the global memory.  

 

 Figure 4 presents an overview of this system. The 

node 2 is a leaf, so its primitiveIndex field points to the 

memory position where its primitives are stored. 

Whenever the primitives for this node should be 

consulted, the data will be fetched from the 

corresponding position in the memory. This approach 

still brings some memory loss, since not every leaf will 

have a full primitive list, but the memory space is fixed 

in the used GPU architecture. Still, the used space is 

smaller than the trivial solution where every node has 

its own internal primitive list. 

 

 
Figure 4: Primitive list representation for each leaf node. 

 

6. Parallel ray tracing with octree 
 
The developed ray tracing system starts with the 

construction of the octree in the main memory and its 

upload to the GPU memory. Then, the system runs in a 

loop of the following steps: upload of visualization 

data, such as camera and light positions, to the GPU; 

running of the ray tracing algorithm in parallel on the 

GPU; acquisition an exhibition of the generated image; 

update of the visualization data. 

 

 The ray tracing algorithm itself runs as follows: for 

each pixel on the screen a GPU thread is created and a 

ray is casted. For each ray, we check its intersections 

with the scene and find the smallest intersection 

distance. At this point, the illumination model is 

applied and the pixel color is found. 

 

 The intersection calculations depend on the used 

method. The exhaustive ray tracing tests the ray with 

each primitive. The octree ray tracing first checks the 

intersection with the scene root, then tests if there are 

intersections with its children. Each intersected child is 

queued for new recursive tests. The recursion stops 

whenever a leaf, an empty leaf or an invalid node is 

found, or no intersection happens. 

 The following listing describes each step of the 

octree traversal. 

 

Function: OctreeTraversal 

Input: ray, currentNode 

If Intersects(ray, currentNode) 

 If(currentNode.type == Internal) 

  For each child F of currentNode 

   OctreeTraversal(ray, F) 

 Else if(currentNode.type == Leaf) 

  For each primitive P in currentNode 

   If(Intersects(ray, P)) 

    d = IntersectionPoint(ray, P) 

    minDistance=min(minDistance,d) 

   return minDistance 
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7. Results  
 
Here we present the results obtained from the tests with 

the parallel implementation of the ray tracing algorithm 

using an octree as acceleration structure. The tests were 

carried out with a GeForce 9800 GT graphics card with 

1 GB of memory and 112 stream processors at 1350 

MHz running on a PC with Windows Seven and 

CUDA 3.0 installed. 

 

 We tested the algorithm with both point clouds and 

polygonal meshes with varied complexity. We also 

tested three ray tracing implementations: the trivial 

exhaustive one, the hash table based and the linear 

octree based. Here we present a performance 

comparison between each one. 

 

 The ray tracing was always run to generate a 

512x512 pixels image. All the timing results are 

presented in seconds. 

 

7.1 Point cloud tests  

 

The point cloud tests were made with the point count 

varying from 1000 to 64000 (for the exhaustive 

method), 32000 (for the hash table method) and 16000 

(for the linear method).  

 

 There is a high cost increase related to the data 

growth with the exhaustive ray tracing. Figure 5 shows 

how processing time increases fast as the data amount 

becomes larger. This performance loss is more stable 

with the hash table octree (Figure 6), even though it is 

still slower because of the overhead related to the 

octree traversal and the index manipulation. 

 

 
Figure 5: Results for exhaustive ray tracing with point cloud 

(time in seconds). 

 

 
Figure 6: Results for ray tracing with hash table and point 

cloud. 

 
The linear octree presents a similar performance 

gain as the cost increase slows as the data volume 

becomes larger. The exhaustive ray tracing almost 

doubles its processing time as the data volume doubles, 

at the same time the linear octree algorithm doubles its 

processing time as the data volume is increased by 16 

times (Figure 7). 

 

 
Figure 7: Results for ray tracing with linear octree and point 

cloud (time in seconds). 

 
If the data volume is high enough, the traversal 

overhead is compensated and the algorithm presents a 

great gain compared to the linear scene traversal. 

Figure 8 presents a comparison between the exhaustive 

and the octree implementations that demonstrates this. 

The exhaustive method is faster only with a small data 

volume where the overhead makes it slower to traverse 

the octree than to test intersections with the entire 

scene. 

 

 
Figure 8: Comparison between the exhaustive (blue) and 

octree (red) implementations (time in seconds). 
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7.2 Polygonal mesh tests  

 

We also made some testing with different polygonal 

meshes. Four meshes were tested with the exhaustive 

and the linear octree. Because of some faces appear in 

more than one octree node, the total face count differs 

from the face number in the raw model, as shown in 

Table 1. 

 
Table 1: Number of vertices and faces for each polygonal 

mesh used in the tests. 

 

Name Vertices Faces Octree faces 

Cubes 104 156 609 

blackmage 824 1644 4757 

House 1460 3028 10979 

Ant 486 912 4967 

 
Again, the octree implementation is faster with 

larger models. In Figure 9 the red columns represents 

the processing time for the exhaustive method and the 

blue ones are the octree tests. Only the cubes model 

that has a low polygon count is faster with the 

exhaustive method. 

  

 
Figure 9: Comparison of the exhaustive (red) and linear 

octree (blue) implementations with polygonal meshes (time 

in seconds). 

 
Conclusion 
 

This paper presented a parallel implementation with 

the ray tracing algorithm using an octree as an 

acceleration structure for decreasing the number of 

intersection calculations and increasing its 

performance. We studied different ways to represent 

the octree in video memory and presented a 

representation of indexed primitives for octree leaves, 

reducing the memory usage. 

 

 We tested different traversal algorithms for the ray 

tracing, such as the usage of linear octrees, hash tables 

and exhaustive ray tracing. Tests show that the linear 

octree implementation is more efficient, even though 

its higher memory load. The linear implementation is 

faster than the hash table because of the great overhead 

related to the index manipulation necessary to traverse 

the hash table. 

 

 As future work, we propose the usage of Fermi 

graphics cards that allows the usage of pointers and 

recursion. This solves some problems of the presented 

solution. Also, the usage of a GPU cluster is advised, 

since the ray tracing is implemented in a way that 

every ray runs in a separate thread and all the structure 

is stored on GPU memory, so this adaptation shouldn’t 

be problematic, while a great gain is expected. 
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