
2D Shape Deformation Based on Positional Constraints and Layer
Manipulation

Tiago Mota
PESC/UFRJ

Claudio Esperança
PESC/UFRJ

Antonio Oliveira
PESC/UFRJ

Abstract

This paper presents an interactive system for deforming two-
dimensional objects based the manipulation of positional con-
straints and the creation and editing of layers representing parts of
the object. The layers may be deformed in a independent way, or
they can be related through regions of interest chosen by the user.
Using tools for editing and deforming layers it is possible to achieve
more natural results than single-layer approaches. The system is
particularly suited to the animation of characters in the form of car-
toons where arms or legs overlap the body or each other.

Keywords: shape deformation, position constraints , 2D anima-
tion, layers

Author’s Contact:

tiagosmota@gmail.com
esperanc@cos.ufrj.br
oliveira@cos.ufrj.br

1 Introduction

The study of two-dimensional deformation aims to provide effi-
cient methods for modeling and shaping 2D objects embedded in
images. These methods proved to be very important in many ap-
plications, such as enrichment of graphical interfaces [Thomas and
Calder 1995], character animation [Sýkora et al. 2009]and image
editing. Techniques for 2D deformation are particularly appealing
when applied in a character animation context, enabling the artist
to obtain several poses for the same character without redrawing.
Fast controlled deformations are also useful in interactive games
for mimicking collision response of objects or characters.

When creating a image deformation system, a number of factors
should be considered:

• Performance. In most cases the goal is to have an interactive
system that generates real-time results from a series of simple
operations.

• The nature of the object to be deformed. The way that these
objects behave in the real world should be respected when
choosing the method to be used for its deformation. In other
words, the result of the deformation should be physically
plausible.

• Consistency of results. The technique should allow little mar-
gin for error or noise. It is not desirable to use a system that
does not generate visually pleasing results.

• Interface. An intuitive interface allows greater efficiency in
using the system.

Most methods for two-dimensional shape deformation have their
origin in the study of three-dimensional object deformations. Al-
though the properties to preserve are not always the same, the ex-
pected results are very similar. Thus, it is common to find refer-
ences to works about 3D shape manipulation in papers about 2D
shape deformation.

While several paradigms for the deformation of images have been
proposed in the literature, some of the most popular are collectively
known as free-form deformation (FFD) as can be seen, for instance,
in the work of [MacCracken and Joy 1996]. Methods based on this
paradigm can achieve good results by partitioning the the domain
of the image and they obtain their results through the manipulation
of a set of control points for each subdomain. These points can be
moved freely thus deforming the corresponding parts of the domain.
The problem with this approach is that the creation of subdomains
and the definition of control points may be time-consuming, since
the number of points can be very large. In addition, the FFD meth-
ods do not take into account the natural way in which objects move
in the real world.

Deformation methods based on the manipulation of skeletons (e.g.,
[Yan et al. 2008]) are also popular. This approach is intuitive, but,
as the name suggests, it is crucial to create a skeleton that represents
the articulated characteristics of the object. The shape of the object
is changed by moving the bones and joints of the skeleton created.
These methods, however, do not achieve satisfactory results for ob-
jects that don’t have an articulated structure, or can’t be represented
by one. In addition, to define a skeleton is not a trivial task and
setting the weights for the joints can become quite tedious. Like
the free-form deformation methods, those based on manipulating
skeletons are computationally efficient and are easy to implement,
but they don’t have convenient tools for user interaction [Wang et al.
2008].

There are also methods of deformation that make use of physically-
based simulations [Celniker and Gossard 1991]. These methods are
also known as non-linear optimization methods. They often show
very good results, but they are too slow for an interactive approach
and have a very high computational cost.

This paper presents a new interaction approach to 2D shape defor-
mation based on intuitive positional constraints, introduced in the
work of [Igarashi et al. 2005]. They are similar to FFD methods and
in the sense that deformation is achieved by selecting points in the
object to function as positional constraints, and by moving them,
the system performs a series of geometric operations to obtain a
new form for the object. Our method uses the concepts of layer
editing and image processing to increase the mentioned deforma-
tion paradigm, through an interactive and easy to use interface.

It must be noted that the mathematical framework for producing the
deformation is not significantly changed by our approach. Rather,
we show how several layers can be integrated in the framework pre-

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 1

sented by Igarashi. Other frameworks, such as the one presented by
[Weng et al. 2006], could also be used. In this sense, the deforma-
tion machinery is treated as a “black box” in our system.

2 Related work

In recent years, several image deformation approaches based on the
use of positional constraints have been proposed. These methods
can achieve physically acceptable results for many different shapes
by moving control points chosen by the user. Although they have
different representations and linear algorithms, these methods have
a number of common characteristics. In particular, they

• strive to maintain the shape of the inner regions of the objects;

• use polygon partitioning techniques;

• try to interpolate the positional constraints as they are moved;

• work at interactive performance rates;

• have intuitive interfaces.

A seminal work where image deformation is achieved using posi-
tional constraints was presented by [Igarashi et al. 2005]. By cre-
ating a 2D triangular mesh, the method allows interactive deforma-
tion of the object through the manipulation of control points, which
are chosen by the user. Mathematically, the deformation process
is accomplished during user interaction by two linear optimization
steps. The first computes the changes in scaling, while the second
computes rotation of the mesh triangles. The algorithm aims to find
the configuration that minimizes the total distortion for all triangles.

A related work using positional constraints was developed by
[Weng et al. 2006]. This work considered that not all components
of the energy function representing the deformation are linear, and
instead of trying a linear approximation of the terms of the energy
function to be minimized, it uses iterative techniques to solve a non-
linear system. The method aims to preserve two important geomet-
ric properties of two-dimensional objects: the Laplacian coordi-
nates of the curve limiting the object and the local areas within the
object.

Another approach for image deformation with positional con-
straints was developed by [Schaefer et al. 2006], where the energy
minimization is posed as a moving least squares (MLS) problem.
The authors derive a closed formula involving only the constraint
points which, and thus are able to deform the whole image. Un-
fortunately, the technique is blind to the actual shape of the ob-
jects embedded in the image. Later, this approach was extended in
[Cuno Parari et al. 2009] to 3D domains and adapted to the defor-
mation of meshes by means of a skeleton-guided scheme.

Several other approaches for image deformation which do not in-
volve positional constraints have also been proposed. For instance,
[Eitz et al. 2007] and [Pereira et al. 2011] describe methods em-
ploying hand-drawn sketches.

It should be emphasized, however, that the main contribution of
this work in the use of layers in order to achieve a more controlled
deformation of 2D objects. Thus, any deformation algorithm em-
ploying meshes to subdivide the object domain can be adapted to
the proposed layer framework. The concept of layers can also be
adapted to other schemes which do not use meshes, although, in
this case, some other means for establishing the linkage between
layers must be devised.

3 Solving the deformation problem

The interaction method developed in this work uses the numerical
solution described in [Igarashi et al. 2005] to create a system of
deformation based on the use of layers and image processing tools.
The main goal is to allow a finer control over the deformation such
that moving control points does not necessarily affect the whole
object, but only local partitions – i.e., layers – which the user has
the freedom to select.

3.1 Overview of the method with a single layer

It is educational to examine the original deformation method pro-
posed by [Igarashi et al. 2005]. Our own system strives to repro-
duce the same functionality of that system and may be regarded as
equivalent when a single layer is defined.

The first step is the creation of a polygon that wraps the object while
preserving its silhouette. This can be done manually or, if the image
has a good background to foreground contrast ratio, it is possible
to use an automatic method, such as marching squares algorithm,
which is a 2D version of the well-known marching cubes algorithm
[Lorensen and Cline 1987].

After obtaining the polygon formed by the border points, obtain a
triangulation of its interior. The work of [Igarashi et al. 2005] uses
a triangular mesh generated by the method proposed by [Markosian
et al. 1999]. In our implementation we use the triangulation method
described in [Hemmer 2009], as implemented in the CGAL1 library,
due to its performance and detailed documentation. From this mo-
ment on, the user must choose which vertices of the triangular mesh
will be used as positional constraints.

It should be noted that the partitioning of the object into triangles
is crucial to the performance of the deformation system. A greater
number of triangles yields a smoother deformation, but also means
that a larger linear system must be solved during the movement of
constraints.

As the triangulation algorithm uses the contour points as vertices,
it is important that the set of points representing the contour do
not become very large. Thus, it is useful to apply a simplification
algorithm to reduce the number of points of the polygon without
causing major damage to its shape. For this purpose we used the
Douglas-Peucker [Douglas and Peucker 1973] algorithm to get a
good representation for the polygon rapidly (see Figure 1.c).

The last step is to use the deformation method. The implementation
of this method was made following the route described in [Igarashi
and Igarashi 2009]. A full account of that method is out of the scope
of the present paper. In summary, it consists of using the connec-
tivity information of the mesh in order to build two least-squares
problems. The first problem consists of obtaining similarity trans-
formations for all triangles subject to the mesh topology and the
constraints imposed on the vertices selected as control points. The
second problem consists of adjusting the scaling of the triangles so
that they do not enlarge or shrink too much. The bulk of the com-
putation is done in a pre-processing stage, so that obtaining new
shapes by moving constraint points can be done at interactive rates
(see Figure 1d).

3.2 Layer structure

In many cases, the results obtained with the approach described
above look unnatural. An obvious cause for this is the fact that the
image is usually a projection of a real 3D object. Thus, two entirely
separate parts of that object may be superimposed in the image,
and will be deformed together by the method (see Figure 1e). Even
when the projection is favorable, the deformation itself may cause
two parts of the original image to overlap (see figure 2). This can
make the choice of the portion to be displayed inadequate and often
random. In [Weng et al. 2006] and [Igarashi et al. 2005] cope with
this problem using a static display order of object subparts, but this
strategy does not work well in all types of object, especially in areas
with many overlapping regions.

Another limitation of this global approach to image deformation is
the lack of a structure to control small parts of the object. In other
words, the result of the changes in a single point is calculated based
on weighted calculations involving the position of its neighboring
points, making points with fewer neighbors more susceptible to de-
formations. Thus, for greater control over deformations, a care-
ful assignment of weights in different parts of the object would be
needed. For this, [Igarashi et al. 2005] propose a painting interface
for manual assignment of weights at each vertex. This solution,

1http://www.cgal.org.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 2

(a) (b) (c)

(d) (e) (f)

Figure 1: Single layer algorithm: (a) Original image, (b) contour extraction, (c) simplified contour obtained by the Douglas-Peucker
algorithm, (d) triangulated image with positional constraints at some vertices, (e) and (f) deformed image.

Figure 2: Example of deformation in which the overlapping regions
generates inconsistent results.

however, besides requiring the animator to carefully edit the mesh
in a non-intuitive way, does not address the problem of overlapping
parts.

To address these limitations, the present work makes use of a struc-
ture of layers, which represent different and possibly overlapping
regions of the object. The structure is based on the selection of por-
tions of the object, so that they begin to share some characteristics,
such as rigidity of the points, the display order of the segments, the
influence of control points, among others (see Figure 3).

The delimitation of image parts that compose a given layer can be
made based on metrics such as the existence of common character-
istics between points, the existence of a real separation in the object
or any other need to differentiate between points. As shall be seen
in Section 4, in our system, the desired portions of the image are se-
lected by the user with lasso or rectangle tools, painting and other
image processing operations.

Once layers are created, their stacking order must be defined. By
default, are stacked in order of creation, but this index can be
changed at any time during the interaction.

After this step, the relationship between layers must be established.
Sometimes, layers are to be deformed independenty. In this case,
each layer would go through all steps described in Section 3.1. In
some other cases, two overlapping layers may be attached to each
other using one or more edges of the triangulation. These linkage
edges are provided by the user by drawing one or more line seg-
ments inside the area of intersection between the layers. This is
done in a step preceding the triangulation. Thus, although layer

triangulations are largely independent, they are viewed by the de-
formation algorithm as a single triangulation.

4 Interaction

The application interface uses a modal paradigm which reflects the
series of steps the animator would have to follow to obtain the poses
for each character. In other words, the behavior of the mouse and
the operations made available by the interface depend on which step
of the deformation pipeline is being authored at the moment. To aid
the user, a “task script” is shown as a series of buttons (see panel

1 in Figure 4). These tasks are summarized below.

4.1 Image loading

Initially, the user selects the image containing the object to be de-
formed. Any images or layers previously defined are erased. Once
loaded, the image is shown in the central area of the interface and
the first layer is created (panel 5). At this point, the program tries
to guess which pixels belong to the object to be deformed by ap-
plying a simple brightness threshold segmentation algorithm. The
result of this process is a bitmap mask where 1’s correspond to ob-
ject pixels and 0’s indicate background pixels. In this stage, it is
also possible to add or subtract to the mask using painting tools.
At the end of this phase, the image is stored in a separate buffer to
serve as a template for creating new layers.

4.2 Layer editing

This is probably the most time-consuming part of the interaction.
Layers can be added or removed using the “+” and “−” buttons in
the layer panel (panel 5). By clicking on the name of the layer,
this layer is loaded into the central area so it can be modified. It
is also possible to manipulate the stacking order of the layers by
dragging names up and down in the layer panel. Other than the
first layer, newly created layers are assigned empty bitmap masks.
Pixels from the template buffer created in the initial step can be
cloned into a new layer by using cloning brushes or polygon cloning
tools (panel 2), meaning that corresponding bits in the bitmap
mask are set to 1. Similarly, pixels of a layer can be removed by

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 3

(a) (b) (c)

Figure 3: Example using layers: (a) The main body layer, (b) layer containing a single leg, and (c) sample deformation where legs can be
separated.

Figure 4: Interface: 1 Task script; 2 Tools for editing and manipulating layers; 3 View options; 4 Triangulation and deformation

options; 5 Preview and ordering of the layers.

the erase tool. It is also possible to repaint areas of a layer using
various kinds of brushes and colors (see example in Figure 5)

In our implementation, only a few simple tools are offered for re-
touching the visual aspect of each layer, but a separate dedicated
image painting application could conceivably be used for this task.
A key editing operation consists in retouching parts of a given layer
which will be revealed as an overlapping layer is moved away from
it. This is known as inpainting. Many techniques can be used to
help the artist in this step. Our system implements only a simple
pyramid-based algorithm [Ogden et al. 1985], even though this par-
ticular technique is best suited for filling out relatively small areas
of the image based on the colors of nearby pixels. See Figure 6 for
an example where pyramid based inpainting does not lead to good
results.

4.3 Layer linking

This step aims to relate the layers with each other. Suppose that
two layers are not to be deformed independently. Then, the user
first selects them in the layers panel. The system will then compute
their common area them by performing a bitwise “and” between
their bitmap masks. Using the pencil tool, the user then draws one
or more line segments inside the intersection area (see Figure 5.c).
These will later become common edges in the corresponding layer
triangulations.

It should be noted that the number and the length of the line seg-
ments have a bearing in the degree of “connectedness” between lay-
ers. Longer lines imply a greater dependence between layers.

In this stage, the user must also define constraint points with the
constraint tool. Constraint points are handles which later will be
dragged to obtain new poses of the object. Since each constraint
point is attached to only one layer, the user must select it on the
layer panel before using the constraint tool. In practice, one must
place restrictions either in parts of the image which must remain
“anchored” during the deformation, or attached to parts such as legs
or arms one wishes to drag to obtain new poses.

4.4 Deformation

By clicking on the Deformation button in panel 1 , the system
builds all data structures necessary for performing the interactive
deformation of the object.

Firsty, the bitmap masks indicating the object pixels of each layer
are submitted to the marching squares algorithm in order to define
the outline of the regions to be deformed. Since the algorithm is
applied by a simple scan from top to bottom, it only outputs a sin-
gle polygon for each layer. This means that the outline may contain
pixels which are not part of the object (see Figure 7). Notice that the
outline polygon delimits the domain which will be triangulated. In
general, this does not represent a problem, since pixels correspond-
ing to bits set to zero in the bitmap mask will be transparent during
the deformation phase. These polygons are subsequently simplified
using the Douglas-Peucker algorithm (see Section 3.1). The degree
of simplification may be configured using controls in panel 4 .

Next, a restricted Delaunay triangulation for each layer is obtained
according to the method described in [Hemmer 2009]. Recall that

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 4

a restricted triangulation is obliged to contain pre-established edges
and vertices. In particular, the layer linkage line segments, as well
as those segments comprising the border polygons are included as
edge restrictions, while constraint points are set as vertex restric-
tions. The density of the desired triangulation can also be defined
through controls in panel 4 .

Finally, one deformation problem is built for each set of connected
layers. This entails the construction of two least-squares problems,
each containing O(n−m) variables, where n is the number of trian-
gles in all connected triangulations and m is the number of control
points attached to them. Notice that these problems are factored so
as to permit the bulk of the computation to be done only once at
a cost of roughly O((n − m)3). This means that the user usually
has to wait a few seconds after he/she hits the deformation button
before being able to interactively move the positional constraints.

The interactive deformation of the triangle meshes is done in
O(m(n − m)), which is almost linear with respect to the size n
of the mesh for small m. In this stage, the user can click and drag
the previously defined control points to achieve the desired shape
for the object (see figure 8).

5 Results and tests

The system was tested on a computer with 2GB of RAM and a Intel
Core TM 2 Quad Q8300 2.5GHz processor. The operating system
was Ubuntu 9.10 and the program was compiled with gcc. The
triangulation algorithm was provided by CGAL2 and linear equa-
tion solvers were provided by the Eigen3 library. Since the numer-
ical issues of the deformation framework were already reported in
[Igarashi et al. 2005], we see no reason to expand on this here. Suf-
fice it to say that the system behaves at interactive rates (> 20 fps)
only for meshes having around 300 triangles.

The layer structure allows a more precise control over the objects.
This is also due to the fact that the layers can be associated with tri-
angular meshes with different levels of refinement. Thus, for thin-
ner regions, which are generally more susceptible to deformation,
can be made more rigid, which is more awkward to do in the non-
layered approach (see Figure 9).

The relationship between layers is also a factor to be taken into
account. When the layers are related to each other (see figure 10),
the deformation process is more practical and fast, but in some cases
it may be necessary to adjust the position of the common constraints
to achieve better deformation for the object. Unrelated layers (see
figure 11 and 13) tend to leave the process of deformation more
loose, but may leave him more tedious.

The number of layers is another factor that may contribute to the
complexity of the deformation setup. In general, a greater number
of layers is needed for more flexible character posing, but this also
entails that the user must spend more time preparing and retouching
the layers, and these may have to be set into the desired positions us-
ing more constraint points. Several deformation examples obtained
with our system are shown in Figures 10 to 13

2http://www.cgal.org
3http://eigen.tuxfamily.org

(a) (b) (c)

Figure 5: Defining and linking layers: (a) Pixels from the template
image are cloned into the layer; (b) pixels of the layer are painted to
remove overlapping parts of another layer; (c) two layers a linked
by a line segment.

Figure 6: Example of the use of pyramid-based inpainting algo-
rithm in regions not too small.

Figure 7: Polygon delimiting the object outline.

Figure 8: constraints manipulation: 1- Position1; 2- Position 2.

6 Limitations and future work

Many of the limitations of the described system are inherited from
the mathematical framework used to deform one layer. The most
significant ones are:

• The non-intuitive deformations achieved for some large dis-
placements of control points. This is apparent, for instance,
in the legs of the football player and the ballerina in certain
poses of Figures 12 and 13. Some of these problems are re-
ported in the original paper by Igarashi et al. They suggest
altering the weights assigned to some vertices of the trian-
gulation during the optimization process in order to increase

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 5

Figure 9: Example of layers with different levels of refinement.

the rigidity of the incident triangles. This change in the as-
signment of weights can be effected by means of a painting
interface, which would fit nicely with the other painting tools
in our system’s interface. Another possibility is to employ an-
other deformation scheme. Some natural candidates are the
the non-linear optimization approach of [Weng et al. 2006]
and the moving least-squares (MLS) approach of [Schaefer
et al. 2006]. Another possibility is the adaptation of standard
3D deformation schemes based on skeletons and skins. The
main challenge of these methods is that the skeleton must be
built by hand, although some authors report automated meth-
ods for this (see, for instance, [Vasilakis and Fudos 2009]).

• The limitation on the density of triangulations which can be
interactively deformed (currently, around 300 triangles). This
limitation can be alleviated to some degree using better nu-
merical solvers or offloading the bulk of the numerical work-
load to the GPU using GPGPU techniques. Obviously, the
problem can also be tackled by using less computationally in-
tensive deformation schemes such as MLS or skeleton-based
approaches.

The introduction of layers and the proposed scheme for propagation
of deformations across layers are also subject to some issues which
deserve further investigation:

• The separation of an original drawing into layers may be
somewhat time-consuming. In particular, the retouching of
areas which are uncovered by moving away an overlapping
layer may require artistic skills from the animator. This situ-
ation may be helped, for instance, by using a better algorithm
for inpainting such as [Yamauchi et al. 2003].

• The linking between layers effected by drawing line segments
offers limited control over the “rigidity” of the binding. There
are quite a few alternative schemes which could be tried in
this respect. For instance, one could admit linkage points or
linkage polygons. Another idea would consist of deforming
layers independently but feeding back deformed vertices as
restrictions in other layers.

• The use of non-positional restrictions could also lead to
added control to the authoring of deformations. For instance,
[Schaefer et al. 2006] describe the use of line segments as re-
strictions.

7 Conclusion

In this work was made a study of methods based on the paradigm
of image deformation based on the use of intuitive positional con-
straints. Our contribution to the work of this approach was the use
of a layered structure that defines a different representation for the
object and allows greater freedom in its deformation.

We realized that the use of layers is a viable option to add more
possibilities to the deformation of images based on the use of posi-
tional constraints without considerably affecting the performance.
In addition, the use of tools of images processing, often familiar to
the user, permits a smooth learning curve.

Our experience in using the system for simple deformations sug-

gests that many of the operations can be simplified and make more
natural with a less cluttered graphical user interface. Also, since the
intended use for the system is in cartoonish character animation, its
integration into an animation framework is planned for the future.

References

CELNIKER, G., AND GOSSARD, D. 1991. Deformable curve and
surface finite-elements for free-form shape design. SIGGRAPH
Comput. Graph. 25, 257–266.

CUNO PARARI, A. E., ESPERAN CA, C., AND OLIVEIRA, A.
A. F. 2009. Shape-sensitive mls deformation. Vis. Comput. 25
(September), 911–922.

DOUGLAS, D. H., AND PEUCKER, T. K. 1973. Algorithms for
the reduction of the number of points required to represent a dig-
itized line or its caricature. Cartographica: The International
Journal for Geographic Information and Geovisualization 10, 2
(Oct.), 112–122.

EITZ, M., SORKINE, O., AND ALEXA, M. 2007. Sketch based
image deformation. In Proceedings of Vision, Modeling and Vi-
sualization (VMV), 135–142.

HEMMER, M. 2009. Polynomials, CGAL - Computational Geome-
try Algorithms Library, release 3.4. CGAL, Campus E1 4, 66123
Saarbrücken, Germany, January.

IGARASHI, T., AND IGARASHI, Y. 2009. Implementing as-rigid-
as-possible shape manipulation and surface flattening. Journal
of Graphics, Gpu, and Game Tools 14, 1, 17–30.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005. As-
rigid-as-possible shape manipulation. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Papers, 1134–1141.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A
high resolution 3d surface construction algorithm. SIGGRAPH
Comput. Graph. 21, 163–169.

MACCRACKEN, R., AND JOY, K. I. 1996. Free-form deformations
with lattices of arbitrary topology. In SIGGRAPH ’96: Proceed-
ings of the 23rd annual conference on Computer graphics and
interactive techniques, 181–188.

MARKOSIAN, L., COHEN, J. M., CRULLI, T., AND HUGHES,
J. 1999. Skin: A constructive approach to modeling free-form
shapes. In Proceedings of SIGGRAPH 99, 393–400.

NGO, T., CUTRELL, D., DANA, J., DONALD, B., LOEB, L., AND
ZHU, S. 2000. Accessible animation and customizable graphics
via simplicial configuration modeling. In SIGGRAPH ’00: Pro-
ceedings of the 27th annual conference on Computer graphics
and interactive techniques, 403–410.

OGDEN, J. M., ADELSON, E. H., BERGEN, J. R., AND BURT,
P. J. 1985. Pyramid-based computer graphics. RCA Engineer 5,
4–15.

PEREIRA, T., VITAL BRAZIL, E., MACÊDO, I., DE FIGUEIREDO,
L. H., AND VELHO, L. 2011. Sketch-based warping of rgbn
images. Graphical Models 4, 97–110.

SCHAEFER, S., MCPHAIL, T., AND WARREN, J. 2006. Image
deformation using moving least squares. ACM Trans. Graph. 25
(July), 533–540.

SÝKORA, D., DINGLIANA, J., AND COLLINS, S. 2009. As-rigid-
as-possible image registration for hand-drawn cartoon anima-
tions. In NPAR ’09: Proceedings of the 7th International Sym-
posium on Non-Photorealistic Animation and Rendering, 25–33.

THOMAS, B. H., AND CALDER, P. 1995. Animating direct manip-
ulation interfaces. In UIST ’95: Proceedings of the 8th annual
ACM symposium on User interface and software technology, 3–
12.

VASILAKIS, A., AND FUDOS, I. 2009. Skeleton-based rigid skin-
ning for character animation. In GRAPP’09, 302–308.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 6

WANG, Y., XU, K., XIONG, Y., AND CHENG, Z.-Q. 2008. 2d
shape deformation based on rigid square matching. Comput. An-
imat. Virtual Worlds 19, 3-4, 411–420.

WENG, Y., XU, W., WU, Y., ZHOU, K., AND GUO, B. 2006.
2d shape deformation using nonlinear least squares optimization.
Vis. Comput. 22, 9, 653–660.

YAMAUCHI, H., HABER, J., AND SEIDEL, H.-P. 2003. Image
restoration using multiresolution texture synthesis and image in-
painting. In Proc. Computer Graphics International, 120–125.

YAN, H.-B., HU, S., MARTIN, R. R., AND YANG, Y.-L. 2008.
Shape deformation using a skeleton to drive simplex transforma-
tions. IEEE Transactions on Visualization and Computer Graph-
ics 14, 693–706.

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 7

Figure 10: Example of deformation using two related layers .

Figure 11: Example of deformation using two unrelated layers .

Figure 12: Example of deformation using three unrelated layers .

Figure 13: Example of deformation using a larger numbers of layers (four).

SBC - Proceedings of SBGames 2011 Computing Track - Full Papers

X SBGames - Salvador - BA, November 7th - 9th, 2011 8

