
A Practical Proposal for Building Counter-Strike
Global Offensive Datasets

Erick Rocha
Instituto de Computação

UFRJ
Rio de Janeiro, Brasil

erickkrocha@gmail.com

Henrique Maio
Escola de Engenharia

UFRJ
Rio de Janeiro, Brasil

henriquemaio@poli.ufrj.br

Daniel S. Menasché
Instituto de Computação

UFRJ
Rio de Janeiro, Brasil

sadoc@ic.ufrj.br

Claudio Miceli
Escola de Engenharia

UFRJ
Rio de Janeiro, Brasil

miceli@nce.ufrj.br

Resumo—There is a growing necessity for insightful and
meaningful analytics within eSports: be it to entertain spectators
as they watch their favorite teams compete, to automatically
identify and catch cheaters or even to gain a competitive edge
over an opponent, there is a plethora of potential applications
for analytics within the scene. It follows then, that there is also a
necessity for well structured and organized datasets that enable
efficient data exploration and serve as the foundation for the
visualization and analytics layers. Because of this, the entire
process - from data collection at the source to the means of
accessing the desired information - need to be planned out to
address those needs. Our work provides the means by which to
construct such a dataset for the Counter-Strike Global Offensive
(CS:GO) game, thus opening up a range of possible applications
on top of the data.

Palavras-chave—counter-strike, esport, data, dataset, insert

I. INTRODUCTION

With the development and evolution of technology, the same
atmosphere that has ignited crowds of spectators and inspired
people all over the world in sports [1], has also become part
of electronic games. By breaking the frontiers and allowing
people to not only spectate, but also compete with other
people around the world [2], competitions that until around the
2000s were mostly among amateur players, started to attract
the market’s attention. Rapidly following it, a large structure
was formed around professional competitions which became
collectively known as “eSports” [3].

According to SuperData’s anual report [4], digital games
earned $126.6B in 2020 and many organizations have been
investing on the creation of teams and leagues to explore that
potential. One of the games that have for long now been a
pillar of the eSports world and that greatly influenced in its
growth is the franchise of the multiplayer first-person shooter:
Counter-Strike (CS).

Released in 1999 as a modification1 for another game
called Half-Life, the Counter-Strike franchise has surpassed
and outlived its predecessor with many versions of the game
being developed and released: over the last 12 years, it has
been one of the most played games in the world, having
sold more than 25 million copies. Its latest version is called
“Counter-Strike: Global Offensive” (CS:GO) and is the subject
of this article.

1Modifications are also known as mods in the gaming jargon.

On the tail of the incredible growth of the eSports market
and of the CS:GO competitive scenario is the ever growing
need for insightful analytics and visualizations. Acquiring data
to support these goals is not easy: the readily available data
one can find in most CS:GO websites can only support basic
analysis. Furthermore, there are many players23 in the market
that seemingly employ sophisticated data retrieval strategies
to obtain quality data, but the knowledge and tooling used to
obtain such data seems to be intellectual property. This ends
up leaving a gap with respect to publicly available datasets.

Thus, with hopes of enabling data exploration and ultimately
empowering the community to build meaningful and insightful
analysis, this article aims to propose a strategy and architecture
that can be leveraged to retrieve quality CS:GO data.

Outline. The rest of this article is structured as follows.
Section II presents the landscape, followed by challenges in
Section III. Sections IV and V describe the strategy to build the
dataset and the subsumed architecture. The dataset is described
in Section VI, related work in Section VII, dataset availability
in Section VIII and Section IX concludes.

II. LANDSCAPE

There are two types of sources one can leverage to obtain
CS:GO data.

The first source – henceforth referred to as a source of
“high level data” – is any website or application that tracks
competitive matches and displays their results. It offers in-
formation such as the date window in which championships
took place, the dates in which matches were played, the teams
and players that participated on those matches, their scores and
finally, some high level statistics that can support only shallow
analysis.

The second source – henceforth referred to as a source of
“low level data” – is an actual “replay” file of a match. These
“replay” files (called “demo” files by the community) are
protobuf-serialized files that contain every important event that
occurred within the match. It offers a plethora of information
regarding every player at almost any given moment in the
game, such as their positions, their net worth (i.e. current

2https://sixteenzero.net/
3https://csgostats.gg/

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Workshop G2: Undergraduates

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

money plus investment in current equipment) and their actions
(e.g. movements, shots, grenades thrown).

III. CHALLENGES

Collecting data in a large scale fashion can be a problem
even if the data is readily available: there are many avenues of
concern within the overall process of collecting, storing and
shaping raw data into valuable information. For instance, how
do you optimize and scale your data fetching routine when the
source isn’t well structured or protects itself against crawlers?
How do you store the data while minimizing infrastructure
costs and maximizing retrieval response time? Will the data
require real time aggregation? Should it be structured with
a relational schema or not? There are many more questions
looming over the topic and answering these questions requires
a deeper understanding of one’s objectives when handling the
data, which means it’s not trivial.

The collection process for CS:GO data is no different. There
are many challenges in capturing and structuring the data in a
useful way. To name a few:

• Surpassing anti-crawling mechanisms
• Scaling the data fetching routine
• Extracting information out of CS:GO “demo” files
• Linking low and high level data (see Section II)
• Managing associated costs
The breadth and depth of data available about CS:GO is

astounding. Once the challenges are overturned, it is possible
to build a robust dataset that can be leveraged in many ways,
such as to gain insight into characteristics of the game that
are hidden from the “naked eye”, to define new models that
better evaluate the impact of each player in the game and to
find trends in the game.4

IV. STRATEGY

To build a truly meaningful CS:GO dataset, we believe one
has to leverage aspects from both high and low-level data
sources. Recall from Section II that we distinguish two sorts
of data:

• high-level data sources: championships, matches, maps,
teams and players;

• low-level data sources: in-game actions such as player
coordinates, shots fired and grenades thrown.

Thus, for the overall success of our endeavor, it was
paramount to select a source that made it possible to capture
both high and low-level data. Consider the HLTV CS:GO
portal5: in it, one can not only browse championships and
select the results of the matches played in them, but also
download the “replay” files of each match.

Our overall strategy then consists of the following steps:
1) Retrieve high-level data of each match along with the

low-level “demo” file
2) Retrieve low-level data from each downloaded “demo”

file

4Such trends also known as “meta” within the gaming community.
5http://hltv.org

Fig. 1. Dataset generation process

3) Store the retrieved information
4) Expose stored information through a “queryable” inter-

face

V. ARCHITECTURE

Next, we describe our architecture to collect and structure
high and low-level information about CS:GO championships.
The designed architecture attempts to employ the following
strategy while solving or working around the previously men-
tioned challenges. It consists of five different components:

1) A web crawler (for the HLTV6 site)
2) A demo file downloader
3) A demo file parser
4) A parsing orchestrator
5) An indexer

A. Crawler

The web crawler is the entry point of the architecture: given
the identification number of a championship, it crawls the
HLTV website 1 and generates a manifest file 2 containing
the high-level data of each match played in the championship
along with the URLs to download the demo files.

B. Downloader

The demo file downloader consumes the manifest file 3
to retrieve the URLs and then proceeds to download the files
4 , saving them to the configured path on the file system 5 .

6See footnote 5.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Workshop G2: Undergraduates

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

C. Orchestrator

The orchestrator is the component responsible for consum-
ing the downloaded files and generating the dataset. It starts
by crawling its configured input directory and decompressing
the downloaded files 6 . For each decompressed demo file,
it invokes the parser 7 and converts the parsed CSV files
into the parquet format 9 .

D. Parser

The demo file parser parses the downloaded protobuf-
serialized demo files and writes the desired data in a set of
CSV files 8 .

E. Indexer

The indexer is the final piece of the puzzle: it indexes the
dataset in the local file system 10 and generates an SQLite

database file 11 that serves as an index for the low-level
data.

VI. DATASET

Next, we describe the obtained dataset. We restrict our
description, focusing on a proof-of-concept of what can be
achieved by leveraging the architecture described in the pre-
vious section.

Our dataset contains all matches played in the “ESL Pro
League Season 13” 7 championship, where 73 distinct matches
were disputed throughout the competition, resulting in a total
of 173 maps played.

A. Structure

Our dataset was designed to be consumed locally while
minimizing the resources required to store and consume it.
The main drivers behind the design were to allow cost-
effective data exploration and to facilitate integration with well
established means of local file consumption for data-science
ends (e.g. through Pandas).

The dataset is structured as a set of files on the local file
system and is composed of a manifest, an SQLite database file
and a set of parquet files.

1) Manifest File: The manifest is a file containing high-
level data, such as which teams and players competed in each
match, which maps were played in it and when the match took
place. This holds special importance as low-level data – such
as the nickname or id of a player within a match – can change
from match to match. In addition, it can be hard to map the
in-game avatars to the real world people playing those avatars.

By linking this information, one can unlock the potential of
the dataset and track metrics of a player across time, even if
the player switched teams.

7https://www.hltv.org/events/5553/esl-pro-league-season-13

2) SQLite File: The SQLite database file is generated by
reading the manifest files containing high-level information
about every championship found when traversing the dataset
root folder. It is an index of the data available within the
dataset and its ultimate goal is to provide a queryable interface
through which one can find the relevant parquet files with low-
level information one wants to explore. In other words, this
database bridges the gap between the high-level and low-level
entities.

3) Parquet Files: The parquet files contain the low-level
data, such as the events that occurred within the game and
the positions of each player at virtually every moment of the
game.

B. Required Resources

As previously mentioned, our architecture leverages the
Apache Parquet format8 as a means to decrease system re-
sources when storing and consuming the dataset. The columnar
nature of this format allows us to:

1) Apply column-specific compression and encoding
schemes, drastically reducing the required disk size to
hold the dataset;

2) Read only the desired columns when consuming the
dataset, again drastically reducing the amount of mem-
ory required to hold the dataset in memory.

A quick comparison between the dataset in CSV format
and the currently employed optimized parquet format shows
the drastic difference in disk size required to store the dataset
in the hard drive (see Table I).

TABLE I
CSV VS PARQUET

Unit CSV Apache Parquet

(GB) 83.2 9.86

C. Using the Dataset

The standard way of using the dataset is to first query the
index database to locate the parquet files of interest and then
proceed to load the columns of the desired subsets of data
(i.e. tick, player death, etc). This workflow is very malleable
in the sense that both the SQLite database and the parquet
files can be read using a wide range of libraries across several
programming languages.

D. Usage Possibilities and Impact

Next, we discuss some of the various potential uses for the
data. We refer to scenarios of interest and to research questions
that can be elaborated or resolved from the availability of our
dataset.

• What is the behavior of users mobility?
From the user’s movement data, it would be possible to
analyze how the best players in the teams move and how
this affects their results. This information can be used by

8https://parquet.apache.org/documentation/latest/

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Workshop G2: Undergraduates

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

these same players to find their flaws and fix it or by
opponents to overcome those players. We envision that
the vast literature on human mobility may be contrasted
against players mobility, and that generative mobility
models can be used for practicing purposes.

• What are the most adopted game strategies?
Based on the dataset data, it would be possible to
categorize the different strategies used by the teams
and how the teams coordinate their actions during the
match. We envision that both supervised and unsupervised
machine learning tools may be used for clustering and
classification purposes.

• What are the best strategies to win a match?
Based on the strategies, it would be possible to infer
and compare which were used in the championship
and find out which were the most victorious or most
efficient against the best teams. We envision that using
reinforcement learning one may also use our dataset for
training purposes, to shed insight into novel strategies.

VII. RELATED WORK

Works related to game data analysis have been published in
recent years [5], [6], which shows the importance of obtaining
data in an efficient and structured way. There are different
ways to perform data collection to perform this analysis. An
article published on SBGames in 2020 [7] proposed a method
to collect game data from videos, texture of videos on screen
and players’ actions.

Another relevant work was published in SBGames 2017
[8]. It presented a game data analysis focused on the World
of Warcraft game. Although this article presents a different
methodology for data collection, an analysis of the players’
behavior could also be made from the data set generated by
the proposal presented here.

Among works focusing on Counter Strike, the two more
closely related to ours are [9] and [10]. In [9] the authors
provide an open source platform to collect data from CS:GO.
Their platform is complementary but different from ours. In
particular, it does not bridge high-level and low-level data (see
Section IV).

In [10] the authors analyze data from HLTV. Their goal is
to assess and predict player performance. We envision that our
work can be instrumental to reproduce and expand previous
efforts such as those reported in [10].

VIII. DATASET AND CRAWLER AVAILABILITY

Our dataset is available at https://tinyurl.com/ncnsj8s6.
The modules comprising our crawling infrastructure are

available as follows:
• Crawler: https://github.com/ErickRDev/csgo-demo-crawler
• Downloader: https://github.com/ErickRDev/csgo-demo-downloader
• Orchestrator:

https://github.com/ErickRDev/csgo-demo-parser-orchestrator
• Parser: https://github.com/ErickRDev/csgo-demo-parser
• Indexer: https://github.com/ErickRDev/csgo-dataset-indexer

IX. CONCLUSION AND FUTURE WORK

The increasing popularity of eSports has raised an interest
in analyzing and visualizing relevant data within the domain.
When it comes to CS:GO, there are websites with readily
available high-level data that, when coupled with low-level
data extracted from “replay” files, provide the necessary input
to build a robust dataset that can be ultimately leveraged to
satisfy the needs of the community.

In this paper we presented such a proof-of-concept dataset
along with the means by which to collect and expand on the
data. Our method crawls the relevant high-level data from
the HLTV website, parses the protobuf-encoded “replay” files
to extract low-level data and employs a simple, yet effective
strategy to bridge the gap between them.

The presented architecture represents a huge opportunity to
explore CS:GO data and can be used to investigate several sce-
narios and aspects of the game, to create analytic reports and
visualizations about the matches, players and championships.

As future work related to the generation of the dataset, we
envision a number of opportunities to improve the proposed
pipeline and to foster a plug-and-play analysis of the collected
data. In particular, we envision additional automation of the
whole pipeline, from data collection to data storage without
manual intervention.

ACKNOWLEDGEMENT

This work was partially supported by CAPES, CNPq
and FAPERJ under Grant E-26/203.215/2017 and Grant E-
26/211.144/2019.

REFERENCES

[1] J. El-Harami, “Entertainment and recreation in the classical world-
tourism products,” J. Mgmt. & Sustainability, vol. 5, p. 168, 2015.

[2] D. Williams, “Structure and competition in the us home video game
industry,” International Journal on Media Management, vol. 4, no. 1,
pp. 41–54, 2002.

[3] J. G. Reitman, M. J. Anderson-Coto, M. Wu, J. S. Lee, and
C. Steinkuehler, “Esports research: A literature review,” Games and
Culture, vol. 15, no. 1, pp. 32–50, 2020.

[4] SuperData, “Year in review: Digital games and interactive media,”
https://g-mnews.com/en/digital-games-and-interactive-media-
earnings-rose-12-to-us139-9-billion-in-2020/ , 2021.

[5] M. Varvello and G. M. Voelker, “Second life: a social network of humans
and bots,” in Proceedings of the 20th international workshop on network
and operating systems support for digital audio and video, 2010, pp.
9–14.

[6] M. Varvello, F. Picconi, C. Diot, and E. Biersack, “Is there life in second
life?” in Proceedings of the 2008 ACM CoNEXT Conference, 2008, pp.
1–12.

[7] E. S. Siqueira, C. D. Castanho, G. N. Rodrigues, and R. P. Jacobi, “A
data analysis of player in world of warcraft using game data mining,”
in 2017 16th Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames). IEEE, 2017, pp. 1–9.

[8] N. T. Yada, J. Souza, and A. R. Ortoncelli, “Digital game video sum-
marization based on screen and player videos,” in 2020 16th Brazilian
Symposium on Computer Games and Digital Entertainment (SBGames),
2020.

[9] P. Xenopoulos, H. Doraiswamy, and C. Silva, “Valuing player actions in
counter-strike: Global offensive,” in 2020 IEEE International Conference
on Big Data (Big Data). IEEE, 2020, pp. 1283–1292.

[10] D. Bednárek, M. Krulis, J. Yaghob, and F. Zavoral, “Data prepro-
cessing of esport game records-counter-strike: Global offensive,” DOI:
10.5220/0006475002690276, 2017.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Workshop G2: Undergraduates

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

