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Abstract—Tetris is one of the highest-grossing video games in
all history and, despite of its age, remains quite popular. One of its
most acclaimed versions was released in 1989 for the Nintendo
Entertainment System (NES) and is often referred to as NES
Tetris. This particular version of the game has led to the creation
of the Classic Tetris World Championship (CTWC), resulting in
growing popularity and alternative modes of gameplay. In one
of such variants, players aim to clear as many lines as possible,
with an additional constraint: piece rotations are not allowed. In
this work we build and evaluate agents to play this particular
variant of the game based on different metrics that grade board
configurations. The relative importance of metrics is determined
with the Particle Swarm Optimization. Our best results match
those of top performing human players, even though the metrics
we employ were not specifically developed for this game variant.

Index Terms—Tetris, NES Tetris, Heuristics, Metrics, PSO.

I. INTRODUCTION

Tetris is a computer/video game created in 1984 by Alexey
Pajitnov. The game is composed of a board with 20 lines ×
10 columns and seven different pieces, the so-called tetromi-
noes, which fall, one at a time, from the top of the board
in a particular order (in most implementations randomly). As
a tetromino falls, the player has to rotate and position it in
the board, aiming to completely fill lines and making them
disappear, that is, clearing them. Line clears can happen in
one, two, three or four (a so-called Tetris). The ultimate goal
is to maximize the number of points, which are awarded to the
player as lines are cleared. The more lines cleared at once, the
more points awarded, with higher levels awarding more points
per lines cleared, given that pieces fall at a faster pace. The
game is over when no more pieces can be fitted in the board.

Despite of its age and overall simplicity, Tetris is a
quite popular game, with new implementations released re-
cently (e.g., Tetris Effect [1]). Other than that, the game has
driven the creation of fandoms and championships, among
which the Classic Tetris World Championship (CTWC) stands
out1. In the CTWC players compete against each other in the
Nintendo Entertainment System (NES) version of the game,
NES Tetris for short. In this version of the game the player
has to deal with: (i) a limited look-ahead, that is, he/she knows
only the current and next piece and; (ii) increasing fall speeds,
as the number of lines cleared increase and levels progress.

1CTWC Official Website: https://thectwc.com/

Player scores in CTWC have increased considerably in last
couple years, pushing the limits of what was though to be
possible in the game. In recent editions of the tournament
several players were capable of scoring over 999,999 points,
which is called a max out, given that the original implementa-
tion of NES Tetris don’t even register scores higher than that.
Such scores are remarkable given that in NES Tetris playing
above level 29 is nearly impossible (given that pieces fall at
an alarming rate) and games in CTWC start at level 18.

In a recent work, M. Birken [2] employed Particle Swarm
Optimization (PSO) [3] in order to train a NES Tetris playing
agent and obtained results comparable or even better than the
ones observed on CTWC. On average, the approach obtained
a score of 1,036,706 and a standard deviation of 149,458. It
is important to note that during evaluation all games started
on level 19 and were played at most until level 29, in order
to make results comparable to those observed on CTWC.

In this paper we investigate how the Particle Swarm Opti-
mizations (PSO) and existing metrics perform when playing
NES Tetris with an additional “twist” or constraint: no piece
rotations are allowed. Note that this is not a particular mode
of the NES Tetris per se, but an informal variant, that is, it
depends on the user not pressing the buttons responsible for
rotations. In this variant a player seeks to maximize the number
of lines cleared, instead of the overall observed score.

By the year of 2019, human player recordings featuring
this particular variation on NES Tetris started to emerge on
YouTube. The first registers show top performing players
clearing at most 17 lines. From then, these numbers have
been increasing consistently, with a complete account of the
timeline given by [4]. To the best of our knowledge, as the
writing of this paper, the record for the no rotation variant of
NES Tetris by a human player is of 44 cleared lines [5].

The remainder of this paper is organized as follows. In Sec-
tion II we discuss related work, focusing on metrics/features
previously developed/employed by agents to play Tetris. In
Section III we provide an overview of the approach adopted
to build playing agents, reviewing all the metrics employed
and the PSO algorithm, which was used to tune metrics’
weights. In Section IV we discuss the experimental setup of
our approach. Section V presents the main results of our work
and discussions. In Section VI we draw the main conclusions
of the paper and discuss possible future research directions.
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II. RELATED WORK

In this section we discuss related work. We limit the discus-
sion to works that employed an evaluation function composed
of different metrics/features to grade board configurations and
guide the decisions of the playing agent. In order to keep
the discussion as brief as possible, the description of the
actual metrics is performed later, on Section III, where only
the metrics considered in our work are discussed in detail.

Several works have developed metrics/features that aim
to grade2 a given state of the Tetris board. By considering
different aspects of the board (e.g., number of wells and height
of each column) different metrics can be developed. Once a
set of metrics is defined, it can be employed not only to grade
the current board, but also to grade all possible placements
of the current piece and possibly the next one. If the metrics
are meaningful enough, one has only to tune their weights,
that is, determine their individual influence in the final grade.

The work performed by Pierre Dellacherie is often cited as
influential regarding the development of metrics for playing
Tetris [6], [7]. Dellacherie proposed six new metrics and tuned
their weights by trial and error, obtaining impressive results: on
average his approach cleared 660,000 lines [7], [8]. Thiery
and Scherrer [8] developed two new metrics, which were then
combined with the ones employed by Dellacherie. In order to
tune metric’s weights the authors employed the cross-entropy
method, obtaining even better results than previously observed
originally by Dellacherie. The authors report that on simplified
versions of the game their approach could clear, on average,
35,000,000 lines, within a margin of 20% per game.

Another influential work regarding metrics was presented
Böhm et al. [9]. The authors introduce some new met-
rics (which are employed alongside existing ones) and use
a Genetic Algorithm in order to tune their weights, achieving
competitive results to the ones reported in the literature.

A good review of the metrics previously cited is provided
by Algorta and Simsek [7]. Given that we adopt/evaluate a
number of these metrics for playing Tetris with no rotation
in the current work, we choose to detail them in the next
section of the paper. It is important to note, however, that
the aforementioned works consider, in their vast majority, a
simplified version of the Tetris game and not the NES Tetris
version of the game. Moreover, in all cases, piece rotations
were allowed during gameplay, differently from our work.

It is worth recalling that in this paper we are mostly
interested in the NES Tetris version of the game, given that:
(i) it is the version of the game played in the CTWC (Classic
Tetris World Championship), and (ii) due to its use in CTWC,
a number of human players are attempting to break records
considering the no rotation variation, in this very same version
of the game. Although we are not aware of any works aiming
to specifically develop metrics to play with no piece rotations
in the NES Tetris version of the game (nor in other versions),

2In order to avoid confusion, we employ the term grade when referring to
the quality of a given Tetris board, as evaluated by a set of metrics. The term
score is used only in the context of the total of points awarded to a player.

recent developments have been made concerning agents that
play NES Tetris in a “traditional” manner, as we describe next.

The previously discussed numbers of cleared lines are
beyond human capabilities. In the case of NES Tetris, humans
can play comfortably3 up to level 29. Even though some
outstanding players can go beyond level 29, these are rare
events worth of register (which can be found in YouTube, see,
for instance [10]). Indeed, the transition between levels 28
and 29 is often referred to as Kill Screen in the tournament.

Taking this into account, M. Birken [2], programmed and
evaluated whether an agent could play NES Tetris and score as
high as a human player within the limit of the Kill Screen. All
games started at level 19 (similarly to CTWC) and were
terminated either with a top out or by reaching level 29. The
author employed Particle Swarm Optimization (PSO) [3] to
tune the weights of a set of 17 metrics. As a result he obtained
a score of 1,036,706±149,458, a solid one in comparison to
those achieved at CTWC. Given the results observed by M.
Birken with NES Tetris, we follow his approach in this work.

III. MATERIALS AND METHODS

Our goal is to optimize the performance of an agent that
plays NES Tetris with no piece rotations. We measure the
performance of an agent by the number of lines it clears in a
given game, selecting as best agent the one that, on average,
clears the highest number of lines. This selection is carried
out by considering a set of validation games, as we discuss
later. The playing agent is based on an evaluation function
that combines distinct board metrics linearly, by weighting
their importance. At a given game state all possible piece
placements, considering the current and next piece, are graded
by the agent’s evaluation function, that is, each possible board
is graded by the agent’s evaluation function. The board con-
figuration yielding the best evaluation is selected, the pieces
are placed/locked in the board accordingly, and the process is
repeated until the game is finally over.

Different agents can be obtained either by modifying the
set of metrics employed in the evaluation function or their
corresponding weights. An overview of the approach we adopt
in our experimental evaluation is provided in Fig 1.

PSO
Run #1 .  .  .PSO

Run #1PSO
Run #1PSO

Run #1PSO
Run #1PSO

Run #n

.  .  . Select the 
best weight 

set based on 
v validation 

games

Evaluate the best 
weight set on t test 

games

Fig. 1. Overview of the approach employed to train, validate and test agents.

An evaluation function is defined by a set of metrics,
and their weights are optimized with the Particle Swarm

3This applies mostly to CTWC contestants.
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Optimization (PSO) algorithm [3], for which different runs
are performed. At the end of each run, the resulting agent
is evaluated on a set of v validation games. The agent that
produces the best validation results is then tested on t test
games, for which we report results. In the following we discuss
the metrics considered in our evaluation and how PSO was
employed to adjust their relative weight/importance.

A. Metrics

We considered a total of 19 metrics in our investigation.
Below we provide a brief description of each one.

1) Total lines cleared: the number of cleared lines obtained
after locking in place current and next piece.

2) Total lock height: the sum of the heights at which the
current and next tetromino are locked in position.

3) Total well cells: Number of cells across all wells. A well
is an empty cell surrounded by filled ones, except for
its top. The board walls are treated as filled cells.

4) Total deep wells: Number of wells with 3 or more cells.
5) Total column holes: Number of empty cells with filled

cells immediately above them (holes). By definition
empty columns don’t contain any holes.

6) Total weighted column holes: Weighted sum of holes in
the board. Weights are assigned according to the row at
which the hole appears, from top (1) to bottom (20).

7) Total column hole depths: The sum of the height differ-
ence between each hole and it’s column top.

8) Min column hole depth: The smallest column hole depth.
If there is no holes, its default value is 20 (board depth).

9) Max column hole depth: The largest column hole depth.
If there is no holes, its default value is set to 0.

10) Total column transitions: The sum of transitions between
filled/empty cell and empty/filled cell (by column). Tran-
sitions at the edges (top and bottom) are not accounted.

11) Total row transitions: The sum of transitions between
filled/empty cell and empty/filled cell (by row). Board
walls are regarded as filled. Empty rows are ignored.

12) Total column heights: The sum of the heights (dis-
tance between board floor and highest filled cell) of all
columns. Empty columns have a height of 0.

13) Pile Height: The height of the highest column.
14) Column height spread: The height difference between

the highest and the shortest columns of the board.
15) Total solid cells: The number of filled cells in the board.
16) Total weighted solid cells: The weighted sum of all filled

cells. Filled cells are weighted by their height, from
bottom (1) to top (20) of the board.

17) Column height variance: The sum of the absolute height
differences between all adjacent columns of the board.

18) Removed lines: The number of cleared lines obtained
after the lock of the last piece only.

19) Max well depth: The depth of the deepest well.
Metrics 1 through 17 were proposed/described by M.

Birken [2]. Metrics 3, 5, 10, 11, 13, 14, 16, 18, 19 were
introduced by Böhm et al. [11]. We developed three distinct
playing agents by selecting three different subsets of the

aforementioned metrics. The evaluation function (objective
function) of each playing agent is built on the basis of a
linear combination of the metrics, which are weighted by their
importance (weights are determined by PSO in the training
phase). Henceforth we refer to each one of these agents by
its Metric Set, as follows: MS1 is built with the metrics from
Birken; MS2 is built with the metrics from Böhm and; MS3 is
built with the metrics 2, 3, 5, 10, 11, 12, 14, which we defined
by empirical experimentation/observation.

B. Particle Swarm Optimization

In order to tune the weights of the metrics that compose
an agent’s evaluation function we adopt Particle Swarm Opti-
mization (PSO), a method aimed to optimize continuous, non-
linear functions [3]. It is inspired on the social behaviour of
animals, such as birds. In PSO, each solution is expressed as a
particle in the search space (initially, randomly positioned). In
brief, in a given step of PSO, for each particle: its evaluation
is obtained, considering its current position; the personal best
solution is updated, alongside the global best solution, if
needed; the distances of the particle to its own best and
the global best solutions are computed; a new velocity of
movement and new position are estimated considering its
personal best and the global best positions. The procedure goes
on until convergence is observed or a predetermined number
of steps is reached. Given its non deterministic nature, several
runs (with a different seed each) are usually performed.

The position of each particle is updated according to Equa-
tion (1), where s and v account for the particle’s position
and velocity at a given step i. Note that both s and v are
d-dimensional vectors, where d is the number of problem
variables that are being optimized, in our case, metric weights.

si+1 = si + vi (1)

Equation (2) is responsible for updating the velocity of
each particle. The new velocity (vi+1) is a sum of three
terms which take into account the particle’s current velocity,
a cognitive component and a social component. The current
velocity (vi) is multiplied by an inertial coefficient (wi), which
aims to keep the particle moving in the current direction. The
cognitive component moves the particle towards the personal
best solution it found so far (spi ), whereas the social component
moves the particle towards the best global solution (sgi ) found
until the current iteration of the procedure. The terms c1i
and c2i are the cognitive and social coefficients, respectively,
which determine how much exploration and exploitation is
performed [12]. These are multiplied by two random values,
r1i and r2i , generated in the [0, 1] interval at each update.

vi+1 = wivi + c1i r
1
i (s

p
i − si) + c2i r

2
i (s

g
i − si) (2)

Note that all coefficients in Equation (2) are iteration
indexed (i). Following [13], the inertial coefficient and ac-
celeration coefficients (cognitive and social components) are
updated according to Equations (3) and (4), respectively. In
Equation (3), wmin and wmax account for the minimum

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Short Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



and maximum desired inertial values. In Equation (4), the
superscript indicates that the update applies to both c1 and c2

components, each of which has an initial (c{1,2}initial) and final
value (c{1,2}final). In both equations i accounts for the current
iteration and imax for the maximum number of iterations.

wi = wmin + (wmax − wmin)
imax − i

imax
(3)

c
{1,2}
i =

(
c
{1,2}
final − c

{1,2}
initial

) i

imax
+ c

{1,2}
initial (4)

After update, the absolute value of each particle’s velocity
is limited (in all dimensions) to a maximum value (vmax), pre-
venting particles from “flying” out of the solution space [13].

IV. EXPERIMENTAL SETUP

We run experiments to compare how the three sets of
metrics we defined in Section III (MS1, MS2, and MS3)
perform when playing NES Tetris with no rotations. In order
to run experiments for each set of metrics, we considered the
hyperparameters defined by Table I. It is important to highlight
that the parameter number of training games defines how many
games are played by a particle at each step of the optimization
procedure to yield its fitness (evaluation), which is given by
the mean number of cleared lines across the training games. It
is also important to note that experiments were performed in
such a way that the training, validation and test games played
during the evaluation of each one of metric sets are the very
same, allowing for a fair comparison of their final results.

TABLE I
PARAMETERS ADOPTED IN THE EXPERIMENTAL EVALUATION

Parameter Value

Number of particles 30
Maximum number of iterations 200
Weights search interval [-1,1]
Particles’ maximum velocity 0.01
Number of PSO runs 20
Number of training games 50
Number of validation games 500
Number of test games 1,000,000
Inertia - max / min 0.9 / 0.4
cognitive coefficient range - c1initial / c1final 1.5 / 0.5
social coefficient range - c2initial / c2final 1.0 / 4.0

Last but not least, we have to define how Tetris was actually
played during all experiments. In order to play each game
we employed an implementation that is able to simulate all
aspects of NES Tetris, including possible movements and most
importantly its RNG (Random Number Generator), which
defines the sequence of pieces spawn at each game. The im-
plementation we employ is made available by M. Birken [2]. It
is important to note that this implementation is way faster than
running a NES Tetris emulator, allowing for a less computa-
tionally intensive experimental evaluation. The function that
performs the search for the best lock position of each piece
considering the current evaluation function and most of the
metrics were also implemented and made available by [2].
We used such code in our experiments adding for the metrics

that were not initially available and our own implementation
of the optimization procedure, that is, the PSO method.

V. RESULTS

In this section we present the results obtained during the
evaluation of the best agent, considering each one of the
three metric sets previously defined. The evaluation of each
agent was performed on the very same set of 1,000,000 test
games. It is important to note that although we limited PSO
to a maximum of 200 iterations/steps, in the vast majority of
its runs convergence was observed. Having made such con-
siderations, Table II provides some statistics for each metric
set, concerning the test games. The difference within the three
metric sets results is quite small. Overall, MS3 obtained the
best results, followed by MS2, and MS1. Interestingly, the
smaller the number of metrics in a feature set, the better
its results. This may arise due to the fact that a smaller
metric set translates into a reduced search space, allowing for
better exploration by PSO. Regarding the slightly better results
observed with MS3, we highlight that this particular metric
set was intuitively selected/filtered from the remaining ones,
based on prior experimentation. In this sense, even though
none of the metrics that compose it was specifically designed
to play NES Tetris with no piece rotations, we carefully
selected metrics that seemed to make sense from previous
experiments. We applied Student’s t-test to the results from
Table II and observed no significant differences among them.

TABLE II
SUMMARY OF THE RESULTS CONSIDERING THE 1,000,000 TEST GAMES

Metric Set Mean Std. Median Max

MS1 9.29 3.67 9 36
MS2 9.70 3.81 9 39
MS3 9.79 3.84 9 41

In Fig. 2 we depict histograms of the 1,000,000 game results
for each one of the metric sets, complementing the results from
the previous table. The distributions of game results (#lines
cleared) for the three metric sets is quite similar. In order to
highlight the differences among the metric sets, in Fig 3, we
plot in the y axis the probability of observing a game with a
total of cleared lines equal or higher than that from the x axis.
This figure also allows for a better examination of the overall
advantage of MS3 w.r.t. the remaining metric sets.

In order to provide some insight on how the best agent (built
with MS3) is actually playing, we allowed it to play a NES
Tetris Game ROM with the Nintaco emulator [14], recording
several games (all starting on Level 19). The best game (41 line
clears) can be watched here: https://youtu.be/3fjMeww7GpY.
Another, quite long video with 2 hours, showcasing the Top
100 scoring games (w.r.t. lines cleared) played by the same
agent can be watched here: https://youtu.be/yrJgQ4kCc68.

VI. CONCLUSIONS

We presented an empirical evaluation of PSO for playing
NES Tetris with no rotations. For that we considered three
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Fig. 2. Histograms of the results for the three metric sets considering the same 1,000,000 test games.
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Fig. 3. Probability (y axis) of observing a game with a total number of cleared
lines equal or higher than that from the x axis, considering each metric set.

different metric sets and observed that the smallest one, which
consists of a subset of existing metrics presents the overall best
results. This particular set obtained a record of 41 lines cleared.
These results are quite impressive, if we consider that: (i) none
of the metrics evaluated in this work was developed with the
no rotation version of the game in mind; and (ii) until recently,
human players were unable to clear more than 30 lines in the
no rotation version of the game. Indeed, video registers of
30 line clears or more in this variation only appeared after
August, 2020, with a current registered record of 44 lines [5].

It is important to highlight that this is a first exploration on
the topic. As future work we plan to develop custom metrics
for playing the no rotation version of the game (to the best
of our knowledge no work has done that to this date). We
believe that such an approach may succeed given that: (i)
PSO was already successfully employed to play NES Tetris
in its traditional version with custom made metrics; and (ii)

Artificial Neural Networks (ANNs) were recently employed to
play the no rotation version of the game, clearing at most 55
lines [15], showing that there is still room for improvement.
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