
Towards Automated Playtesting in Game
Development

Nathalya Stefhany Pereira
Coders, Developers and Gamers Hub - CDG Hub

National Institute of Telecommunications - INATEL
Santa Rita do Sapucaı́,MG, Brazil

Email: nathalya.stefhany@gec.inatel.br

Phyllipe Lima
Coders, Developers and Gamers Hub - CDG Hub

National Institute of Telecommunications - INATEL
Santa Rita do Sapucaı́,MG, Brazil

Email: phyllipe@inatel.br

Eduardo Guerra
Computer Science Faculty

Free University of Bozen-Bolzano - UniBZ
Bolzano, Italy

Email: guerraem@gmail.com

Paulo Meirelles
Computer Science Institute

Federal University of ABC - UFABC
Santo André,SP, Brazil

Email: paulo.meirelles@ufabc.edu.br

Abstract—Digital games are also a software product. However,
games have a fun requirement and tightly coupled UI, which
makes them hard to test. Nevertheless, they are made of code
and might also benefit from the advantages that automated tests
bring to enterprise software systems. In this paper, we discuss two
categories of automated tests for games, focusing on playtesting.
We used the Unity Game Engine to build our tests on top of the
NUnit framework and the Unity Test Framework. To demonstrate
our approach for automated playtesting, we developed a 2D
Arkanoid-style game. We also present the steps we took to make
the testing feasible.

Index Terms—automated playtesting, games, software engineer-
ing, unit testing,

I. INTRODUCTION

Electronic games are also software products. When compar-
ing to board games or card games, they all have mechanics,
arts, and stories. However, digital games execute on an elec-
tronic device like any other software [1]. For this reason, digital
games should also be the subject of software engineering
studies and practices, such as unit testing and quality assurance.

However, this has not been the case since digital games
are not often used in software engineering research. Likewise,
game programmers in the industry do not often apply unit and
automated tests during the creation of their code [2]–[6]. They
argue that games have a “fun” requirement that is sometimes
illogical and dynamic since game designers often alter the
mechanics during development. In this scenario, creating unit
tests, for instance, poses a challenge since the test code will
also change constantly. Another problem is that the UI (User
Interface) in games is tightly coupled to the game code,
creating another challenge. Furthermore, testing a game usually
requires playing the game in a sequential manner which may
compromise automated testing [2], [6].

One frequently studied topic by software engineering re-
searchers and practitioners is automated testing. It is also
recognized as an essential part of ensuring software quality [7].
Furthermore, an automated suite of tests protects developers
from code regression when new features are introduced [8],

[9]. However, we need to study approaches to enable game
programmers to also benefit from this and implement auto-
mated tests in their systems.

According to [6], game playing is a sequential decision-
making process where a player needs to make decisions and
take actions based on received observations. Extending this
idea, playtesting is the act of game playing to discover bugs
and validate if the requirements are met before releasing it.
According to [5], nearly 50% of all testing for a game is
concerned with playtesting, usually taking place manually.
While only 5.47% of tests performed were automated, and
1.37% were unit/integration testing. Another data about the
lack of studies regarding tests in game development is that out
of 99 papers presented in the Computing Track at SBGames,
between 2016 and 2020, 15 were labeled as “software engineer-
ing”. Furthermore, only Lovreto et al. [4] discussed automated
testing in games.

However, several initiatives might bring new insights so
that developers can begin acquiring the culture of automated
playtesting and benefiting from it. For instance, the Unity
Game Engine1, one of the most popular frameworks for game
development, ships with a fully integrated framework for unit
testing, the Unity Test Framework.

Another recent initiative is the GameCI 2, which is an open-
source suite of tools that enable easy setup for continuous
integration for games developed using Unity Game engine.
Finally, it is also known that testable software units, such as
classes, are easier to evolve and that testable classes have a
better overall design.

Using the Unity Test Framework, this work discusses two
categories of automated tests in game development. The first
is traditional unit testing called “non-gameplay tests”, and the
second is “automated playtesting”. For this last one, we also
identify and described the required steps to implement it. We
developed a 2D Arkanoid-style game with the Unity Engine

1https://unity.com
2https://game.ci/docs

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Short Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



and implemented test scenarios to demonstrate these two cat-
egories. The majority of the tests were written considering the
“automated playtesting”. We also configured a CI (Continuous
Integration) server to run these tests combining GitHub Actions
and the GameCI tool.

II. BACKGROUND

Unit testing is the process of automatically testing small
units of production code, such as classes and methods. They
aid in detecting bugs in the early stages of development and
verify if the software complies with the requirements. Usually,
these tests are written by the developers themselves since they
are strictly tied to the code [10]. Writing unit tests during the
development process naturally creates a test suite that serves as
regression tests. This suite can be executed after every newly
added feature to guarantee that the code still works as expected
and no bug was introduced. Furthermore, unit tests are update
documentation of the code [7], [8].

The Unity Game Engine comes fully integrated with tools
that will allow us to write unit tests that execute automatically.
Our testing strategies depend on such tools. First, we have
the NUnit, which is an open-source unit testing framework
for C#. NUnit is a metadata-based framework and offers a
set of attributes3 to allow developers to configure their testing
method, fixture, and tear down process. To run the tests, the
Unity Game Engine comes with the Unity Test Framework,
which invokes the class methods written with the NUnit and
offers a friendly GUI to verify and run the tests.

The Unity Test Framework offers two paths for automated
testing, the Edit Mode and the Play Mode. The former allows
us to run tests that do not require the game to be running,
and the latter can run tests that require playing the game. No
external library is required since the Unity Package Manager
handles all necessary dependencies to have the NUnit and Unit
Test Framework ready to be used.

III. RELATED WORK

This section presents results and work performed by other
researchers and practitioners regarding software testing in game
development.

Lovreto et al. [4] investigates how to automate gameplay
testing for mobile games. The authors investigate the feasi-
bility and efficiency of using scripts to test mobile games
automatically. They selected 16 popular games with varying
genres from the GooglePlay store. A Python script was created
for each game using Appium tests, the OpenCV library, and
the UIAutomatorViewer. Each study was conducted in three
phases. The first step was an exploratory analysis to understand
the game mechanics better. Then they planned two test cases,
one focused on actions that simulate a player interacting with
the game and another focused on simulating interaction with
the game’s menu. Finally, in the third phase, they wrote the
steps required to code the automated test. They concluded that
the performance of Appium and OpenCV made the test scripts
feasible. The majority of tests cases ran in under 60 seconds.
One difference of [4] to ours is that we are investigating how to

3Feature of languages such as Java and C# to allow customization of metadata

automate gameplay testing using a framework integrated into
the development environment instead of an external script. This
way, we have access to the game’s production code.

Llopis and Houghton [11] researched how TDD (Test Driven
Development) can be applied to game development. They
encountered several challenges, one of them being that games
are usually developed for several platforms. To overcome this,
they had to write small programs using the target system API to
run the executable from the command line and catch the return
values of methods. The other challenge was the randomness
present in games, such as a ball assuming random speed values.
These tests needed to be conducted with deterministic values.
Furthermore, the UI in game is usually something developers
do not know how to handle gracefully. However, isolating
the code with different responsibilities in separate modules or
libraries can aid in writing the tests. The authors concluded
they reach a flexible, robust, and loosely coupled code even
with these challenges. Our work intends to minimize the cross-
platform issue by using a game engine that already deploys to
multiple platforms and is packed with a unit testing framework,
such as Unity.

Zheng et al. [6] proposes an automated testing framework for
online combat games that they named Wuji. The tool combines
EMOO (Evolutionary multi-objective optimization) with DRL
(Deep Reinforcement Learning) to learn how to play the game,
test, and explore space. To evaluate Wuji, they studied 1349 real
bugs from industry games, used two real-world games to test
their tool, and were able to find 3 unknown bugs.

Song et al. [12] proposes an automated game testing tech-
nique. The author combines AIRL (Adversarial inverse rein-
forcement learning) with EMOO to design a framework for
testing mini-games in WeChat platform. The author did not
conduct any evaluation, and their tool is focused only on games
available in WeChat.

In these recent studies [6], [12], they propose an approach
using AI techniques where we might not have access to the
game code, which is a different strategy that we are currently
investigating in this paper. In our complete work, we aim to
discuss these differences and how they can complement each
other.

IV. ARKANOID 2D GAME

This section presents the game that we developed to serve
as a target for our automated testing approach. It is a 2D
Arkanoid-style game, publicly available on GitHub4.

Taito Corporation originally developed Arkanoid for the
arcade in 1986. It became popular and still inspires new games.
The goal is to destroy blocks on the scene using a ball while
keeping it bouncing off a platform that moves horizontally. The
player controls the platform, and if the ball falls off the screen,
the game is over.

Our version of Arkanoid keeps the central mechanic as the
original one, i.e., destroying blocks and not letting the ball
fall. We implemented several types of blocks, and they are
differentiated by their color. There are four common blocks
that award points when destroyed and one indestructible block

4https://github.com/NathalyaStefhany/IC-2020

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Short Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



that serves as an obstacle. Finally, there are special power-up
blocks that give the player a special ability when destroyed.
Fig. 1 presents our implementation of Arkanoid.

Fig. 1. Example Scene of Arkanoid Game
The common blocks take different amounts of hits to be

destroyed and award a proportional number of points. To serve
as an obstacle, we implemented indestructible blocks. They are
gray-colored, and as the name suggests, cannot be destroyed.
Their only purpose is to stand in the way of the player. Finally,
we implemented a power-up system in the game. They are
obtained by destroying special blocks and award a temporary
advantage to the player. To implement these power-ups, we
used the Strategy [13] design pattern. These different types
of blocks and power-ups will each serve as individual test
scenarios to demonstrate our testing strategy.

V. AUTOMATED PLAYTESTING

In this section, we describe the two categories of automated
tests that we identified in game development. The main goal is
the automated playtest, but we feel it would be incomplete if
the other tests were ignored. We are proposing two classes
of tests. The first is basic unit testing, and we named it
Non-gameplay Tests. It is the traditional unit testing found
in enterprise software, where we verify the return value of
a method or if a method was indeed called.

The second type of test is concerned with automatically play-
ing the game and running the tests. The Automated Playtests
are the most challenging ones since they will tests if the
mechanics are correctly implemented while simulating players’
input. We also create separate scenes for testing purposes. Just
like the test code is separate from the productions code, our
scenes follow the same pattern. We can also execute tests
concerned with the initial setup of the scene, i.e., we want
to verify if the correct objects are present when a given scene
is loaded. One of our goals is to describe the steps we are
taking to implement these types of tests.

These two classes fit very well with the Unity Test Frame-
work’s Edit Mode and Play Mode tests.

A. Non-gameplay Test

The Non-gameplay Tests goals are to verify the return
of methods values and if methods are being called without
involving any gameplay and objects in the scene. They were
implemented with a black-box testing approach, similar to
how non-game software systems execute unit testing. To better

demonstrate this category, we have the TestSortScore()
example. In Arkanoid, we created a score table to inform
players of the highest scores in descending order. To sort the
score, we created a SortScore() method that receives as
a parameter a list of objects (composed of the player’s name,
level, and score) and returns the same list but with the objects
sorted by score.

Fig. 2 shows the implementation of the test. In the beginning,
we have the Init() method that will be invoked to do
the necessary initialization. From lines 27 to 28, the objects
are added to the list and then passed to the SortScore()
method. Once this is done, the method’s return is stored
in the highScores variable and asserted through the As-
sert.AreSame() method in lines 33-35.

1 public class TestAddScore{
2 private AddScore addScore;
3 private HighScoreEntry score1,
4 score2;
5 private HighScores highScores;
6
7 [SetUp]
8 public void Init(){
9 // Class containing the sorting method

10 addScore = new AddScore();
11
12 score1 = new HighScoreEntry {
13 name = "NA", round = 1, score = 1500
14 };
15 score2 = new HighScoreEntry {
16 name = "JO", round = 2, score = 3000
17 };
18 highScores = new HighScores();
19
20 // List that stores the objects
21 highScores.highScoreEntryList = new
22 List<HighScoreEntry>();
23 }
24
25 [Test]
26 public void TestSortScore(){
27 highScores.highScoreEntryList.Add(score1);
28 highScores.highScoreEntryList.Add(score2);
29
30 highScores = addScore.
31 SortScore(highScores);
32
33 Assert.AreSame(score2,
34 highScores.highScoreEntryList[0]);
35 Assert.AreSame(score1,
36 highScores.highScoreEntryList[1]);
37 }
38 }

Fig. 2. Unit Test for AddScore Class

B. Automated Playtest

As mentioned, playtesting is the act of game playing to
discover bugs and observe the results of actions taken by
the player. In our Arkanoid example, if the player hits a
destructible block, we need to check if the block is destroyed
and the block’s point is added to the score. We want to do
this automatically and from a unit testing perspective to access
the game’s production code. Combining these elements enables
to test the game’s functionalities without having a person
manually play the game and assert the results.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Short Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



We can start creating tests that verify if certain elements are
in the game scene. We also find this kind of testing in web
applications that check if a component is rendered correctly
on the screen.

For the Arkanoid game, we can verify that a predefined
amount of destructible blocks are shown on scenes. One might
overlook these tests arguing they are too simplistic. However,
they help us guarantee that these scenes are ready for more
complex automated playtesting. Also, some games use initial
elements on the scene to control the difficulty. Hence, testing if
a scene is ready can also control these and other game design
decisions and rules.

Fig. 3 shows the test that checks the number of destructible
blocks. First, we load the scene (line 4). Then, the blocks that
contain the Destructible tag are searched and stored in
an array. Finally, we assert if the size of the array is equal to
the expected size, i.e., 57 blocks (line 10) for Level 1 of the
Arkanoid game.

1 public class TestBlocks{
2 [Test]
3 public void TestNumberBlocksSceneLevel1(){
4 EditorSceneManager.OpenScene(
5 "Assets/Scenes/Level1.unity");
6
7 GameObject[] blocks = GameObject.
8 FindGameObjectsWithTag("Destructible");
9

10 Assert.AreEqual(57, blocks.Length);
11 }
12 }

Fig. 3. Unit Test for Blocks in Level 1

Afterward, we can perform more complex automated
playtesting. The gameplay needs to be simulated to perform
these tests so that everything happens in an automated fashion.
Lets first list the steps required to play Arkanoid manually:

1) Press the left mouse button to start the game, which
releases the ball from the platform;

2) Once the game starts, the player must move the platform
horizontally to prevent the ball from falling more than
three times.

3) To progress, the player must use the platform to bounce
the ball back and destroy every destructible block on the
scene.

As for step 1 (release the ball), we can generalize that we
need to handle the player’s input. To automatically playtest,
we need to encapsulate this code in different methods. This
way, we can invoke the method by both the test code and the
player’s input when regularly playing the game. Consider the
hypothetical code snippet on Fig. 4. The code to “release the
ball” was encapsulated in the ThrowBall() method. This
reinforces that making software testable contributes to a cleaner
code.

As for step 2 (move the platform), we need to automatically
make the platform move with the ball’s x coordinate in tests
requiring specific blocks to be destroyed. In other words, we
need to keep the game running in a auto mode. However,
for tests that require letting the ball fall, we switch back
to manual mode. To implement this, we created a boolean

1 if(Input.MouseOnClick()){//Mouse button pressed
2 //The code to throw the ball should
3 //encapsulate it in a separate method.
4
5 ThrowBall();
6 //The ThrowBall() method can
7 //also be called from test code
8 }

Fig. 4. Example of the Method Releases the Ball

variable that lets the test code determine if the game should
run automatically or manually. Also, the code that moves the
platform is encapsulated to be easily called from other parts
of the code.

No player input is required for step 3 (bounce back) since
the Unity Game Engine physics handles this process. From a
test perspective, no extra effort was necessary. The auto mode
and initial position of the platform were enough.

After implementing the above steps, we began creating
specific test scenes for our test scenarios. As known, unit tests
should be executed fast, so we created test scenes with only the
necessary number of blocks. As a demonstration, consider the
scenario containing four destructible blocks that should reward
a total of 100 points after being destroyed.

After we create the scene, we begin writing the test code.
Fig. 5 presents the initial setup ([UnitySetUp] attribute on line
1) for this test. It loads the scene (line 3), store a reference to
every block (line 7) and set the platform to auto mode (line
12)

1 [UnitySetUp]
2 public IEnumerator SetUp(){
3 SceneManager.LoadScene("LevelTestScore");
4
5 yield return new WaitForSeconds(1);
6
7 blocks = GameObject.
8 FindObjectsOfType<Block>();
9

10 platform = GameObject.
11 FindObjectOfType<Platform>();
12 platform.AutoPlay = true;
13
14 ball = GameObject.FindObjectOfType<Ball>();
15 }

Fig. 5. Initial Setup for the Test

After the initial setup, we can execute the test method
presented in Fig. 6. This test aims to assert the correct number
of points rewarded after the destruction of the four blocks. To
make the test execute faster, we loop through the array with
the references to blocks (line 5) on the scene (populated during
the initial setup), then we check the number of hits required to
destroy this block (line 7). Then we create another loop that
forces the ball to be thrown in the direction of the block (lines
14-19) the number of times required to destroy it. We repeat
this process for every block. Finally, after being destroyed, we
assert if the number of points obtained is correct.

Regarding the for-loop in test code, we are aware that we
should not write these kinds of loops in test code to make them
more readable. However, we should keep in mind that we have
different requirements for game development than enterprise

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Short Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



1 [UnityTest]
2 public IEnumerator TestScoreWhenDestroyAllBlocks(){
3 int num;
4
5 foreach (Block block in blocks){
6 if (block.tag == "Destructible"){
7 if (block.points == 10)
8 num = 1;
9 else if (block.points == 30)

10 num = 2;
11 else
12 num = 3;
13
14 for(int i = 0; i < num; i++){
15 ball.transform.position = new Vector2(
16 block.transform.position.x - 0.5f,
17 platform.transform.position.y);
18
19 ball.ThrowBall();
20
21 yield return new WaitForSeconds(0.5f);
22 }
23 }
24 }
25
26 Score score = GameObject.
27 FindObjectOfType<Score>();
28
29 Assert.AreEqual(100, score.getPlayerPoints());
30 }

Fig. 6. Test Method to Destroy 4 Blocks

software and tighter coupling with UI and graphical elements,
which makes writing these tests codes challenging. Since this
is still a work in progress, there is still much groundwork and
room for improvements in the test code.

VI. CONCLUSION

In this paper, we discussed two types of automated testing
that can be executed during game development. The first
type is the “non-gameplay tests”. The second is “automated
playtesting”. In this last one, we want the game to play
automatically while tests are running, asserting the expected
behavior. To support the execution of these tests, we needed
to write not only the test code itself but also mechanisms that
made it possible for the production code to be called from the
test code and executed in auto mode. We also describe the
actions required to implement these mentioned mechanisms.

We used an automated playtesting approach that is built with
the game code itself. No external script was used to test the
game. With this approach, we can test the game as it is being
developed and create a suite of unit tests to protect the code
from regression. We could also successfully configure a CI
server to run these tests using GitHub Actions and the GameCI
tools.

A. Threats to Validity

Our approach is built on top of tools that enable the imple-
mentations of our testing code, i.e., a unit testing framework.
Unity offers excellent integration with the NUnit framework
and allows the execution through the Unity Test Framework.
Therefore, our solution is coupled to these tools and might
not be straightforward to apply to other game engines or game
development environments. Also, in this paper, we developed a

simple 2D game to demonstrate. More complex games should
also be considered to improve our testing methods.

B. Future Work

There is much groundwork regarding automated testing in
game development. The next step would be to implement these
approaches, precisely the gameplay, in more complex games.
One good starting point would be a 2D side-scrolling game.
To automate the test as we did for the Arkanoid game, we
need to implement a solution for the player to dodge obstacles,
recognize enemies, and so forth. In short, we need to combine
testing techniques with artificial intelligence techniques that
learn how to play and test a game. Also, we intend to
incorporate the UI aspect alongside our testing code, given
that this is one of the challenges that game programmers face.

ACKNOWLEDGMENT

The authors would like to thank FINATEL for financial
support for this work.

REFERENCES

[1] J. Schell, The Art of Game Design: A Book of Lenses, 2nd ed. A. K.
Peters, Ltd., 2014.

[2] E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys, ankle
sprains, and keepers of quality: How is video game development different
from software development?” in Proceedings of the 36th International
Conference on Software Engineering. New York, NY, USA: ACM,
2014, pp. 1–11.

[3] S. Aleem, L. F. Capretz, and F. Ahmed, “Critical success factors to
improve the game development process from a developer’s perspective,”
Journal of Computer Science and Technology, 2018.

[4] G. Lovreto, A. T. Endo, P. Nardi, and V. H. S. Durelli, “Automated
tests for mobile games: An experience report,” in 2018 17th Brazilian
Symposium on Computer Games and Digital Entertainment (SBGames),
2018.

[5] J. N. de Oliveira Neto, D. Viana, E. Sá, L. Rivero, R. F. Lopes, and
F. Silva, “Is there time for software testing in the indie games develop-
ment? a survey with practitioners of the game industry,” in Proceedings
of the XXXIII Brazilian Symposium on Software Engineering, 2019.

[6] Y. Zheng et al., “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2019, pp. 772–784.

[7] D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli,
“When testing meets code review: Why and how developers review tests,”
in Proceedings of the 40th International Conference on Software Engi-
neering. New York, NY, USA: Association for Computing Machinery,
2018.

[8] M. Mayeda and A. Andrews, “Evaluating software testing techniques:
A systematic mapping study,” in Advances in Computers, A. R. Hurson,
Ed. Amsterdam, The Netherlands: Elsevier Science, 2021, vol. 123,
ch. 2, pp. 41–141.

[9] Z. Peng, X. Lin, M. Simon, and N. Niu, “Unit and regression tests
of scientific software: A study on swmm,” Journal of Computational
Science, vol. 53, pp. 1–13, 2021.

[10] M. F. Aniche and M. A. Gerosa, “How the practice of tdd influences
class design in object-oriented systems: Patterns of unit tests feedback,”
in 2012 26th Brazilian Symposium on Software Engineering, 2012, pp.
1–10.

[11] N. Llopis and S. Houghton. (2006) Backwards is forward: Making
better games with test-driven development. [Online]. Available:
http://www.convexhull.com/articles/tdd gdc06.pdf

[12] Z. Song, “An automated framework for gaming platform to test multiple
games,” in 2020 IEEE/ACM 42nd International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), 2020, pp.
134–136.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. USA: Addison-Wesley
Longman Publishing Co., Inc., 1995.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Short Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021


