
Generative Design applied to Cloud Modeling
Carlos Eduardo Vaisman Muniz

Institute of Computing
Federal Fluminense University

Niterói, Brazil
carloseduardomuniz@id.uff.br

Wagner Luiz Oliveira dos Santos
Institute of Computing

Federal Fluminense University
Niterói, Brazil

wagner luiz@id.uff.br

Abstract—Geometric modeling has recently leveraged the
power of Generative Design. Generative Design can be seen as a
framework in which models can be generated by systematically
exploring a space of shapes generated by recombination of
parametric shape descriptors. In this work, we explore the
use of Generative Design for modeling 3D clouds. Clouds are
usually modeled in Computer Graphics as voxelized models
by using a combination of implicit and procedural techniques.
Hence, they are described by a large number of parameters.
Although these parameters usually include parameters that
define a combination of scalar fields, noise functions and affine
transforms, the controlled use of such parameters is rather
complex. How to tune them up to obtain a plausible result is
not obvious. We propose a method based on generative design
combined with Machine Learning to produce families of cloud
shapes automatically. Our generative design method is based on
an evolutionary approach that generates instances of plausible
3D cloud shapes by optimizing a fitness function that measures
the likelihood of a shape be a cloud. As the manual design
of a fitness function is also quite complex, we propose using a
Convolutional Neural Network to learn the fitness of arbitrary 2D
views of the generated clouds. We perform several experiments
that confirm the viability of the proposed method compared to
manually modeled clouds.

Index Terms—Cloud Modeling, Generative Design, Procedural
Modeling, Machine Learning, Convolutional Neural Networks

I. INTRODUCTION

Modeling natural objects is a hard task because the pro-
cesses that guide their formation are extremely complex and
sometimes not completely known. The most accurate way to
model natural objects is to simulate the underlying physical
and biological mechanisms of creation. Nevertheless, in many
cases, the simulation of such processes is overly expensive in
computational terms. Hence the need for alternative ways of
computationally modeling natural objects.

Clouds are one of such objects. They are a visible group
of small droplets of liquid combined with other particles
suspended in the air. Many computer graphics, extended
reality, and games include clouds as part of the rendered scene
for realistic experiences. Thus, it makes cloud modeling and
visualization one of the most relevant topics in these areas.

Although some works deal with physically based 3D cloud
modeling, in Computer Graphics and affine areas, clouds are
modeled using alternative techniques. The first ones used
impostors, that is, small images of real clouds or synthetic 2D
clouds oriented to the observer as a way of cloud represen-
tation. Later, more geometrically inspired techniques became

more popular. Among such techniques, we find the use of
procedural-based methods.

Procedural-based 3D cloud modeling approaches model a
cloud by combining two different processes. The first one
defines an overall cloud shape via an implicit density field
function limiting its occupancy volume. In the second process,
this initial shape is then deformed or altered by adding
different noise levels. These processes use many parameters to
define the shape of the cloud, such as the number of primitives,
the primitive function used, the position, orientation, scale
of each primitive, and all the parameters that rule the noise
addition. Specifying all such parameters for controlling the
cloud generation process is at the least a very cumbersome
task. This problem scales when there is the requirement of
generating many different shapes.

To face the problem of generating multiples cloud instances
via procedural modeling, we propose using Generative De-
sign techniques. Generative Design is an umbrella term that
includes many methods to facilitate many aspects of design:
innovation and diversification by efficiently exploring the
design space, design optimization, cost reduction, computer-
automated design, etc. Such techniques have been successful
in helping designers find solutions for design problems in the
areas of Computer-Aided Design, urban layout, architecture,
manufacture, and others.

The main contribution of this paper is a Generative Design
approach for 3D Cloud Modeling. We propose the use of an
evolutionary mechanism that explores the space of procedural
cloud specification parameters to produce a set of cloud
instances that are plausible and diverse. The evolutionary
procedure consists of a Genetic Algorithm that creates a cloud
population evolution guided by a fitness function. The fitness
function measures how credible is a 3D voxel model of a
cloud-based on a sample 2D picture taken from an arbitrary
point of view.

One of the challenges of our solution was to define what is
a plausible cloud. Some works in the literature avoid dealing
with this question by proposing methods that directly model
clouds from real pictures. To solve this problem, we use a
machine learning (ML) approach that learns what seems to be
a plausible model from real cloud pictures and a not credible
candidate from synthetic clouds previously labeled. The ML
approach consists of a Convolutional Neural Network that
receives synthetic images from 3D cloud models and returns

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

a probabilistic measure of its plausibility to be a cloud.
Experiments were performed to show that the method can

automatically select an appropriate set of parameters that
produce a diversified and plausible set of 3D cloud instances.
The results were compared with fine-tuned models created by
humans by visual inspection. We could not perceive any ab-
normalities between the results produced by a human modeler
and the automatic generation method proposed here.

This paper is organized as follows: Section 2 presents
a brief background on the cloud modeling techniques used
here, generative design concepts, and CNN concepts. Section
3 describes some of the works found in the literature that
are related to ours. Section 4 presents the proposed method.
Section 5 describes the experiments that were performed and
their analysis. Finally, in section 6, some final considerations
about our work are presented.

II. BACKGROUND

A. Cloud Modeling

There are different ways to model clouds aiming at games,
virtual reality, and computer graphics applications. Two of the
most common approaches include Physically Based Modeling
and Procedural Modeling. The former produces the most
convincing results, whereas the latter is the most used because
of its effectiveness. Recently hardware started to perform real-
time physically-based modeling and animation. However, pro-
cedural approaches are still relevant because the computational
effort is still quite cumbersome, considering that GPUs and
CPUs still have many other tasks to perform. In this work,
we will focus on Procedural Modeling, closely following the
work from [1] for generating cumulus clouds and replicating
some of its concepts here for comprehensiveness.

A cloud is represented as a volumetric shape V ∈ R3

where a density value is calculated by a function ρ(p) for
each p ∈ V . To define the general aspect of the cloud, we
use an implicit density field g(ndi), combined with a noise
function n(p) that defines its details. The parameter ndxi is
a normalized distance to a primitive that could be a simple
point or a skeleton primitive (a poly-line or polygon chain).
In the case of a point primitive, the distance function can be
computed as ndi = di/li where di is the distance of a given
point p ∈ R3 to the primitive and li is the size of the region
of influence (see Figure 1).

The implicit density field g(ndi) is defined as a combination
of the field functions g(ndi) of each of the n primitives. The
result of the field function is 1 if p is inside the primitive or
the implicit primitives b(ndi) given by the Wyvill-1 function
[2] defined in the equation 1 if p is its region of influence:

bi(ndi) = −4

9
nd6i +

17

9
nd4i −

22

9
nd2i + 1, 0 ≤ ndi ≤ 1 (1)

The combination based on the Set Theory proposed by
[3] produces a coarse density field cρ(p) expressed as the
following recursive equation:

Fig. 1. Field function. Picture drawn based on [3].

cρ1(p) = g1(ndi)

cρi(p) = cρi−1(p) + gi(ndi)−
1

w
cρi−1(p)gi(ndi),

i = 2, . . . , n,

w = w1 = w2 = · · · = wn

(2)

The final step is to disturb the overall shape by adding a
noise function defined at each point in the space. The noise
function that produced the best results was the Turbulence
Function proposed by Ken Perlin [4].It can be controlled via
four parameters: amplitude (a), frequency (fr), gain (ga) and
lacunarity (lc). Lacunarity and gain define, respectively, the
rate of change of the frequency and amplitude of the noise per
octave, regulating the fractal behavior of the noise.

n(p) =
∑

i

a

∣∣∣∣
(lci) ∗ fr ∗ p
gai ∗ a

∣∣∣∣ (3)

The noise function is defined as the absolute value of
N(p) = fBm3D(x, y, z, n, fr, a, la, ga), where x, y, z are
the coordinates of a given point primitive p, n is the number
of octaves and fr, a, la and ga are the turbulence parameters.
Taking the modulus of fBm3D is appropriate for generating
cummuliform clouds [5].

There are two ways to apply noise on top of the computed
density fields. The first one is to apply noise the combined
coarse noise field as shown in equation 4. The second is
applying different noise configurations to each primitive in-
dividually as seen in equation 5. In equation (5), we set
g′(xi) = N(g(xi)) so that the combination is done on the
primitives to which noise is added.

ρ̄(p) = (1− np) · ρ(p) + (np) · ρ(p) ·N(p) (4)

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

g′(ndi) = N(g(ndi))

ρ1(p) = g′1(ndi)

ρi(p) = ρi−1(p) + g′i(ndi)−
1

w
ρi−1(p)g′i(ndi),

i = 2, . . . , n,

w=w1 = w2 = · · · = wn
(5)

The second approach, used in this work, allows the creation
of details in different scales, amplitudes, and frequencies at
each local part of the model under the influence of a given
primitive.

Our cloud modeling tool uses the techniques described
on the algorithms 1 and 2 to calculate the density from a
voxel. Algorithm 1 blends the noise function on the combined
implicit density field, while Algorithm 2 does it per primitive,
allowing further. More details about the method associated to
both algorithms, including paralelization and differentiability
discussion can be seen in [1].

Data: Set of primitives P
la - lacunarity, fr - frequency, a - amplitude, ga - gain,
s - scale, n - numOctaves, p - noise percentage
width, height, depth - dimensions of the volume array
Result: Density volume V

for Vijk ∈ V do
Vijk ← 0
ρ′ ← 0
x, y, z ← i+ rand()(s), j + rand()(s), k + rand()(s)
for h = 0 to |P | do
ndh ← distance(i, j, k, Ph.x, Ph.y, Ph.z)
if ndh < Ph.radius then
ρ′ ← ρ′ + 1

else if ndh < Ph.radius+ Ph.influence then
dist← (ndh − Ph.radius)/Ph.influence
g ←Wyvill(dist)
ρ′ ← ρ+ g − (1/Ph.weight)(ρ)g

end if
end for
noise← fBm3D(x, y, z, n, fr, a, la, ga)
Vi,j,k ← max((1− n)ρ′ + (n ∗ noise ∗ ρ′), 1)

end for
Algorithm 1: Algorithm 1

B. Generative Design

According to [6], Generative Design (GD) is a label en-
compasses a group of techniques that enables designers to
efficiently explore the conceptual design space, automate de-
sign generation, achieve design cost reduction, optimization,
accuracy and consistency. Generative Design has applications
in many areas including architecture, manufacturing, CAD,
structural optimization, human computer interface design and
etc.

Data: Set of primitives P
la - lacunarity, fr - frequency, a - amplitude, ga - gain,
s - scale, n - numOctaves, p - noise percentage
width, height, depth - dimensions of the volume array
Result: Density volume V

for Vijk ∈ V do
Vijk ← 0
ρ′ ← 0
x, y, z ← i+ rand()(s), j + rand()(s), k + rand()(s)
for h = 0 to |P | do
ndh ← distance(i, j, k, Ph.x, Ph.y, Ph.z)
if ndh < Ph.radius then
noise←
fBm3D(x, y, z, Ph.n, Ph.fr, Ph.a, Ph.la, Ph.ga)
g ← (1− Ph.n) + Ph.n ∗ noise
ρ′ ← ρ′ + g − (1/Ph.w) ∗ g ∗ ρ′

else if ndh < Ph.radius+ Ph.influence then
noise←
fBm3D(x, y, z, Ph.n, Ph.fr, Ph.a, Ph.la, Ph.ga)
dist← (ndh − Ph.radius)/Ph.influence
g ←Wyvill(dist)
g ← (1− Ph.n) ∗ g + Ph.n ∗ noise ∗ g
ρ′ ← ρ′ + g − (1/Ph.w) ∗ g ∗ ρ′

end if
end for
Vi,j,k ← max(ρ′, 1)

end for
Algorithm 2: Algorithm 2

There are many techniques that support computational
generative design. The most basic ones [7] include shape
grammars (SG) [8], L-systems (LS) [9], cellular automata
(CA) [10] [12], genetic algorithms (GA) [11], and swarm
intelligence (SI) [13]. Such techniques have different intents
and can be used for:
• search space exploration and design optimization - GA
• shape and style generation - SG and LS
• context-sensitive and behaviour-driven design processes -

CA
• form driven design process - SG and LS
• design by self-organization - CA and SI
• evaluation of design usability - SI
Many design problems are solved using GD by combining

such techniques as integrated frameworks. An comprehensive
description of each of these techniques is out of the scope of
this paper. Nevertheless, we describe in a few more details, in
section V the use o GAs in Generative Design which was the
approach used to solve part of the problem of cloud modeling
here presented.

C. Deep Image Classification

According to [14], Image classification, which can be de-
fined as the task of categorizing images into one among many
classes predefined. Although it can be considered second na-
ture for humans, it is much more challenging for an automated

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

system. It forms the basis for other computer vision tasks
such as localization, detection, segmentation, and generative
models.

Convolutional Neural Networks (CNNs) [15] have drasti-
cally changed the computer vision landscape by considerably
improving the performance on most image benchmarks. A key
characteristic of CNNs is that the deep(-based) representation,
used to perform the classification, is generated from the data
rather than being engineered.

This two-stage approach is traditionally applied to clas-
sification or location problems. In the first step, the initial
layers of the network perform the feature extraction process.
In the second step, the final layers perform the classification
or location step according to the nature of the problem.

III. RELATED WORKS

Many works have investigated the problem of cloud mod-
eling. Some use more computationally inspired techniques as
procedural modeling and cellular automata whereas others are
more inclined to the use of physically based approaches.

The first works usually modeled clouds using impostors,
that is, a set of images, carefully positioned in the scene space
that are able to track the observer position giving an illusion
of a tridimensional perception. One of the most representative
works in this class is the work of Harris et al. [17] which
is focused in the rendering aspects of clouds in games and
computer graphics in general.

Ebert et al. was one of the first to investigate how to
model steam, smoke, clouds and similar phenomena [18].
Similarly to the way we generate cloud instances in this work,
his approach is also based on a procedural modeling where
implicit functions define the overall shape that is modified by
noise.

Later, Schpok et al. [5] modified Ebert’s techniques so that
it could be used more efficiently by leveraging the power of
programmable graphics hardware. He proposed a complete
realtime system for cloud modeling and animation.

Lipuš et al. [3] analysed the behaviour of implicit function
blending and verifyed that its direct summation produced
artificial effects in the cloud density values. They proposed
a different way of blending implicit primitives based on set
Theory. The work in [1] extended this technique by enabling
it add different noise functions on different primitives before
blending.

Man et al. [19] proposed a work that represents clouds
a set of metaballs that approximates the original density
function of a cloud build with procedural noise. The metaballs
parameters are determined using a radial basis function real
neural network.

One important example of cellular automata applied to
cloud modeling is the work of Dobashi et al. [21] aimed at
cloud animation. In Dobashi’s work, the dynamics of the fluid
is described by transition rules guide define the simulation
of complex motion inside the clouds. Jiangbin Xu et al. also
proposes the use of probabilistic cellular automata [23]. In
his work, probability fields define a fractal Brownian motion

function that guides the movements of the particles in the
cloud.

Physically based cloud modeling is a very complex task.
Dobashi et al. in 2008 investigated how to control the pa-
rameters of a fluid dynamic model to produce cummuliform
clouds [22]. His work also uses a first step where the overall
shape of the cloud is defined so that later the parameters can
be adjusted to give the cloud its final visual aspect conforming
to the predefined shape.

Dobashi et al. proposed a methods for cloud modeling
based on photos in [20] . In such works, cloud modeling
is formulated as an inverse problem. The inout photo of a
cloud serves as a guide to an optimization method estimate
the parameters that define a non-uniform density function.

IV. PROBLEM DEFINITION

The problem we solve in this paper is how to compute a
family of cloud models C which are consistent with what we
understand as a shape and texture of a cloud using procedural
modeling. Besides, we wish that C presents a high level of
variability.

Our hypothesis is that by considering this problem as a
shape design problem and using Generative Design techniques
we are able to:
• effectively search the cloud shape space aiming at finding

optimum shape alternatives
• be able to create a high level of variability in the set of

shape variants

V. PROPOSED METHOD

The methodology used to solve the problem previously
defined uses a Generative Design pipeline that combines
procedural modeling, GAs and CNNs.

A. Method overview

The procedural modeling it the part of the method that
produces instances of volumetric volumes from parametric
specifications. In part we could understand that it plays the
role of Shape Grammars and L-Systems in classical Generative
Design approaches. The GA proposed here is the module that
searches the shape space aiming at finding good cloud shape
alternatives. The measure of how ”good” a cloud is considered
is captured by a fitness function used by the GA optimizer.
Instead of devising such fitness function manually, we use a
CNN to learn it from training examples including previously
tagged synthetic models and real cloud pictures.

B. Cloud instance generation

The generation of instances is done using the method
described in section Cloud Modeling. Each cloud instance is
characterized by a set of parameters defining its set of density
field primitives Ph, h = 1 . . . |P | and their associated additive
noise parameters. Each primitive has its center (x, y, z), radius
r, dimensions (sx, sy, sz), and weight w. Besides, for each
primitive we define the corresponding noise parameters as
defined in equation 3. In our implementation, all required

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 2. Method overview

parameters of all primitives are grouped in an array properly
indexed. The structure of such array is detailed in the next
section where the evolution of a population of cloud instances
according to evolutionary rules are presented.

C. Cloud population evolution

The evolutionary process works with a fixed population
number of cloud candidates and a pre-determined number of
epochs saved in a settings file. The initial cloud population
is either mutation of the cloud that is being modeled by
the user or a set of recorded clouds. At the end of each
epoch, the screenshots of the clouds are sent to the CNN
classifier. It returns the fitness value, which is the probability
of each candidate be a cloud. The candidates are ordered
according to the fitness value. Half of the population with
the highest fitness value is kept untouched, while the other
half is discarded and replaced by mutations or crossover of the
surviving population. The whole process is displayed in figure
2. The optimal number of epochs depends on the quality of
the input candidates and the expectations of the user of the
cloud modeling tool.

The cloud parameters are stored in a one-dimensional array.
The global parameters come on the first positions, and then
the parameters of each primitive come next. Every parameter
is stored as double, regardless of its data type. Such structure
facilitates the process of mutating a cloud candidate since it
allows it to change a random amount of parameters, choose
the parameters randomly and randomly select the intensity of
the change and its signal. In our evolutionary process, we
have restricted a maximum of 10% of the parameters to be
changed in a cloud candidate per epoch. We have also capped
the intensity of each change to a maximum of 6 increments.

There are maximum and minimum limits previously defined
by the user for the shape space. It is possible to restrict
these limits for specific contexts due to the varied behavior
of the cloud parameters. Some parameters may make others
behave inconsistently in different contexts. One example is the
choice of the algorithm that calculates the density of the voxel,
which may turn primitive frequency related parameters useless
depending on which algorithm is chosen.

The crossover between two cloud candidates consists of
randomly choosing, for each parameter, which of the two
clouds will transfer its property. Due to its higher chance
of convergence compared to mutations, we have prioritized
mutations over crossovers, setting an 80% chance of mutations
to happen and only 20% for crossovers.

D. Cloud ranking

Building a CNN model that aptly represents a cloud is a task
that requires hundreds or thousands of images with the many
forms of this object in all its natural variations. The main
variations of the class or object are localization, viewpoint,
colors, and scale.

The dataset used in this work is composed of positive
and negative cloud images. They come from three different
sources:
• 1) photos from real clouds,
• 2) synthetic clouds,
• 3) data augmentation techniques.
We have used a total of 2550 images, with a minimum

resolution of 240x 240 pixels. Photos taken from clouds, which
represented just over 10% of the database, were used in the
set of real clouds. Most of them were taken from the ground
or buildings by the authors, although some were adapted from
public datasets such as [24], [26] and [25]. All the photos were
hand edited to remove features that are not covered by the
cloud generator, such as birds, sunlight, airplanes, artificially
generated smokes, rainbow, and types of clouds that are far
too different from cumulus clouds. A larger group of images
created with our cloud generator has been included in the
class of non-clouds. We were far more concerned at teaching
the CNN what a cloud could not be since the probability of
generating non-clouds with the cloud modeling tool is much
higher than obtaining a good-looking cloud. Besides that, the
approval of a bad-looking cloud could ruin the whole evolution
process, while skipping a good looking cloud does not do
the same damage. The validation images consist of 49 photos
taken from clouds and additional 600 non-clouds created by
the cloud modeling tool used in this work. We have also
used extra 600 synthetic clouds that we perceived as feasible
clouds to analyze the CNN’s ability to classify synthetic clouds
created by the cloud modeling tool.

The unbalanced dataset drove us to make a sampling ad-
justment of the classes within each batch, already applying
some data augmentation techniques, artificially expanding the
dataset, and further reducing overfitting on training. In this
data pre-processing step, we use image flip operations, rotation
transformations, and brightness and contrast intensity changes.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

After testing some CNN architectures like AlexNet, VGG1,
ResNet-50 [15] considering our cloud training database, we
opted for the following architecture displayed on table I with-
out performing the transfer learning operation since resources
extracted from the cloud are very singular and some of them
are too thin and do not resemble commonly used objects such
as the ImageNet base [16].

TABLE I
CNN ARCHITECTURE

Layer Shape
Input [144X144X1]
Conv2D 138X138X64
ReLu 138X138X64
BatchNorm2D 138X138X64
MaxPool2D 69X69X64
Conv2D 65X65X128
ReLu 65X65X128
BatchNorm2D 65X65X128
MaxPool2D 32X32X128
Conv2D 30X30X128
ReLu 30X30X128
BatchNorm2D 30X30X128
MaxPool2D 15X15X128
Conv2D 13X13X64
ReLu 13X13X64
BatchNorm2D 13X13X64
MaxPool2D 6X6X64
Flatten 2304
Linear 1024
ReLu 1024
Dropout 1024
Linear 1024
ReLu 1024
Dropout 1024
Linear 1
Sigmoid 1

VI. RESULTS

In order to produce plausible clouds, our fitness function
must be able to return a high probability when the candidate
looks similar to a real cloud, and it must also be able to
filter non-clouds. If the fitness function works, good synthetic
clouds will not be replaced by bad-looking clouds. Thus
the odds of generating the variations of good-looking clouds
increases considerably.

We have conducted a couple of tests with our CNN, such as
the k-fold cross-validation technique and a confusion matrix.
Most of the other experiments had their results analyzed
visually, and, therefore, the results will be shown as pictures.

To assess the generalizability of a model from a set of data,
we use the k-fold cross-validation technique, which is widely
used to estimate how accurate this model is in practice, that is,
its performance for a new set of data, in special on a limited
data sample or small. This procedure has a single parameter
called k that refers to the number of groups that a given data
sample is to be split into. This work we choose k = 5.

To evaluate the efficiency of the test, the confusion matrix of
the considered model is used, being applied over a set of 500
images. The confusion matrix on table II and table III contains
the values true positive, true negative, false positive and false

negative. The highest diagonal values in the confusion matrix
show the model’s accurate predictions.

TABLE II
CONFUSION MATRIX

Non-Cloud (prediction) Cloud (prediction)
Non-Cloud (real) 305 0
Cloud (real) 0 49

TABLE III
CONFUSION MATRIX

Non-Cloud (prediction) Cloud (prediction)
Non-Cloud (synthetic) 601 0
Cloud (synthetic) 355 282

The classifier was able to detect all true clouds. However, it
is confused with some synthetic clouds. This behavior was
somewhat expected since the synthetic clouds might have
different features, lighting details, contrast, and resolution
differences. It is also subject to our concept of what a cloud
is. But since we want the genetic algorithm to generate clouds
close to the real ones, in this context, it is less problematic to
wrong classifying what we perceive as being a cloud than the
other way around.

The table IV shows the fitness scores of 10 candidates on
the figure 3, where half are considered clouds and the other
half non-clouds. It is not trivial to pickup the details that makes
some of these candidates be more cloud than others.It’s a
matter of shape, illumination, texture and bad use of Perlin
noise that may affect the classification.

TABLE IV
FITNESS SCORE

Cloud Score Prediction
Candidate (0, 0) 0.104416 Non-cloud
Candidate (1, 0) 0.468740 Non-cloud
Candidate (2, 0) 0.019677 Non-cloud
Candidate (0, 1) 0.010033 Non-cloud
Candidate (1, 1) 0.049599 Non-cloud
Candidate (2, 1) 0.999962 Cloud
Candidate (0, 2) 0.999385 Cloud
Candidate (1, 2) 0.974813 Cloud
Candidate (2, 2) 0.720757 Cloud
Candidate (2, 3) 0.577683 Cloud

Finally, the figure 4 shows what kind of clouds you can
get after 15 epochs using the cloud candidate in the top-left
corner as input. The clouds in the first two lines uses the
settings described on section V-C. The last three candidates is
what happens when we allow stronger mutations.

Further results and resources used by our work will be
shared at [27].

VII. CONCLUSION AND FUTURE WORKS

This work proposes using an evolutionary mechanism to
explore the space of parameters for the Generative Design

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 3. Cloud Candidates for table IV

Fig. 4. Clouds obtained after 15 epochs

approach for procedural Cloud Modeling. It uses a Con-
volutional Neural Network to calculate the fitness function
of the evolutionary technique. It generates several different
clouds that are similar to the one that is being designed by
the user and that have strong possibilities of look like a
cloud. The proposed technique is a brute-force mutation-based
approach whose effectiveness relies on the accuracy of the

fitness function.
The CNN trained for this work is more effective at rejecting

bad-looking clouds than detecting good clouds. We have
prioritized the rejection of bad-looking clouds, because the
strictness of the CNN towards cloud candidates reduces the
chances of the evolutionary mechanism to allow bad clouds
to replace good ones. Although it is not bad at the detecting re-
alistic clouds, it may occasionally reject clouds that look good
for humans. One of the reasons is that the training dataset is
unbalanced towards non-clouds training images, even with the
sampling adjustment done at each batch. Obtaining synthetic
images is an easier task than taking pictures from real-life
clouds. Some aspects of the synthetic images generated by
the cloud modeling tool differ from real clouds.

The evolutionary mechanism is calibrated by several param-
eters that could be relaxed to allow stronger changes to the
cloud mutations, allowing a larger variation of clouds to be
built with the proposed method. However, it requires a better
trained CNN.

As future works, we see a lot of room to better calibrate
the existing solution from both CNN and evolutionary per-
spectives. Or even use the evolutionary tool to calibrate other
parts of the modeling tool such as the rendering algorithm,
illumination settings, etc.

ACKNOWLEDGMENT

We thank Anselmo Antunes Montenegro for providing the
synthetic cloud generator used in his work [1], for helping to
improve its rendering code, and for supporting the develop-
ment of our work. We also thank Adriana Ossaille Beltrame
for many of the real cloud pictures used on our CNN.

REFERENCES

[1] A. Montenegro, Í. Baptista, B. Dembogurski and E. Clua, ”A New
Method for Modeling Clouds Combining Procedural and Implicit
Models,” In 2017 16th Brazilian Symposium on Computer Games
and Digital Entertainment (SBGames), 2017, pages 173-182, doi:
10.1109/SBGames.2017.00027.

[2] B. Wyvill and G. Wyvill. Field functions for implicit surfaces. In New
Trends in Computer Graphics, pages 328-338. Springer, 1988.

[3] B. Lipuš and N. Guid. A new implicit blending technique for volumetric
modelling. The Visual Computer, 21(1-2):83–91, 2005.

[4] K. Perlin. An image synthesizer. ACM Siggraph Computer Graphics,
19(3):287–296, 1985.

[5] J. Schpok, J. Simons, D. S. Ebert, and C. Hansen. A real-time cloud
modeling, rendering, and animation system. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 160–166. Eurographics Association, 2003.

[6] S. Khan, M. J. Awan. A generative design technique
for exploring shape variations, In Advanced Engineering
Informatics, Volume 38, 2018, pages 712-724, ISSN 1474-0346,
https://doi.org/10.1016/j.aei.2018.10.005.

[7] V. Singh and N. Gu. Towards an integrated generative design framework,
In Design Studies, Volume 33, Issue 2, 2012, pages 185-207, ISSN 0142-
694X, https://doi.org/10.1016/j.destud.2011.06.001.

[8] G. Stiny and J. Gips. Shape Grammars and the Generative Specification
of Painting and Sculpture. In IFIP Congress. pages 71. 1460-1465, 1971.

[9] A. Lindenmayer. Mathematical models for cellular interactions in de-
velopment II. Simple and branching filaments with two-sided inputs, In
Journal of Theoretical Biology, Volume 18, Issue 3, 1968, pages 300-
315,ISSN 0022-5193, https://doi.org/10.1016/0022-5193(68)90080-5.

[10] J. Von Neumann. The General and Logical Theory of Automata. In:
Jeffress, L.A., Ed., Cerebral Mechanisms in Behavior: The Hixon
Symposium, John Wiley & Sons, New York, 1-41, 1951.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

[11] Holland, J. H. (1992). Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. MIT press.

[12] S. Wolfram and A. Mallinckrodt. Cellular Automata And Complexity.
In Computers in Physics 9, page 55, 1995, doi: 10.1063/1.4823369

[13] J. L. Deneubourg. Application de l’ordre par fluctuations á la descrip-
tions de certaines étapes de la construction du nid chez les termites. In
Insect. Soc. 24, pages 117-139, 1977.

[14] W. Rawat, Z. Wang. Deep convolutional neural networks for image
classification: A comprehensive review. In Neural computation, v. 29,
n. 9, pages 2352-2449, 2017.

[15] N. Van Noord, E. Postma. Learning scale-variant and scale-invariant
features for deep image classification. In Pattern Recognition, v. 61,
pages 583-592, 2017.

[16] A. Krizhevsky, I. Sutskever, G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems, v. 25, pages 1097-1105, 2012.

[17] M. J. Harris and A. Lastra. Real-time cloud rendering for games. In
Proceedings of Game Developers Conference, pages 21–29, 2002.

[18] D. S. Ebert. Texturing & modeling: a procedural approach. Morgan
Kaufmann, 2003.

[19] P. Man. Generating and real-time rendering of clouds. In Central
European seminar on computer graphics, pages 1–9. Citeseer, 2006.

[20] Y. Dobashi,W. Iwasaki, A. Ono, T. Yamamoto, Y. Yue, and T. Nishita. An
inverse problem approach for automatically adjusting the parameters for
rendering clouds using photographs. In ACM Trans. Graph., 31(6):145,
2012.

[21] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita. A
simple, efficient method for realistic animation of clouds. In Proceedings
of the 27th annual conference on Computer graphics and interactive
techniques, pages 19–28. ACM Press/Addison-Wesley Publishing Co.,
2000.

[22] Y. Dobashi, K. Kusumoto, T. Nishita, and T. Yamamoto. Feedback
control of cumuliform cloud formation based on computational fluid dy-
namics. In ACM Transactions on Graphics (Proceedings of SIGGRAPH
2008), 27(3), 2008.

[23] J. Xu, C. Yang, J. Zhao, and L. Wu. Fast modeling of realistic clouds.
In Computer Network and Multimedia Technology, 2009. CNMT 2009.
International Symposium on, pages 1–4. IEEE, 2009.

[24] ”Cloud image classification Dataset — Kaggle”.
https://www.kaggle.com/nakendraprasathk/cloud-image-classification-
dataset. (accessed Oct 4th, 2021)

[25] ”Public Domain Pictures, 2021”. https://www.publicdomainpictures.net/.
(accessed Oct 4th, 2021)

[26] ”Cumulus — Wikipedia a Free Encyclopedia”.
https://en.wikipedia.org/wiki/Cumulus cloud. (accessed Oct 4th,
2021)

[27] ”Generative Design Applied to Cloud Modeling”.
https://cloudsbgames2021.carloseduardomuniz.com/. (accessed Oct
4th, 2021)

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

