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Abstract—This paper presents a new microscopic model to sim-
ulate the behavior of vehicle traffic through a bio-inspired agent-
based method. The proposed model reinterprets a biologically-
motivated method for generating leaf venation patterns in order
to propose terrain reasoning, a technique that has been widely
used in simulations and games. The main idea is to represent
unoccupied spaces through abstract markers distributed in
the environment. These markers identify free regions for the
movement of vehicles in the simulated traffic environment. The
markers provide space information and report the vehicular flow
of the simulated scenario, including flow density and velocity.
Typical behaviors observed in real traffic, including inhomoge-
neous driver models, lane changing and merging trajectories,
are emergent properties of the proposed model. We demonstrate
the flexibility and robustness of our model on simulation envi-
ronments, comparing the statistical results with a commercial
software used for traffic simulation.

Index Terms—agent-based systems, terrain reasoning, traffic
simulation, lane changing, lane merging, behavioral models

I. INTRODUCTION

In general, the proposition of traffic simulation models
requires considerable effort. However, the application of these
models allows to reproduce computationally several situations
of an analyzed context, providing predictive analysis of sit-
uations in a shorter time and with low costs [1]. In order
to have a realistic traffic simulation model, it is important
that the available information for the simulation is as close
as possible to the real environment, because we do not have a
robust model if this information does not correspond to reality.
Several techniques for modeling traffic behavioral already
exist [2], but important aspects have remained open for further
research. Specifically, (i) the existing approaches are often
focused on massive mathematical descriptions of traffic flows
rather than usual (normal) behavior, in which drivers have
goals to seek; (ii) existing traffic-modeling methods require
careful parameter tuning to obtain visually convincing results;
and (iii) the proposed models are limited to reproducing
previously programmed behaviors, being inflexible to add new
information on the roads.

This research proposes a novel traffic simulation model in
virtual environments called BioTraffic. The main idea of this
model is a bio-inspired agent-based method that occupies the
simulation space basing on available markers in the environ-
ment. The proposed model is not a new car-following, but

a different and innovative way to simulate the behavior of
vehicles displacement in simulated environments. According
to the principle of terrain reasoning, the markers are interpreted
as available spaces for the displacement of vehicles in a
simulation environment, providing information regarding the
flow of vehicles on the road. The proposal is based on the
BioCrowds model by Bicho et al. [3], which proposed a
behavioral model for crowd simulation.

Therefore, the biologically-motivated method for generating
leaf venation patterns by Runions et al. [4] is also reinterpreted
to simulate vehicle traffic on roads. In the biological model,
the simulated veins compete for access to sources of the
plant hormone auxin, assumed to be distributed throughout
the leaf blade. In our model, vehicles compete for space on
the road, obtaining information about the flow density and
velocity of the vehicles ahead. This information is obtained
by analyzing the markers, which have similar purposes to
auxins in the biological model. The agent-based approach is
used because it allows to work with direct programming on
each agent (microscopic model) and to analyze the results
of simulations more broadly (such as macroscopic model).
The implementation could be done directly in vehicle traffic
simulation programs, but they do not have a test environment.
In this way, we have also developed a specific agent-based
simulator.

Based on a related literature review, it is not aware of a
method to simulate vehicle traffic biologically inspired [2].
This unexpected analogy between methods used to simulate
the development of leaf veins and to simulate the flow of
vehicles on the road allowed us to propose a traffic model
with few control parameters. The proposed model recreates
emerging aspects of traffic simulation such as inhomogeneous
driver models, lane changing and merging trajectories.

The rest of this paper is organized as follows: in Section II
is presented the related works in the area. Section III presents
the BioCrowds model, a bio-inspired crowd behavior model
that motivated our research approach. Section IV provides the
implementation of BioTraffic model. Section V are presented
results and analysis investigated in the simulations. Finally, in
Section VI we find the conclusions and future works.
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II. RELATED WORKS

The analysis of the related works to traffic simulation was
done from the perspective of three approaches: microscopic,
macroscopic and mesoscopic models.

A. Microscopic Models

The model proposed by Nagel and Schreckenberg [5] is one
of the most cited in the literature on traffic simulation. This
work presents a stochastic car-following model to simulate
traffic on a freeway through the use of cellular automata.
The car-following model is one of the most used for the
computational representation of vehicular traffic because of
ease of use and flexibility in the re-adaptation of its parameters.
The work of Brackstone and MacDonald [6] presents a review
focused on several car-following models.

Lopez et al. [7] present the developments concerning inter-
modal traffic solutions, simulator coupling and model develop-
ment and validation using SUMO (Simulation Urban of MO-
bility). SUMO is an open-source, highly portable, microscopic
and continuous traffic simulation package designed to handle
large road networks [8]. Barria and Thajchayapong [9] present
an algorithm for the detection and classification of anomalies
in traffic simulation. Macedo et al. [10] present two versions
of finite-state machine controllers to self-driving cars in the
Simulated Car Racing Championship, a competition between
controllers built on Open Racing Car Simulator (TORCS).
A genetic algorithm was applied with default configurations
found in the literature to evolve the controllers’ parameters
in the proposed models. Talebpour et al. [11] present a
comprehensive simulation framework to model driver behavior
in a connected driving environment with connected vehicles.
Fountoulakis et al. [12] present a microscopic simulation
investigation of a proposed methodology for highway traffic
estimation with mixed traffic (connected and conventional
vehicles). Lu et al. [13] present ten improvements for mi-
croscopic level interactions among classes of vehicles with
varying levels of automation and connectivity. Menezes and
Pozzer [14] present a model based on the steering behavior
technique to develop a generic vehicle controller that guides
the movement and behavior of vehicles inserted in a 3D world.

B. Macroscopic Models

Lighthill and Whitman [15] present a traffic simulation
model adopting a kinematic wave method which was already
used in supersonic projectile models and river flood movement.
Kotsialos et al. [16] present a model for large-scale traffic
flow. This work is focused on freeway networks using the
METANET tool for validation. Helbing et al. [17] present
a gas-kinetic (“Boltzmann-like”) traffic equation for low and
high vehicle densities. The model differs from others mainly
by its non-local interaction term that takes into account the
space requirements of vehicles and the correlations of succes-
sive vehicle velocities. Thonhofer et al. [18] present a modular
macroscopic traffic model, using Partial Differential Equations
(PDEs), with two traffic light formulations: an intersection

approach that is a binary traffic light (detailed insights con-
cerning queue length, flow across intersections and routing
decisions can be investigated) and a continuous valve-like
approach that allows investigation of averaged effects and large
scale interaction and feedback effects. Lim et al. [19] present
a stochastic motion planning algorithm and its application to
traffic navigation that has been validated using simulations
and real-world units using delay data collected from a set
of taxis equipped with global positioning system sensors
and a wireless network. Vallati et al. [20] present the urban
traffic models for reducing congestion with a planning ap-
proach and a Planning Domain Definition Language (PDDL).
Ngoduy and Jia [21] present how to derive a continuum
traffic model considering both multiple forward and backward
driving strategies. Spiliopoulou et al. [22] present a study that
tests and compares different optimization algorithms employed
to calibrate a macroscopic traffic flow model.

C. Mesoscopic Models

Using gas kinetics, Helbing et al. [23] present a new car-
following model for traffic jam simulation, with an easy
and intuitive calibration. Sewall et al. [24] propose a hybrid
simulation technique that combines the strengths of two broad
and different classes of traffic simulation to perform a flexible,
interactive, and high fidelity simulation, even for large road
networks. DynaMIT, proposed by Ben-Akiva et al. [25], is
a real-time dynamic traffic assignment system that provides
traffic predictions and travel guidance. This system contains
two simulation tools: a Mesoscopic Demand Simulator and
a Mesoscopic Supply Simulator. Burghout et al. [26] present
a hybrid mesoscopic–microscopic model that applies micro-
scopic simulation to areas of specific interest while simulating
a large surrounding network in less detail with a mesoscopic
model. Florian et al. [27] describe a simulation-based using
an iterative dynamic equilibrium traffic assignment model.
Potuzak [28] presents a Macroscopic-Simulation-Based Divi-
sion (MaSBD) and the Microscopic-Simulation-Based Divi-
sion (MiSBD) methods, which are both focused on a uniform
load of the resulting sub-networks. Wilkie et al. [29] present
a method for enhancing a road map from a Geographic
Information System (GIS) database to create a geometrically
and topologically consistent 3D model to be used in real-time
traffic simulation, interactive visualization of virtual worlds,
and autonomous vehicle navigation. Jamshidnejad et al. [30]
present a framework to interface and integrate macroscopic
flow models and microscopic emission models. Burghout and
Koutsopoulos [31] present a framework for implementing
hybrid models that facilitate consistent representation of traffic
dynamics.

D. Summarization of Related Works

The basis for the related works was concentrated in the
search for papers with the term “traffic simulation”, which has
one of the following terms: microscopic, macroscopic and/or
mesoscopic.
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Table I presents the summarization of the related works,
selected by relevance in the area or most current works. In
this table, we present our approach in the last line to have
parameters for further comparisons.

III. BIOCROWDS MODEL

The model was originally proposed by Runions et al. [4]
to model the development of veins of plant leaves and tree
branches by disputing a plant hormone called “auxin”. That
work presents a potential application in several areas of
research because its main idea is the contest for free space.
Based on this biological model, Bicho et al. [3] proposed a
model called BioCrowds, to simulate the crowds’ dynamics
where each agent contests space using available markers as
resources in the environment, to avoid collision with other
agents or obstacles in scenarios, to reach the desired location.
In our work, we follow the same reasoning, which proposes
a new microscopic model for vehicle traffic in a virtual
environment called BioTraffic.

A. Calculation for agent movement and orientation –
BioCrowds and BioTraffic

Each time, the agent i moves in the simulation. It is
necessary to update its position p(t) and, consequently, the
target vector g(t) (agent destination point in the simulation
scenario). The set S contains all the markers close to agent
i in the simulation scenario. These markers are part of the
“perception area”, where S = {a1, a2, ..., aN}. The set of N
markers linked to agent i in S = {a1,a2, ...,aN}. Therefore,
to calculate the next step of agent i and obtain a new position,
we use a set of vectors S′ = {d1,d2, ...,dN}, where:

dk = ak − p, (1)

considering the position p of the agent and the markers in
S (markers in the perception area - Fig. 1).

Fig. 1. Calculation for agent movement and orientation considering the
markers in the simulated scenario.

In a second moment, the generation of “vein patterns” (term
used to the plant vein generation model), the vectors in S′

are normalized and added, resulting in orientation to the vein
growth. In the simulation of the displacement of an agent, it
is also necessary to consider its destination (g target vector).
Therefore, for each d vector ∈ S′ has assigned a weight
relative to its alignment with the target agent vector. In other
words, it is the angle between the vectors. Specifically, the m
motion vector is:

m =
N∑

k=1

wkdk, (2)

where the wk coefficients are the weights, calculated
through equation:

wk =
f(g,dk)
N∑

l=1

f(g,dl)

. (3)

To determine function f , let us first assume that all markers
ak affecting agent i are at the same distance ‖dk‖ from this
agent. Such function should:
• reach its maximum when the (nondirected) angle θ be-

tween g and d is equal to 0◦;
• reach its minimum when θ = 180◦;
• decrease monotonically as θ increases from 0◦ to 180◦;

and
• variables must have values greater than or equal to zero.
A possible choice for f is

f(g,dk) =





1 + cos θ

1 + ‖dk‖
, se ‖dk‖ > 0

0, se ‖dk‖ = 0,
(4)

where
cos θ =

〈g,dk〉
‖g‖‖dk‖

. (5)

Equation (2) presents vector m responsible for the agent
movement from its origin to its destination. During the route,
when space is available, the model allows the agent to move
with a desired maximum speed smax.

Regarding space availability, when the agent runs through
denser places with less availability of markers and an excessive
number of agents or obstacles, its speed is reduced. For this,
the model needs to adjust the displacement velocity of the
agent, according to the m vector modulus and the smax value.
The instantaneous motion vector, in displacement units by
position change (each iteration), v, is given by v = smin

m
‖m‖ ,

where:

smin = min {‖m‖, smax} . (6)

In (6), ‖m‖ > smax (maximum agent displacement) is
limited for smax. Otherwise, the displacement is given by
‖m‖.

IV. BIOTRAFFIC MODEL

Firstly, we verify how the BioCrowds markers could be in-
cluded in the proposal to develop a behavioral model for agents
whose geometry and properties are in a two-dimensional
vehicle. In crowd simulation, each agent, in order to arrive
at the desired location, contests space using markers as a
resource available in the environment, avoiding to collide with
other agents and obstacles in the enviroment. In this way, in
BioTraffic, this feature has the same properties and it provides
further information that will be detailed in the sequence.

In both models, the distance between markers plays a key
role in two important aspects of the simulation: computational
cost and realism in the agents’ movement. With that, the larger
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TABLE I
SUMMARY OF THE MAIN MICROSCOPIC, MACROSCOPIC AND MESOSCOPIC MODELS CITED ON THE RELATED WORKS.

Authors Type Techniques Results
Lighthill and Whitham [15] Macro Kinematic wave

method
A theory of the propagation of changes in traffic
distribution along of roads.

Nagel and Schreckenberg [5] Micro Cellular automata Simulate traffic on a freeway.
Helbing et al. [23] Meso Gas-kinetic-based

and car-following
Combine micro/macro simulations of road sections
by simple algorithms.

Jamshidnejad et al. [30] Meso Car-following and
emission models

A new mesoscopic integrated flow-emission model
that balances the trade-off between high accuracy
and low computation time.

Lopez et al. [7] Micro Car-following Introduce SUMO as a large framework with helpful
tools for the generation, validation and evaluation of
large traffic scenarios.

Thonhofer et al. [18] Macro Discretization of
PDEs

Present a modular macroscopic traffic model with
two traffic light formulations.

Our approach Micro Multiagent system Agent-based approach, reproducing emerging behav-
iors in multi-lane traffic.

the number of markers per area, the greater the smoothness
of the agents’ movement. However, the computational cost is
higher.

In order to represent the movement carried out by the ve-
hicles and their respective restrictions, the BioTraffic proposal
is based on a model widely used on autonomous vehicles, the
Ackermann Steering Geometry model [32] (Fig. 2). This model
has the following parameters: ICR (Instantaneous Center of
Rotation) represents the external reference point that serves as
the basis for the vehicle to perform the rotation; TR (Turning
Radius) is a midpoint between the wheels of the rear of the
vehicle; SWA (Steering Wheel Angle) regulates the steering
angle; and L (Length) refers to the length of the vehicle,
particularly the distance between the axles (front and rear).

Fig. 2. Ackermann steering geometry model (adapted from [33]).

The ICR aims to provide an external reference point for
orientation, and later collaborate with the directional calcula-
tions with the other points in the vehicle. The ICR aligned
horizontally to the median point on the rear axle from the
TR. With this alignment, we have precision for the radius

size that will be formed when the vehicle performs some kind
of maneuver in its direction. In the model, the size of the
bar linking the two axes (front and rear) also influences the
size of the radius. Small vehicles will occupy less space when
making a left turn, for example. On the other hand, vehicles
with a larger bar will need more space to make directional
maneuvers. At last, we have the SWA which varies according
to the dimensions of TR and L, according to the following
equality SWA = arctan( L

TR ).
The general idea of the Ackermann model was reinterpreted

by calculating the SWA angle, which informs the maximum
angular variation of the left or right orientation of the vehicle.
We adopted it in BioTraffic model, with a perception angle of
the markers corresponding to 2SWA, and it would produce the
same directional effect in the vehicle (hatched area in Fig. 3).

Fig. 3. Perception angle agent of the markers corresponding to 2SWA.

When moving, the agent (vehicle) realizes a variation in the
orientation that produces noise in its trajectory, i.e., unneces-
sary orientation movements concerning its objective. In order
to reduce this noise in the orientation, the weighted moving
average was implemented, through:

g = wg + (1− w)mant, (7)

where g is the target vector, mant is the previous orienta-
tion of the agent, and w is the normalized weighting factor of
the equation [34].

A. Agent Orientation Calculation

The markers not only inform a spatial reference scenario.
An approach that integrates the concept of terrain reasoning
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to BioCrowds model was proposed in [35], where the mark-
ers serve not only as a spatial reference in the simulated
environment to calculate the orientation of the agents, but
also other attributes that help to differentiate areas within the
environment. In [35], markers identify three possible route
regions on the ground: walkable, preferably non-walkable,
and non-walkable. The terrain features are created through an
algorithm that provides different weights for each different
region.

In BioTraffic model, the terrain reasoning is used to calcu-
late the agents’ speed in vehicle traffic simulator, but with
a different approach defined in the methodology proposed
by [35]. The markers inform, through one of their attributes
(by a variable called service capability), the current maximum
traffic lane speed. This information is adopted for calculating
the vehicle’s travel speed, and it is relative to the lane that
is permitted in accordance with the maximum speed limit
previously set for the vehicular lane or the current flow. In
addition, to this information relating to the speed, the markers
remain with geometric reference to calculate the displacement
agent.

The markers inform the displacement availability of the
agents, i.e., the spatial coordinates are used to calculate the
sum vector of the direction vectors obtained from each marker
contained in the personal space of the agent (vehicle). Equa-
tion (1), which computes the direction vectors; Equation (2),
which finds the movement vector; and Equation (3), which
weights each vector in relation of the set of direction vectors,
are adopted in BioTraffic as well as they are applied in
BioCrowds.

Regarding the angular variation of the orientation, the
vehicle model must be restrictive due to the form of movement
and orientation is each agent (vehicle). In BioCrowds, when a
pedestrian finds obstacle, s/he can make a turn of up to 900 or
more, to deviate from it and try to reach his/her goal. However,
the smaller the deviation angle, the better the displacement
considering the principle of least effort. For vehicles, the
constraint is greater and limited by a vehicular attribute called
the angle of rotation. According to the Ackermann model,
turning angle takes into account vehicle size (particularly the
distance between the extreme axles) and the same turning
diameter.

B. Agent Speed Calculation

When analyzing computational tools of traffic simulation of
vehicles, we realize that the majority adopts the car-following
model. This is used to simulate an essential part in getting
traffic engineering results: the displacement of vehicles in the
environment.

The markers in the area of agent space perception will
form a set that defines the perimeter in which they are within
reach of the agent. These, in turn, are used at the moment
in which the displacement is occurring, passing information
about orientation and speed for the agents. After being used,
they are available for contesting between the nearby agents.
The agent only finishes its movement when it finds its goal,

i.e., where there are no more markers to be contested in the
path between the beginning and the end of its route.

In relation to space in the BioTraffic model, the “associ-
ation” of the labels with the agents is performed from the
agents, differently of BioCrowds model, whose “association”
is performed from the labels in themselves. To ensure that
the agent is the closest to the correct label, each label has
a variable that identifies which agent is using it. During the
partitioning process performed at each t instant of simulation,
a marker could be associated with different agents at different
t times. However, at the end of the process, only the nearest
agent is effectively associated with one specific marker. There-
fore, during the displacement of vehicles from the destination
source, each used marker has its agent identification variable.

The movement of each agent is calculated iteratively. The
position p(t) and the target vector g(t) are calculated at
each simulation step. The markers contained in the agent’s
“personal space” will be stored in set S. The service capacity
variable will be used to calculate the movement speed of
vehicles in relation to what is allowed in the lane.

The service capacity, an attribute associated with each
marker which informs the current maximum traffic lane speed,
has its value changed after the agent adjusts its speed accord-
ing to this attribute value. After, the attribute is changed to
the updated speed value of the agent, which may be the value
previously reported by this same marker or a lower value. The
updated speed information is used for the next vehicles in the
lane. In this way, the current speed record of the last agent
that passed that marker is stored.

Initially, the average service capacity velocity v̄elcapacity of
all markers in set S is calculated as follows:

v̄elcapacity =

∑N
k=1 velcapacityk

N
, (8)

and it is defined as velref = v̄elcapacity.
This average velocity will be compared to the limit speed

defined for each agent, called vellim, determining the reference
velocity for the agent, called velref :

velref =

{
vellim, if vellim < velref
velref , otherwise. (9)

From the definition of this reference velocity, it is possible to
verify what the reference acceleration of the agent should be,
called acelref , using velref and the defined limit acceleration
for each agent, called acellim. For that, each agent has a
variable that informs its current speed called vel. In this
way, the agent acceleration is initially calculated by uniformly
variable rectilinear motion:

acelref =
velref − vel

t
. (10)

Subsequently, it is compared with the defined limit acceler-
ation of each agent:

acelref =

{
acellim, if acellim < acelref
acelref , otherwise. (11)
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After, we obtain the reference displacement of the agent,
according to the reference acceleration, at simulation time t:

sref = vel.t+
acelref .t

2

2
. (12)

Note that the reference displacement sref has the same
purpose of variable smax in (6). Equation (13) calculates, for
the instantaneous movement vector, in displacement units by
position change (each iteration) v = smin

m
‖m‖ , where:

smin = min {‖m‖, sref} . (13)

In (13), case ‖m‖ > sref , the maximum displacement of
the agent is limited by sref . Otherwise, the displacement is
given by ‖m‖.

Finally, the value of the variable vel is updated according
to the Torricelli equation:

vel =
√
vel2 + 2.acelref .‖v‖. (14)

After that, the agent is moved. For that, it is necessary to
update the service capability attribute of the markers that were
associated with the agent. From the markers set in the set
S of the agent, only those that are behind, considering its
orientation, will have their service capacity values updated.

In order to be able to select the markers behind the
agent, its orientation vector was momentarily changed to its
opposite, i.e., with the same modulus, same direction, but
opposite direction. Afterward, the in-cone function selected
a subgroup of the markers, adopting as parameters the radius
of the individual space of the agent and an angle that varies
according to the number of lanes. In this work, the angle values
adopted were 1800 in the simulations of a single lane, and
2.arctan(2/R), in the simulations with two lanes, considering
the track width equal to 4m and the radius of perception R.

Algorithm 1 describes the BioTraffic model for simulating
vehicle traffic.

V. RESULTS AND ANALYSIS

This section presents the results after the simulations and
their analysis.

A. Used Tools

In work [36], the authors presented comparisons between
simulation tools to traffic simulation software. For our de-
velopment, we choose the NetLogo tool1, because it is a
programmable modeling environment of natural and social
phenomena widely used in the area of agent-based sys-
tems [37]. It has a significant number of models implemented
in many areas, such as arts, biology, chemistry, physics,
computer science, natural sciences, economics, social sciences,
and mathematics.

During the analysis of other tools, the most similar to our
approach was Aimsun (Aimsun traffic modelling software)2,

1https://ccl.northwestern.edu/netlogo/
2www.aimsun.com

Algorithm 1: Algorithm for Vehicle Traffic Simulation
- BioTraffic model
Require: agents[vel, vellim, alim, R ≥ 0, g], S, step
Ensure: agents

1: repeat
2: for each agent i do
3: Si = ∅
4: end for
5: for a ∈ S do
6: incrementalTest servCapability(a, step)
7: i = closestAgent(a)
8: if distance(pi,a) ≤ Ri then
9: Si = Si ∪ {a}

10: end if
11: end for
12: for each agent i do
13: if Si 6= ∅ then
14: S′i = {d | a ∈ Si,d = a− pi}
15: mi =

∑
d∈S′

i
wd, where w =

f(gi,d)/
∑

d′∈S′
i
f(gi,d

′)
16: velref =

∑
a∈Si

servCapability(a)
17: velref = velref/‖ Si‖
18: if vellim < velref then
19: velref = vellim
20: end if
21: aref = (velref − vel)/t
22: if alim < aref then
23: aref = alim
24: end if
25: sref = vel.t+ aref .t

2/2
26: vi = (mi/‖mi‖)smin, where smin =

min {‖mi‖, sref}
27: pold

i = pi

28: pi = pi + vi

29: vel =
√
vel2 + 2.aref .‖vi‖

30: update servCapability(poldi , g, Si, vel)
31: end if
32: end for
33: until finished simulation

developed by Transport Simulation Systems - TSS. It pre-
sented the best usability and practicality for the construction
of the simulation scenarios, control over vehicle demands,
addition of different modes and validation of results [38].

Aimsun stands out for the exceptionally high speed of its
simulations and for fusing travel demand modeling, static and
dynamic traffic assignment with mesoscopic, microscopic and
hybrid simulation - all within a single software application.
The following car model used in Aimsun refers to the GIPPS
model [39]. The model development is not based on global
parameters, but on parameters of each type of driver (speed
limit, vehicle acceptance), the geometry of each section (speed
limit in curves and others) and the influence of vehicles in
adjacent lanes [38]. With this, the work constructs a new model
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for response to vehicle followers, based on the parameters’
definition of each vehicle, such as its acceleration rates.

In our model, the input flow generation on the lane was
implemented in the same way as Aimsun. The dimensions of
both the agents and the environment were adapted to the same
scale.

B. Environment Configuration Parameters in NetLogo

The environment for the configuration is divided into
patches, defining that each unit represents 1m2. The shapes ed-
itor, available in NetLogo, features four quadrants containing
10x10 small squares each. The size of the agent’s form in the
editor does not exceed the size value of one patch3. However,
by entering the edited form, it is possible to scale the agent’s
size according to the average vehicle’s length. The vehicle
shape was defined as a length equal to 19/20 quadrilaterals of
the editor. This proportionality factor is used when scaling the
shape to the means of the calculated lengths.

The adaptation analysis of the vehicle traffic model in
relation to the crowds model has a restriction about the
direction change movement of the vehicles, when compared
to the human movement. When initiating the simulation, with
no angular constraint, the vehicle should make a 900 spin on
its centroid and proceed to the objective (straight line shown
in Fig. 4), since this is the expected behavior of a virtual
human in a simulator. In the same figure, it is possible to
see a trace left by the vehicle (semicircle connected to the
straight line). It made the rotation according to the angular
constraint imposed by the implementation done in BioTraffic.
In this way, Fig. 4 presents both displacements, where the
straight line refers to human displacement, and the half-circle
refers to the displacement of a vehicle.

Fig. 4. Final direction and orientation of a vehicle without the Ackermann
method implemented in BioTraffic.

C. Comparison with Aimsun simulator

The validation of the developed model was performed
comparing Aimsun traffic simulator results, a commercial
simulator. The values of Table II were the same set in both
simulators (Aimsun and BioTraffic).

After defining the data input configurations through the
BioTraffic simulator interface (Fig. 5), 10 (ten) simulations
were performed in the NetLogo, because the developed model
presents dynamic results (random input of vehicles). In the
same way, the experiments were carried out in Aimsun that
presents static results. After that, the average of the results

3Spatial unit in NetLogo language.

TABLE II
AIMSUN AND BIOTRAFFIC INPUT PARAMETERS.

Input Values Units
Lane number 2 units

Lane type freeway none
Maximum speed per lane 120 km/h

Lane bandwidth 3.5 m
Lane length 1 km

Vehicle lenght 4 m
Vehicle aceleration 3 m/s2

Vehicle limit speed 110 km/h
Traffic flow 3600 vph

Simulation time 5 min
Data collection time 1 min

between each simulator and the comparison of the results were
calculated. The simulation time was 5 minutes (Table II).

The data obtained in each minute presented 60 vehicles in
each one. Multiplying by 5 minutes, the values obtained by
the total time of simulation, we have 300 vehicles in the total,
for each experiment. In the configuration of the Aimsun traffic
state, it was indicated that it would receive an inflow of 3600
vehicles per hour (vph). Therefore, by multiplying the flow
of a five-minute experiment by twelve hours (considering full
hour), we have the same 3600 vehicles per hour.

As presented in Fig. 6, BioTraffic had an average input flow
of 291 vehicles, being close to the ideal flow as compared to
the Aimsun simulator. Using the same calculation to check
the flow per hour, the model has a flow of 3492 per hour. In
the first collection of BioTraffic, 59 vehicles were presented
and in the others, 58 vehicles. When initiating a simulation,
there is a need to add an agent in the simulation environment.
Therefore, the entry difference of vehicles between the two
simulators is two vehicles at each data collection.

Fig. 7 represents the comparison of the average between
vehicle densities of the experiments performed. In the first
moment, BioTraffic presents a higher density, compared to the
first minute of the Aimsun, that stabilizes in a few minutes.
The results of the simulation of both are equivalent (before
the second minute), where the simulator Aimsun continues to
increase its density until the third minute.

Fig. 8 shows an oscillation in the travel simulator values
of the Aimsun, after the first minute, comparing to BioTraffic.
Even if they are close, the results do not present the same
behavior, because our model does not have a balance of
distribution of the values for the speed of the vehicles during
the simulation. In Aimsun, even if a vehicle is alone on the
road, the driving speed is not constant, unlike in BioTraffic.

Fig. 9 presents the highest average speed between vehicles
only at the end of the simulation to Aimsun. In BioTraf-
fic, the speed, in the first minute, is 107 km/h. As the
displacement process is given by the space contest in the
simulated environment, the speed of the vehicles automatically
decreases during the route. Meanwhile, the Aimsun shows
some oscillations during the process. The velocities of both
simulations approximate just at the end of the experiment. All
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Fig. 5. BioTraffic simulator interface.

Fig. 6. Vehicles input flow per lane.

Fig. 7. Vehicles density in lane.

BioTraffic averages are above 105 km/h. Whilst Aimsun, in
most data, kept the average speed below this value.

There is a series of data for calibration in Aimsun, in
addition to those presented here during the results obtained.
Just in the vehicle class, for simulations with dynamic models,
we must calibrate the following items: speed acceptance, the
minimum distance between vehicles, maximum preference
time, acceptance of being guided, reaction time, reaction to the
vehicle of the front, deceleration, sensitivity factor, minimum
headway, percentage of overtaking, and so on. However, these

Fig. 8. Vehicles travel time during simulation.

Fig. 9. Vehicles average velocity in line.

data do not influence the comparison data in this work, because
the BioTraffic simulator has fewer data to calibrate.

D. Emerging behaviors

In this section we present examples that illustrate features
of the proposed method. In terms of simulating realistic traffic,
lane changing and merging behaviors are important features
in multi-lane simulations. When a vehicle changes lanes from
one lane to another, this can have the effect of a wave slowing
both lanes. Similarly, the merging of two lanes may produce
a reduction in capacity due to the generated bottleneck. Bot-
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tlenecks are result of a specific physical condition, often the
design of the road, but they can also be caused by temporary
situations, such as vehicular accidents.

In the proposed model, unlike the methods proposed in
the literature, readily emerge in our simulations, as it can be
visually observed in Fig. 10. Because the algorithm is based
on competition for space, lane changing emerge due to the
driver’s intention to keep his/her speed. In frame sequence
in the figure, it is possible to verify the exchange of lanes
under the same conditions by drivers identified by “A” and
“B”. In order to understand whether the driver is accelerating,
decelerating or maintaining his/her speed, the colors green,
red and blue were adopted. It is possible to analyze that driver
“A” when starting the maneuver reduced and maintained speed
until completing the lane change. However, the driver “B” kept
his/her speed checked during the same maneuver.

In Fig. 11 an accident was simulated, in order to reproduce
the lane merging. The behavior is reproduced by the proposed
model, just that the damaged vehicles remain with their
markers. Consequently, the two lanes are reduced to a single
one, and drivers compete for the space available on the way.

VI. CONCLUSIONS

This paper proposes a new model named BioTraffic to
determine how vehicles move in the simulation environment.
Vehicles compete for space from origin to destination using
available markers along the way. According to the principle of
terrain reasoning, the markers are interpreted as spaces avail-
able for the displacement of vehicles, and provide information
regarding the flow of vehicles on the road.

Through analyzing the data obtained from the model simu-
lations and Aimsun simulator, it was verified that the proposed
model presented results corresponding to those of the vehicle
traffic simulator. It should be noted that the simulator used in
the validations of the results has a number of parameters that
were not adopted in our model, making our proposal more
straightforward and with results very close to a commercial
simulator. Regarding visual results, the method reproduces
characteristic behaviors in multi-lane traffic - lane changing
and merging behaviors - due to the principle of space compe-
tition, an idea originally adopted by the biological model.

The terrain reasoning became a possible way of understand-
ing how agents can map a displacement without the need
for direct interaction with other agents in the environment. In
the model proposed in this paper, interaction occurs through
shared space, rather than between agents. The ability to move a
vehicle on BioTraffic does not depend on a road or the presence
of another vehicle in the simulation.

BioTraffic is different from the more conventional model
widely used because it has the capacity for new types of
simulation, the interaction of the agent is made with the
environment and not with the other agents, the scenarios do not
need lanes to control the queues. In other words, vehicles travel
freely from the source to their destination, disputing available
resources along the way. This model is more complex than
the car-following, because it has a richness in the refinement

of movements and the effective use of the displacement space
are different from models in which only “cars follow cars”.

In future works, we will improve the terrain reasoning,
where the service capabilities would have different weights in
the markers. In this way, it would be possible to identify lanes
with different flows (double-hand lanes), to adopt a greater
weight of relevance for markers that would serve to overtake,
for example. We also intend to propose improvements to the
model by adding georeferenced data from open maps, such
as OpenStreetMap4, and implementing parallel processing
techniques on GPUs (Graphics Processing Units).
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