
Games by End-Users: Analyzing Development
Environments

Joana Gabriela Ribeiro de Souza
Department of Computer Science

Universidade Federal de Minas Gerais
Belo Horizonte, Brazil

joana.souza@dcc.ufmg.br

Raquel Oliveira Prates
Department of Computer Science

Universidade Federal de Minas Gerais
Belo Horizonte, Brazil

rprates@dcc.ufmg.br

Abstract—Digital games are increasingly present in people’s
lives, especially in younger people’s lives. At times, users want to
do more than just play games produced by specialized companies,
but would also like to customize them or create and play their
own games and share them with their friends. Enabling users
with no programming knowledge to develop their games raises
several challenges, that range from game design to technical
aspects. In this paper, our goal was to investigate the following
research question “What strategies and constructs do game engines
use to allow users with no previous knowledge of programming to
create games?”. To do so, we used the Semiotic Inspection Method
to analyze two game engines aimed mainly at this audience
- GDevelop and Stencyl. As a result, we have identified the
main strategies and constructs used in the tools to support game
programming by end-users.

Index Terms—end-user programming, games, scientific SIM

I. INTRODUCTION

Currently, there is a movement to introduce more and more
computing into people’s lives, making it possible for more
people to have access and use its methods and techniques. Be-
sides the use of computing being more present in professional
spaces, its use for entertainment and leisure purposes is also
growing [1]. Movements such as do-it-yourself are changing
the users’ profile from just content consumers to producers as
well, thus empowering them [1].

Among the various uses of digital devices, games are
present in the lives of many people, especially young people
[2], games can be used in different platforms such as consoles,
computers, and mobile devices and have several different
genres such as shooting games, strategy, and others. Besides
their use for entertainment and leisure, they are also used in
different contexts such as serious games [3], which are games
that have goals beyond entertainment, such as games aimed at
educational purposes, health, or training simulations [4]. Thus,
empowering people who are not game developers to act as
creators and not just consumers is something that has emerged
and is fostering the development of several game engines
(software that brings together common tools and utilities for
game creation) aimed specifically at this audience [5].

There are several challenges in end-user game development,
ranging from game design to technical challenges such as
implementing logic, physics concepts, etc. In this paper, we
use “end-user” to refer to users interested in game development

but who have no knowledge of programming languages. It is
important to note that game development itself is challenging,
even for professionals [6]. Therefore, understanding the key
concepts and abstractions that end-users need to comprehend
when designing a game is essential to building game engines
that will assist them in this task. Therefore, defining how these
concepts and abstractions are presented is a critical factor in
improving the tools.

Analyzing game engines by looking at what types of games,
strategies, and constructs are used by their developers is one
way to understand what means are provided to end-users to
develop their game and how. This understanding is important
not only to support the evaluation of these tools but also to
reflect on whether and how they can be improved and made
easier to use by end-users. In the literature, most evaluations of
game engines focus on their use by developers, with exceptions
of some works that evaluate tools for non-programmers, but
focus mainly on their usability and performance [7] [8] [9],
or even characterizing game engines based on guidelines [5],
without an analysis of what constructs and strategies are used
to support the end-user.

In this paper, our goal is to answer the following question:
“What strategies and constructs do game engines use to allow
users with no previous knowledge of programming to create
games?”. To achieve this goal, we conducted a systematic
analysis using the Semiotic Inspection Method (SIM) [10] of
two game engines - GDevelop and Stencyl. As a result, we
have identified and listed the key strategies and constructs used
in the tools to support game creation by end-users. Our results
contribute to the research and the design and development of
environments for end-user game creation. They can also be
helpful to those interested in using an environment to help
them compare or choose between different systems.

The organization of this paper is as follows. Section II
presents the related work. Next, we introduce the Semiotic
Inspection Method. In section IV, we show the methodology
used in this work detailing the choice of the tools evaluated and
the preparatory steps and the application of SIM. In section
V we describe and present the results of our analysis for each
system. Then we discuss the key constructs and strategies
used to support the end-user in building games and finally,
the conclusions and future works.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



II. RELATED WORK

In this research, our focus was on identifying constructs
(or primary elements) necessary in a design environment to
allow an end-user to create a game and strategies that could
support them in their activity. Thus, in our literature review,
we focused on papers discussing the design and development
of end-user game environments or that presented an analysis
or evaluation of such systems.

Several works have performed an analysis or evaluation of
game engines, including those that support the development
of serious games [11] [9]. In their study [9] points out that
the most used engines are the ones aimed at creating games
of pure entertainment. In the context of serious games, [12]
presents a framework to help users choose the best game
engine according to their needs. On the other hand, [13] uses
[12] as a basis to develop another framework to help users in
the same task but for the creation of games of any nature.

Regarding papers that evaluate games engines, some of them
focus on the evaluation by end-users and others by developers.
In [14], authors conducted a user evaluation of four game-
engines analyzing aspects related to graphic quality, lights,
and shadows, among other features for the use of these tools
by architects. According to the literature, Unity 3D is one of
the most complete game engines used by developers, so some
evaluations were performed analyzing different aspects of the
tool, such as usability [15] and performance [8].

In respect to the development of game engines, in [16] a
mobile game engine was developed and tested. In preparation
for the project, the authors compared the main mobile features
in four popular game engines. As part of their study, they
analyzed the most popular features available in these games
engines and considered them as representative of the users’
needs. Based on this analysis, they discussed the challenges
in including these features in a mobile game engine. The
tool developed was not aimed at end-users. Nonetheless, it is
related to our work, as they used the analysis of existing tools
to identify what designers of these tools considered relevant
to users.

In [5], the author’s paper proposes an analysis of differ-
ent features of visual Integrated Development Environments
(IDEs) aimed at non-programmers. They selected 25 visual
IDEs from various domains and classified them according to
a set of features described by a feature model to determine
their usability and suitability. In the model, each IDE was
described in terms of the features: Language, Workspace,
Integration, Human Interface, and Audience, each of these
features represented by a number of other (structured) features.
As a result, they presented a summarized analysis of how
each IDE was characterized through the feature model and
an overall description of the IDE. Although the authors have
characterized the IDEs according to a detailed feature model,
their analysis has not included the main aspects that are the
focus of our work - primary game elements offered as part of
the visual language to users, and strategies regarding how to
create the game.

There are several guidelines with suggestions of aspects
that designers should consider when creating development
environments for end-users and guidelines for end-users to
get started in development environments designed for them. In
[17], the authors propose four guidelines aimed at making it
easier for end-users to understand code in different contexts.
On the other hand, [1] and [18] propose guidelines for de-
signers of end-user developing environments. In [1], the seven
guidelines proposed should be taken into consideration for
the development of novice programming environments using
natural language and new languages. In [18], authors present
thirteen design guidelines to support the design of generic
(i.e. not focused on a specific domain) end-user development
engines. These guidelines describe general considerations that
should be taken into account but do not focus on the specific
constructs offered to the end-user. Some examples of proposed
guidelines are: provide interactions to fully navigate the code,
help users use poorly constructed code [17], clearly distinguish
‘code’ from free-text, make the underlying structure visible to
avoid errors of omission or commission [1], make syntactic
errors hard and facilitate decomposable test units [18]. In
a different direction, [19] proposes a model for a visual
programming space that allows for the development of systems
using visual programming. Although the model could be used
to create other visual programming environments, it is not
specific to games.

Besides guidelines and models, other suggestions for im-
proving game engines follow different directions. In [20],
authors did a study, and defined requirements to enhance
game engines by focusing on affective aspects such as facial
expressions and the way the character expresses feelings. They
determine that the four main functionalities for an affective
game engine are: recognition of user emotion, expression of
emotions, representation of player’s emotion, and modeling of
emotions within the game characters. These recommendations
are targeted at professional game developers.

In summary, although we have identified works that evaluate
game-engines or discuss their development, we have not
found any work that analyze, propose or discuss constructs
or strategies for these tools even in the context of serious
game development by end-users. In the articles focused on
evaluation, their analysis is mainly based on the tool’s usability
or performance. The ones that discussed development, focused
on general guidelines to support end-users’ understanding of
code. Thus, by identifying the main constructs and strategies
used for end-user programming of games, this work con-
tributes to the current state-of-the art of the field.

III. SEMIOTIC INSPECTION METHOD (SIM)

Semiotic Engineering theory [22] is a Human-Computer
Interaction theory, which perceives the interface of a system
as an indirect, one-way communication from the system’s
designer to its users. The interface conveys to users the
designers’ understanding of whom the system is intended
for, what goals the users want or need to achieve, and how
to interact with the system to achieve them. The message

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



conveyed can be paraphrased through the metacommunication
template:

“Here is my understanding of who you are, what
I’ve learned you want or need to do, in which
preferred ways, and why. This is the system that I
have therefore designed for you, and this is the way
you can or should use it to fulfill a range of purposes
that fall within this vision.”

In this context, the quality of the system is associated
with its communicability [23], i.e. how well the system can
convey to its users its underlying design intent and interactive
principles.

The Semiotic Inspection Method (SIM) [21] [10] is a quali-
tative, interpretive method for evaluating the communicability
of interactive systems, based on Semiotic Engineering. This
method has five distinct steps. Initially, there is a preparation
step, in which the purpose of the inspection is defined, an
informal inspection of the system is performed, and the focus
of the evaluation and the evaluation scenario are defined. The
next three steps of the method consist of a deconstructed
analysis of the design message by separately examining how
it is transmitted by the three classes of signs: metalinguistic,
static, and dynamic. The metalinguistic signs explain other
signs in the systems interface (e.g. tooltips, help). Static signs
represent the state of the system (e.g., button, menu option).
Dynamic signs represent system behavior triggered by user
interaction (opening a modal window after a button click).
The last two steps of SIM consist of reconstructing the design
message by contrasting, integrating, and interpreting the data
collected in the analysis of each class of sign.

Differently from the technical application that seeks to eval-
uate and improve a system’s communicability, the scientific
application of SIM aims to answer a research question [10].
The difference in the method applied in the scientific context
is mainly in the analysis focused on the why and how of
the use of signs within the evaluated system. In addition,
endogenous and or exogenous validation are indicated as a
way of triangulation of the results. Endogenous triangulation
is performed concerning different aspects of the same system
or systems in the same domain. When there is a triangulation
between systems from different domains, it is considered
exogenous.

IV. METHODOLOGY

In this work, we have applied the scientific version of SIM,
as it is a method that allows for a systematic analysis of
the system examined. In our case, we selected two different
game engines that would allow us to analyze and perform
an endogenous triangulation of the results to answer our
research question regarding the constructs needed for end-
users to create games and the strategies to support them. Next,
we describe our process to select the two game engines and
describe how we conducted the application of SIM.

A. Selecting the Game Engines

The first step we took to select the game engines that could
be useful to our proposed analysis was to conduct an internet
search for game engines that allow end-users to create games.
As a result, an initial list of systems indicated in different
rankings of game creation environment was generated. Next,
we classified each of the game engines found, using 14 criteria
that were defined based on aspects expected in modern game
engines [9]: (i) no code needed; (ii) free; (iii) 2D game
creation; (iv) quality assurance; (v) allows game designing;
(vi) allows physics simulation; (vii) player management; (viii)
characters and animation creation; (ix) 3D game creation;
(x) multi-player network; (xi) exportation for mobile; (xii)
exportation for Web; and (xiii) exportation for Desktop; (xiv)
allows script-code. If the tools were not free (criteria ii),
we checked if they had a free version available and only
considered those that did.

As a result, we identified nine game engines that satisfied at
least half of the selection criteria, namely: Coppercube1, Game
maker2, Game Salad3, GDevelop4, Godot docs5, NeoAxis
Engine6, Stencyl7, Unity8, and Unreal Engine9. As none of
the tools met all the selection criteria, we selected the tools
that had the main features that we considered more useful
for beginners. For example, for a beginner having a 2D game
creation feature (criterion iii) was considered more important
than having a 3D game creation (criterion ix), as it would
be easier to start with 2D development since the insertion of
3D elements can be a very challenging task that may require
several tools for its creation and animation [24]. Including
a multiplayer network (criterion x) was also not considered
essential for beginners.

We then selected Gdevelop and Stencyl, as they met al-
most all the criteria, except for the possibility to create
3D games (criterion iii) and, in Stencyl, create multiplayer
network games (criterion x). Although Unity and Unreal are
the most popular for both serious and pure entertainment
game development, they require users to have programming
knowledge, so we opted for the other two. Furthermore, both
Gdevelop and Stencyl have good documentation, tutorials for
beginners, an active community, a large number of users,
and an updated platform. Both tools have several games on
itch.io10 (an open marketplace for independent digital creators
with a focus on independent video games) and in other game
stores. For instance, the “Vai Juliette!” game developed at
GDevelop, available in App Store and Google Play, has over
1 million downloads.

1https://www.ambiera.com/coppercube/index.html
2https://www.yoyogames.com/pt-BR/gamemaker
3https://gamesalad.com
4https://gdevelop-app.com
5https://docs.godotengine.org/en/stable/index.html
6https://www.neoaxis.com
7http://www.stencyl.com
8https://unity.com/products
9https://www.unrealengine.com/en-US/
10https://itch.io

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



B. Semiotic Inspection Method Application

The scientific version of SIM was applied to analyze the
game engines Gdevelop and Stencyl. The inspection was con-
ducted between May and June 2021 by a researcher with expe-
rience in applying SIM and supervised by a senior researcher
expert in HCI and SIM. According to [10], one inspector
is enough to generate an analysis of possible interpretative
paths and encoded meanings of an interactive system. In
our work, an inspector performed a detailed analysis, and it
was consolidated through a discussion with the same senior
researcher, by analyzing the inspected signs (or evidences) that
supported the interpretations. In addition, each system was
inspected separately, and only then the contrast between them
and the triangulation of the results generated in each analysis
conducted.

As preparation for applying the method, we defined the
purpose of the inspection, performed the informal inspection,
defined the scope and focus of the evaluation, and defined
the application scenario. The goal of the inspection was to
answer the following research question: What strategies and
constructs do game engines use to allow users with no pre-
vious knowledge of programming to create games? Thus, the
inspection aimed to identify the encoded meanings regarding
the available constructs, what interpretations they trigger, and
how these interpretations relate to the semantics of the system.

During the informal inspection of the tools’ sites, we
observed that support materials are available for users, such as
documentation, forums, tutorials, galleries with games devel-
oped on the game engines, and extensions that can be added.
The game engine Gdevelop on its website and platform has
multilingual environments (for the interface and the code of
the generated game). We also did an informal inspection of
the game engines focusing on menus, tooltips, instructions,
visuals aspects, and how the tools work.

To define the scope of the analysis, we observed that both
game engines provide several features and allow the creation of
several types of games. We chose to inspect the game engines
using the steps for creating games described in the tutorials
for beginners. The tutorials selected for the evaluation of each
game engine have common aspects such as a user-controlled
character that will move horizontally left and right according
to the player’s command, actions after collisions, and the
concept of life that runs out after collisions. In addition, we
evaluated the menus and options available in the engines and
their websites.

In general, games are more used by children, teenagers,
and young adults [2] [25]. Thus, as game engines facilitate the
creation of games, without programming languages, this public
can become even more interested in this subject. On the game
engines’ websites, they offer support for their use in education
with the use of the platform for students from schools to
universities. So the stakeholder chosen for the creation of the
scenario is a teenager who wants to create her first game using
one of the tutorials made available by the platforms.

For this evaluation, we used the same scenario for both

game engines: “Maria is 16 years old and likes computer
games. She wants to learn how to create games because she
is interested in this area. She does not have any programming
knowledge, but a friend told her that with the Gdevelop/Stencyl
tool, she would be able to create different kinds of games
without the need to know any programming languages. She
then downloads the tool and decides to follow a tutorial that
exists on the platform’s website to try to create her own games,
play them and even share them with friends.”

V. RESULTS OF THE SIM ANALYSIS

In this section, we present the results of applying SIM to
Gdevelop 5 and Stencyl 4.0.4 systems. We downloaded the
programs in the desktop version for Windows 10. For each
program, we present a brief overall description and consoli-
dated metamessage (i.e. the message conveyed by designers to
the users through the interface) generated from the analysis.

A. Gdevelop

Gdevelop presents itself as a free, fast, open-source, and
easy to use the tool. With this tool, it is possible to create
different kinds of games (e.g. platform, puzzle, strategy, among
others) intuitively, without the necessity to use any program-
ming languages. It allows publishing games in multiple plat-
forms; exporting can be done in one click. Gdevelop provides
visual editors, Javascript language, and tutorials created by its
team. Figure 1 shows the system’s interface.

Fig. 1. GDevelop’s interface

For this analysis, we followed the “Geometry Monster”
tutorial on the platform’s website, in which we created a
monster that can move left and right (horizontally) according
to the player’s keypress or mouse touch. The monster must
capture geometric shapes that fall from the top of the screen,
and when it collides with one of them, the player scores a
point. But if the monster collides with a bomb, the player
loses a life and does not score points, if it collides with a total
of 3 bombs the game is over.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



B. Gdevelop’s consolidated metamessage

In this subsection, we present the reconstructed metames-
sage from the GDevelop inspection, following the meta-
communication template used in Semiotic Engineering (pg 3).

Who you are: You are fluent in English, or in one of the
more than 40 languages in which the platform is translated
(even if only partially). You are interested in creating games
for professional purposes or as a hobby, with no prior pro-
gramming knowledge required. You use one of the operational
systems: Windows, Mac OS, or Linux, and you have access to
the internet to download the tool or use its online version. You
are interested in using tutorials and examples to learn how to
create and publish your games. You want to play your games
and export them to various platforms, and you are interested
in playing games created by others.

What you want or wish to do: You want to use a tool for
creating games without knowing or having to learn a program-
ming language, and preferably accessible in your language.
You want to have access to the platform’s social networks
through which you will have access to the community and
access to games produced on the platform. You want to publish
your games in several formats such as web, mobile, and
desktop, having the opportunity to use one of the operating
systems: Windows, Linux, and Mac OS. You want to start
building a game either from scratch by following the steps
of a tutorial or opening a pre-existing project. You want to
set up the environment in which the game takes place (e.g.
dimensions of the scene), as well as define different elements
within the game (e.g. characters and objects) their behaviors
and events that take place. Once you have created your game,
you want to test it. In addition, you want to manage your
games by viewing, for example, the analytical data of game
access, game details, and its monetization.

Ways in which you can or should use the system: To
start a new game, you can either create a new (empty) project
or click on the “start with tutorials” option to start a game
based on one of the available tutorials. You can also open an
existing project you have been working on. If you have any
questions, you can click on the “help and documentation” or
on the “community forums” buttons. Also, in several features
of the system, there is a contextual “help” button that explains
the possibilities at that point. You can use the platform’s
social networks to access more information about games and
the community or share knowledge. Via the fixed menu you
can select one of the following options: project management,
export, run or debug the game.

By opening the project management option, you access
several elements to manage, such as scenes (which can be
considered the levels or the environment in which the game
takes place), “external events”, “external layouts” and “func-
tions/behaviors”. When you click on an existing scene, the
system will open two tabs “scene name” and “scene name
(events)”. In the first tab, you can add objects that can be, for
example, characters, text, visual effects, among others. In this
tab, you can edit properties, add or remove objects or groups

objects from the scene, edit layers and use tools that make it
easier to build the scene. Adding objects to a scene is done via
drag and drop by placing the object in the desired position,
and you can make adjustments using the mouse or by updating
the x and y coordinates in the side configuration window. In
a second tab, you can manage the events of that scene.

The system allows you to create objects by clicking on “Add
a new object” and selecting the desired type. You can assign
properties and behaviors to objects using the point-and-click
strategy. Objects created in the scene belong to that scene
only. It is possible to assign behaviors and functions to each
object. To do so, you must have created the behaviors and
functions or have acquired them from the platform’s library of
extensions. Extensions allow new behaviors for your game’s
objects, actions, conditions, or expressions ready to be used
in events. For example, by assigning the “health” behavior
to a monster, you can define the number of lives available
to that character through the function “IsDead”. Groups of
objects can be created through the contextual menu option of
a scene, allowing you to create a group from a set of selected
objects within that scene. It is then possible to assign events
and behaviors to the group, which will be applied to all the
objects in that group at the same time.

You can also create and configure events by going to the
“scene name events” tab. Events and behaviors are the main
elements that define the logic of how the game works. Events
are created as a list of actions and interpreted by the platform
in cascade (from top to bottom). So in this space, you can
create and edit events and sub-events (dependent on the parent
events) through a few clicks. Creating an event, you can insert
conditions to define when this event takes place. You must
select the action(s) to be performed when an event occurs and
its effects on objects or the environment. You can also include
comments with information to help document your game.

To test the game, you should access options on the fixed
menu. You should click on the “play” icon to run your game.
You can also click on the “bug” icon and select the option to
use the debugger and the performance profiler to find possible
problems and optimize your game. The menu option to test
the game over a network provides a link that can be used for
a device on the same network to access and run the prototype.

In case you have created a free account, GDevelop also
allows you to access your profile via the “file” menu option. In
this case, you will have access to your games panel, in which
you can see and access the games you have created, as well
as analytic data from players, registration, and monetization
details for a given game.

C. Stencyl

Stencyl presents itself as a tool for creating games quickly,
easily, and without the necessity to use code. The platform’s
website says that the user can create a game design for
different platforms with an intuitive toolset that accelerates
the workflow and then gets out of the way. It also informs
that there is no need to use code because it provides a drag
and drop interface, but that it is possible, if the user wishes to.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



Stencyl allows the creation of worlds and actors and also the
possibility to monetize games. The system is free to download,
but the game can only be exported for free to the web format;
other formats (e.g. desktop or mobile) require the purchase of
a subscription. Figure 2 depicts the system’s interface.

Fig. 2. Stencyl’s interface

For this analysis, we followed the tutorial “Crash Course
2” that teaches how to create a “Space Invaders”-type game
available on Stencyl’s website. Thus, we created a game, in
which a spaceship (i.e. the player’s character) moves horizon-
tally, fires bullets upwards as the key “q” is pressed. At the top
of the screen, there are static enemy ships that are destroyed
when they collide with a total of 3 bullets. Users win the game
when they destroy all the enemy ships.

D. Stencyl’s consolidated metamessage

In this subsection, we present the reconstructed metames-
sage from the Stencyl inspection, following the meta-
communication template used in Semiotic Engineering.

Who you are: You are fluent in English, you have internet
access to download the tool, and are interested in creating
games with or without the use of a programming language.
You are interested in creating an account so that you can
create and publish your games. You are also interested in
tutorials, examples, and documentation to learn how to create
games, their elements and to test them. You are interested in
publishing and playing your games, and exporting them to
various platforms. You use the Windows, Mac OS, or Linux
operational systems.

What you want or need to do: You want to use a tool
in English to create games without the necessity to know
programming languages, using one of the operational systems:
Windows, Mac OS, or Linux. You want to create an account
to be able to create and publish your games.

You want to create a new game from scratch using tutorials,
or work on an existing project. In addition to the tutorials,
you may want to get help in the “getting started” or “about”
sections, or learn more from “Stencylpedia” (a Stencyl help
center). To create a game, you want to create characters/actors

and define aspects as appearance, how they behave, how they
move within the scenario, and events that happen in the game
and impact them, among other things. As for the scenario,
you want to define the background scenes to use, sounds, texts,
how physics forces act, among other aspects. You want to save
games, import content, access settings, debug and test games
in one of the possible formats. In addition, you want to play
your games that can be exported to different platforms and
you want to play games created by other people.

Ways in which you can or should use the system: You
must download the tool and create an account to be able to
create and publish your games. When you open the program,
you must select one of the following options to start: sample
games, choose one of the existing projects, or create a blank
one. You can use tutorials and examples to learn how to
develop games by clicking on the option in the bottom bar.

After you start creating a game, you can create different
types of resources. When an actor is created through the
“actor types” resource it has five distinct aspects associated
with it. These aspects are present in different clickable tabs:
appearance (image that represents it, dimensions, the visual
part of the actor), behavior (behaviors applied to it), events
(events that relate to the actor), collision (configuration of what
happens in case of a collision with others game elements),
physics (can define aspects such if it is affected by gravity)
and properties (such as name and description). You can select
images for the game background by clicking on its settings and
their properties. The same behavior works for resources such
as fonts and tilesets (sets of small regular-shaped images used
to construct the game world or level map). You should click on
scenes to create and manage scenes, that are the game’s sce-
narios. You should navigate through the scene’s context menu
options to define visual aspects of the scene, such as element
placement and background, manage behaviors, manage events,
define physics aspects (gravity), atlases (resource categories),
and properties. You can click on “sounds”, set their properties,
and import sound files into the game.

To add logic elements such as actor and scene behav-
iors, you must click on actor/scene behavior and create new
behavior. You can use block programming or insert logic
directly via a scripting language by clicking on code and
using the scripting language Haxe. You can add resource packs
(ready-made resource packages, such as actors and behaviors)
via “StencylForce” and “create new”, and extensions via the
“settings” menu option. You can download new extensions
from the Stencyl community (e.g features such as behaviors,
functions, and others). After being downloaded, the elements
added to the project are listed under the appropriate category
in the dashboard tab.

To add logic to the game environment the system uses
events and behaviors. You must use block language to create
both. It can be done by dragging the blocks to the area
where the code blocks are placed, snapping the pieces together
to form functions. You can also use menu options to help
create the conditions. You can use menu options to use
existing behaviors, but not for events, which are exclusive to

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



a particular actor or scene.
You can interact with the main menu that facilitates access

to frequently used functionalities. It permits the creation of
any resource through the “create new” option, save the game
with one click, import resources, access documentation (Sten-
cylpedia), among others. To test the game, you must select
the platform you want to simulate it in and then click “test
game”. In the test context, you can click on “log viewer” to
access the execution log of your game.

In addition, you should access the publish option on the
top menu to export your game to the desired platform. It is
worth noting that with the free license, it is only possible
to export a game to the Stencyl community and web. To
export it to HTML5, it is necessary to download the Java
JDK that requires the installation of export features. Exporting
to Flash is not possible because the technology is currently
unavailable11. With the Chrome Web Store option (Google’s
online store for web applications), Google requires you to pay
a fee to add your game.

“StencylForge” is a game repository that contains resources
and media for building games in Stencyl. You can use it to
get material to build your games, providing content that is
already ready and available. To play other players’ games,
you should access the Stencyl’s site and access the menu
option “#madeinstencyl” or through “StencylForge” in the
game engine, and then choose an available game.

VI. CONSTRUCTS AND STRATEGIES

The game engines GDevelop and Stencyl have the same
general goal, allow people with no programming knowledge
to develop games. Nonetheless, as can be seen in the metames-
sages presented, they offer different solutions to support users
in achieving this goal. Despite the differences, based on our
analysis, we have considered both systems to be end-user
development (EUD) tools, as they both include steps related
to the whole life cycle of software development [26].

To respond to our research question, after analyzing the
solution proposed by each engine, we performed an endoge-
nous (as both systems share the same domain) triangulation
focusing on what are the primary elements included in the
systems to support end-users in creating games. As a result,
we have identified features in common that are present in
both systems to support end-users activities in developing
a game. We have organized the features in (i) constructs -
primary game elements available to end-users to create a game;
(ii) strategies - support offered by the EUD environment to
support general development activities. Next, we present these
constructs and strategies identified.

A. Constructs for game creation

In this subsection, we present the basic constructs identified
in the environments necessary for creating a game. For each
construct, we present its definition and explain how it is
represented in each system - GDevelop and Stencyl.

11https://www.adobe.com/br/products/flashplayer/end-of-life.html

Scenes: Scenes can be defined as the environment in which
the game takes place, for example, a world or a level. Thus,
a game can have only one scene or several scenes. In both
systems, this construct is called scene, and a game may contain
one or more scenes. In GDevelop, users create a scene and
then describe the objects that compose it (their dimensions on
the screen, width, height, insertion of characters). In Stencyl,
scenes are considered a resource that can be inserted in the
game, so a game can have several scenes. In the scene editing
space, it is possible to include several different elements and
use editing tools. In this case, Stencyl is more robust in the
scene construction, providing more resources to the user.

Game elements: Basic elements that can be added to a
game scene, such as characters and texts within the scene.
Although both tools include a set of elements, they are
presented differently in each system. GDevelop presents the
abstract concept of “object” that represents the different game
elements available. Whereas, in Stencyl, game elements are
considered resources. In GDevelop, every element added to a
scene is an object, and it can be a character, text, effect, video,
others. Each type of object has its peculiarities and can have
different behaviors associated with them. For example, in the
tutorial, the monster (a sprite object) had the “health” behavior
applied to it, allowing us to add to it a maximum number of
health/lives at the start of the game, and the number of lives is
a function present in this behavior or the “shape explosion” a
particles emitter object that adds a visual effect to the shapes.
In Stencyl, we can understand game elements as resources that
can be added to the game. So you can insert “actor types”,
“fonts”, “sounds”, and other resources that compose the game.
The use of this feature can help users to think of the game
as a collection of small parts with different behaviors and
functionalities, which can be considered positive.

Groups: A group can be seen as an element that groups
several other elements that will be treated as a single object
under some user-defined aspect. In GDevelop, this construct
is used to group objects so that all objects in the group
can assume the same behavior or be impacted by the same
events. There is some emphasis on this construct because
there is an option in the scene menu that lists all the object
groups, and it is possible to configure them directly. In Stencyl,
groups are collections of actors and are specially used to deal
with collisions. In this case, collisions are configured between
groups of actors.

Events: Events can be seen as occurrences that take place in
the game that can trigger any action or feedback in elements
or scenes. So they are used to introduce logic into games.
Events convey the idea of cause and effect, something usually
clearly understood by end-users, which facilitates the use of
this metaphor, e. g. when a bullet collides with a character
it takes damage. In both platforms, an event is associated
with a specific scene (or actor, in the case of Stencyl). In
GDevelop, there is a separation in two columns in the event
tab. In the first column, the user can add a condition (it is not
mandatory), and in the second column, the user can choose
the action to be performed. To choose conditions and actions,

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



the user navigates through the menus and selects among the
available options. It is possible to define several settings and
create events using pre-determined functions or direct value
definitions. In GDevelop, it is also possible to create sub-
events, these events that exist within other events, only run
when the conditions for the parent event are true or the actions
of the parent event have been processed. In Stencyl, event
creation uses block programming. The tool provides a menu
with 15 block categories, such as flow, actors, scenes, images,
among others. Each category contains a set of commands
(blocks) available. One of the categories is custom, which
allows the user to create a new block for specific functionality.
Comparing the systems, we can see that Stencyl gives the user
more freedom to create events. On the other hand, GDevelop
is easier to use when users do not know how to use block
programming.

Behaviors: Behaviors add meaningful functionality to ob-
jects, scenes, and actors. Features such as allowing the player
to move a character with the arrow keys. Once the user defines
a behavior, it is available for reuse by other elements (e.g.
actors) of the game (which is not the case of events). In
GDevelop, besides being able to create new behaviors, users
can access the behavior search option and choose from a series
of options to fulfill the most varied needs. The creation of
behaviors is somewhat similar to events, but it involves more
steps and elements and tends to be a task for more advanced
users because it requires more knowledge about logic (e.g.
creating functions), but it is not necessary to use code. In
Stencyl, it is similar to creating events in the platform as it also
requires using block programming, with the same structure of
categories of blocks. Differently from events, for behaviors
there is a tab to view the generated code in the scripting
language. The addition of this tab facilitating the viewing of
the generated code can be seen as a way for the designer to
encourage the user to try to learn the script language, or at
least a way to allow for an association between block and
script languages, in case the user is interested.

Collision: The concept of collision represents the definition
of an action that should take place when two game elements
(objects/actors/characters) collide. This concept is helpful for
many games. For instance, in a shooting game, if the character
shoots at an enemy, if the bullet hits (collides) with the enemy,
it will trigger an action in which it will cause damage to
the enemy (e.g. lose a life). This construct is present in both
systems. In GDevelop, when navigating through the menus
for creating events, you have to find the collision option, add
this parameter, and set it up. In Stencyl, the functionality has
greater prominence because it has a specific tab. All actors in
the game have a collision tab associated to them. However, the
default is that nothing happens when there is a collision. Thus,
when users want to define the effects of a collision, they have
to define groups of elements and then configure what happens
to each of the groups in case of a collision between them. For
that, they must use the constructs events or behaviors.

Physics: The use of elements related to physics, like force
and gravity, is something commonly used in games, and the

tools also provide this support to users, allowing them to define
the presence (or not) of gravity, the direction of forces, speed,
and others. In GDevelop, this can be done when creating an
event, so when determining the action, you must select an
object and assign a force to it, this is achieved by navigating
the menu system. Stencyl has a specific tab associated with
actors and scenes to define whether physical forces will be
applied (or not) to these resources that can be configured
through option selection and value assignment.

B. Development environment support strategies

In this subsection, we present the strategies that we have
identified in game engines as support to users’ overall
development activities. For each strategy, we present its
definition, and explain how it is represented in each system -
GDevelop and Stencyl.

Adopting a familiar interacting style: Both engines adopt
a drag-and-drop interacting style (i.e. technique that consists
of dragging and positioning elements on the screen using the
mouse). It is a well-known interaction style that users are
usually familiar with12, as it is used in operational systems,
games, and other systems. Users can use the drag-and-drop
technique in both the logic and design parts of the game. In
GDevelop, this technique is used mainly in scene construction
in which the user can drag objects to compose them, and events
can be dragged up and down in the programming frame to
determine their order of execution. In Stencyl, the technique
is used in scene construction by positioning characters and
tiles (small regular-shaped images used to construct the game
world or level map) within scenes and in block programming,
where the user must drag the blocks to the frame where the
code is.

Defining inherent modularity: The game engines organize
the games in constructs that compose a whole. Thus, they
build in modularity, which is considered a good programming
practice [27]. In GDevelop, the game is composed of scenes.
In each scene, users insert objects (i.e animations, characters,
elements of scene composition) and the events and behaviors
associated with the scenes or its objects. In Stencyl, the
modularization is even greater. Firstly, it separates resources
and logic in the dashboard. Then resources are also organized
into categories that facilitate the users’ understanding of how
to deal with each type of resource. Scenes and actors are
the most complex elements, and in them, there is a clear
division via tabs of visual aspects, events, behaviors, physics,
and others. The modularization as done in Stencyl can be more
flexible than in GDevelop because users can configure an actor
and use it in several scenes, whereas in GDevelop, this is not
possible because a character is an object associated with a
specific scene.

Providing extensive help: The tools provide easy access to
documentation, forums, tutorials, and social media. Help ele-
ments are always clearly available in the interfaces, either via

12Drag–and–Drop: How to Design for Ease of Use, available in
https://www.nngroup.com/articles/drag-drop/

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



tooltips or help systems. It shows an expectation that the user
is supported by the tool and the community in case of doubts
and problems, which is a desired characteristic for this type of
system. GDevelop offers help in many parts of the system and
translation of the platform and portions of the site into other
languages. For some languages (e.g. Portuguese, French and
Spanish), GDevelop is almost completely translated. Stencyl
focuses more on help in menus like “help” and “Stencylpedia”,
and Stencyl only uses English as a language.

Facilitating testing and debugging: Both systems allow
games to be tested at any time using a single click. It makes
it easier for the users to see if they have achieved the desired
effects. Additionally, in both cases, there are tools to support
the debugging process. GDevelop presents a more complete
tool in this sense, offering several debugging options such as
debugger and performance profiler, while Stencyl presents the
execution log of the game in execution. Information about
debugging options can be found in the documentation of both
tools.

Exporting games: The tools allow games to be exported
easily by selecting the format and then exporting, which takes
one or at most a few clicks. GDevelop allows exporting to
mobile, web, Windows, Mac OS, Linux, and Facebook, using
only mouse interaction. The free version of Stencyl allows
exporting only to the web.

Supporting advanced users: Both systems include the
possibility of their use by more advanced users (or even
professionals) by offering users the possibility to use a Script
Language in the process of creating a game. In GDevelop,
users can create an event or behavior and insert JavaScript
code into it. It is interesting that in GDevelop’s, tutorials there
is an encouragement to use comments in the programming,
which is considered good programming practice [27], this
helps users to remember what they have done at a future
time when they review their events and behaviors. In Stencyl,
a scripting language called Haxe is used. As they say, it is
similar to ActionScript and JavaScript. Stencyl encourages the
use of the scripting language, as it is available in the platform’s
dashboard, and it is possible to see the code generated when
building events and behaviors. In both systems, users can cre-
ate their games through the visual interface or by using script
language. Thus, the script language can also be perceived as
an “invitation” to an interested end-user to take a look and
even learn the script language and eventually advance their
programming knowledge.

VII. DISCUSSION

In our analysis, we have inspected two games engines
that support end-users creating games without programming
skills. According to Semiotic Engineering theory [22], the
solution proposed by designers of these systems is conveyed
to users through the system itself. By comparing the resulting
metamessage for each of the systems, it is noticeable that they
present different solutions to support end-users in their goal
to develop a game.

GDevelop creates a more abstract level over the program-
ming concepts and presents to users most of the decisions
on game logic as a cause-consequence definition, with the
possibility to include conditions. The system makes extensive
use of metalinguistic and static signs making the options
for creating and configuring events and behaviors clearer by
having explicative elements and intuitive names throughout the
interface. Thus, beginners who want to create their games can
do so through configurable menu options. Nonetheless, users
with experience in scripting languages can also use JavaScript
in their game creation process if they would like to. The idea
of using objects can be seen as a good metaphor for adding
elements to games. However, the impossibility to reuse the
same object in different scenes can generate re-work in a game
with several levels.

Stencyl addresses more directly the concepts of program-
ming in their interface to users. For instance, it organizes
the game creation in resources and logic, and game design is
through block programming. Block programming gives users
greater freedom to use creativity using blocks of various
categories and possibilities to create new customized blocks.
The scripting language Haxe, specific to Stencyl, appears more
noticeably on the dashboard, beyond the possibility to look
at the code after generating some function using the blocks,
which may encourage users to create familiarity with it or
even learn it. Stencyl inspires the reuse of game elements,
allowing the reuse of actors in several scenes, and accessing
game elements in the repository in Stencylpedia (free access).
The scene editor allows defining scenarios in more detail than
in GDevelop.

Comparing the overall solution offered by Stencyl and
GDevelop, we can see that Stencyl allows users a broader
design space to create their games, but at the cost of learning
more complex structures such as block programming and
the concept of reuse. On the other hand, GDevelop can be
considered an easier tool to use in the first contact with game
development.

The application of SIM analyzing the designer’s metames-
sage allows us not only to notice the difference between the
proposed solutions, but also to identify what the designers
considered relevant in supporting end-users in the development
of their games. As a result, we have identified through our
analysis the constructs offered to users to create their games,
and the strategies to support users in the overall activity of
developing a game in each of the systems. Triangulating the
results of the two systems, we could identify the constructs
and strategies that are common to both systems, despite the
different solutions proposed by each of them. Thus, these
constructs and strategies, which are common to both solutions,
are regarded as relevant to support the end-user development
of games in general.

VIII. CONCLUSIONS AND FUTURE WORKS

This paper analyzed two different game engines, GDevelop
and Stencyl, through the scientific application of SIM. As a
result, we identified a set of helpful (and probably necessary)

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



constructs to support end-user game creation and a set of
strategies to support users in their overall development process.

The set of constructs and strategies identified are an original
contribution of this work that is relevant to people interested
in the research, development, and even adoption of game
engines aimed at supporting end-user development of games.
Researchers can use this set of constructs and strategies to
investigate requirements for end-user game-oriented visual
languages and end-user development environments; as well as
a guide to evaluate or contrast them. Whereas the constructs
are specific to the game domain, the strategies are focused on
supporting end-user development in general and can be applied
to other domains.

For professionals interested in developing new end-user
programming engines, the constructs and strategies can help
them to make decisions regarding the system they intend to
propose and develop. Furthermore, the analysis of GDevelop
and Stencyl can also be helpful as they represent distinct
solutions, or competing systems, to the same goal. The recon-
struction of their metamessage and the discussion comparing
them can be useful in reflecting upon the costs and benefits
of different solutions and decisions. The results can also be
helpful for people who are interested in adopting such systems
(e.g. gamers or educators who would like to create serious
games for their students), as it helps them choose between
GDevelop or Stencyl if they are systems being considered or
even guide their overall analysis of other systems of interest.

The main limitations of our work are the threats to its
validity mainly due to the number of researchers involved in
the inspection and the number of systems examined. Only one
researcher conducted the complete analysis of the systems,
thus the researcher might have overseen aspects that could
also be interesting to our research. This limitation was mini-
mized by presenting and discussing the results with a second
researcher. The inspection of only two systems resulted in an
initial, but relevant set of common constructs and strategies for
our discussion. Nonetheless, it would be interesting, as a future
step to analyze other end-user development game engines to
further consolidate our results, as well as to investigate if other
constructs and strategies emerge.

ACKNOWLEDGMENT

Authors thank CAPES for its partial support to this research.

REFERENCES

[1] J. Good, abd K. Howland, “Programming language, natural language?
Supporting the diverse computational activities of novice programmers”.
Journal of Visual Languages & Computing, 39, pp. 78–92, 2017.

[2] V. J. Rideout, U. G. Foehr, and D. F. Roberts, “Generation m 2: Media
in the lives of 8-to 18-year-olds”. H. J. Kaiser Family Foundation, 2010.

[3] H. Mouaheb, A. Fahli, M. Moussetad, and S. Eljamali, “The serious
game: what educational benefits?”. Procedia-Social and Behavioral
Sciences, 46, pp. 5502–5508, 2012.

[4] J. Alvarez, and D. Djaouti, “An introduction to Serious game Definitions
and concepts”. Serious Games & Simulation for Risks Management,
11(1), pp. 11–15, 2011.

[5] J. M. Rouly, J. D. Orbeck, and E. Syriani, “Usability and suitability
survey of features in visual ides for non-programmers”. In Proceedings
of the 5th Workshop on Evaluation and Usability of Programming
Languages and Tools, pp. 31–42, October 2014.

[6] C. M. Kanode,H. M. Haddad, “Software engineering challenges in game
development”. In 2009 Sixth International Conference on Information
Technology: New Generations, pp. 260–265, April 2009.

[7] P. Mishra, & U. Shrawankar, “Comparison between Famous Game
Engines and Eminent Games”. International Journal of Interactive Mul-
timedia & Artificial Intelligence, 4(1), 2016.

[8] F. Messaoudi, A. Ksentini, G. Simon, and P. Bertin, “Performance analy-
sis of game engines on mobile and fixed devices”. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM),
13(4), pp. 1–28, 2017.

[9] B. Cowan and B Kapralos, “An overview of serious game engines
and frameworks”. Recent Advances in Technologies for Inclusive Well-
Being, pp. 15–38, 2017.

[10] C. S. de Souza, C. F. Leitão, R. O. Prates, S. A. Bim and E. J. da Silva,
“Can inspection methods generate valid new knowledge in HCI? The
case of semiotic inspection”. International Journal of Human-Computer
Studies, 68.1-2: pp. 22–40, 2010.

[11] B. Cowan, and B. Kapralos, “A survey of frameworks and game
engines for serious game development”. In 2014 IEEE 14th International
Conference on Advanced Learning Technologies, 662-664. July 2014.

[12] P. Petridis, I. Dunwell, D. Panzoli,S. Arnab, A. Protopsaltis, M. Hendrix
and S. de Freitas, “Game engines selection framework for high-fidelity
serious applications”. International Journal of Interactive Worlds, p.
Article ID 418638, 2012.

[13] E. Christopoulou and S. Xinogalos, “Overview and Comparative Anal-
ysis of Game Engines for Desktop and Mobile Devices,” International
Journal of Serious Games. Vol. 4, Issue 4, pp. 21–36, Dec. 2017.

[14] T. Koehler, A. Dieckmann, and P. Russell, “An evaluation of con-
temporary game engines”. In 26th eCAADe Conference Proceedings,
Antwerpen (Belgium), pp. 743–750, September 2008.

[15] Ş. Mercan, and P. o. Durdu, “Evaluating the Usability of Unity Game
Engine from Developers’ Perspective”. In 2017 IEEE 11th International
Conference on Application of Information and Communication Tech-
nologies (AICT), pp. 1–5, September 2017.

[16] A. G. Peker and T. Can, “A design goal and design pattern based
approach for development of game engines for mobile platforms”. In
2011 16th International Conference on Computer Games (CGAMES),
pp. 114–120, July 2011.

[17] P. Gross, & C. Kelleher, “Non-programmers identifying functionality in
unfamiliar code: strategies and barriers”. Journal of Visual Languages
& Computing, 21(5), pp. 263–276, 2010.

[18] A. Repenning, & A. Ioannidou, “What makes end-user development
tick? 13 design guidelines”. In End user development. pp. 51–85,
Springer, Dordrecht, 2006.

[19] M. Hirakawa, M. Yoshimi, M. Tanaka, & T. Ichikawa, “A generic model
for constructing visual programming systems”. In 1989 IEEE Workshop
on Visual Languages. pp. 124–125, IEEE Computer Society, Jan. 1989.

[20] E. Hudlicka, “Affective game engines: motivation and requirements”. In
Proceedings of the 4th international conference on foundations of digital
games, pp. 299–306, April 2009.

[21] C. S. de Souza, C. F. Leitão, R. O. Prates and E. J. da Silva,
“The semiotic inspection method”. In: Proceedings of VII Brazilian
symposium on Human factors in computing systems, pp. 148–157, 2006.

[22] C. S. de Souza, “The semiotic engineering of human-computer interac-
tion”. MIT press, 2005.

[23] R. O. Prates, C. S. De Souza & S. D. Barbosa, “Methods and tools: a
method for evaluating the communicability of user interfaces”. Interac-
tions, 7(1), pp. 31–38, 2000.

[24] A. Ioannidou, A. Repenning and D. C. Webb, “AgentCubes: Incremental
3D end-user development”. Journal of Visual Languages & Computing,
20(4), pp. 236–251, 2009.

[25] A. Y. Irmak, and S. Erdogan, “Digital game addiction among adolescents
and young adults: A current overview”. Turkish Journal of Psychiatry,
27(2), 2015.

[26] B. R. Barricelli, F. Cassano, D. Fogli, and A. Piccinno,“ End-user
development, end-user programming and end-user software engineering:
A systematic mapping study”. Journal of Systems and Software, 149,
pp. 101–137, 2019.

[27] I. Sommerville, “Software engineering 9th Edition”. ISBN-10,
137035152, 18, 2011.

[28] C. Kelleher, & R. Pausch, “Lowering the barriers to programming:
A taxonomy of programming environments and languages for novice
programmers”. ACM Computing Surveys (CSUR), 37(2), pp. 83–137,
2005.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021


