
A Tool to Implement Adaptive Audio Techniques
on Unity Games

Miguel F. Rodrigues
DECOM - Departamento de Computação

Centro Federal de Educação Tecnológica de Minas Gerais
Belo Horizonte, Brazil

miguelfeliperod@gmail.com

Flávio R. S. Coutinho
DECOM - Departamento de Computação

Centro Federal de Educação Tecnológica de Minas Gerais
Belo Horizonte, Brazil

fegemo@cefetmg.com.br

Abstract—Developing an effective and simple audio system
that can adapt to in-game events can take time and become
complex, specially to beginner developers that don’t know how
to use adaptive audio techniques. To make this less challenging,
we developed a tool to implement adaptive audio into Unity
games. The Adaptive Audio Manager tool for Unity is an
accessible package that provides classes and methods which
help developers implement a functional audio system in their
games, using two popular adaptive audio techniques: vertical
layering and horizontal re-sequencing. Along with the framework
code, we provide documentation and a Unity prototype project
with examples to keep the learning process on how to use this
framework simple.

Index Terms—adaptive audio, framework, unity

I. INTRODUCTION

Each year, the digital games industry grows more (1)
whether with the participation of large companies or with
independent and small developers. The billionaire industry
of games surpassed even the music and movies business, in
terms of annual revenue (2). Computer, console and mobile
games together formed a large community of fans of elec-
tronic games, both casual and hardcore players, with different
preferences when deciding the type of game they want to
play. In a competitive market like this, such intense growth
of the industry stimulated the development of techniques and
technologies that help to improve the quality of games in order
to attract players by providing the best experience as possible.
Game developers apply such techniques to different aspects of
a game, such as narrative, mechanics, graphics and audio (3).

In the last years, the importance of the soundtrack in the
immersion of players has become clear, which led to the evo-
lution of techniques that enhance the soundtrack’s complexity
and its influence to the player’s experience. For example, audio
can be used to incite different emotions and sensations to
players (4). Pong, released in 1972 by Atari, is recognized
as the first game that included audio in its working formula
(5), being a 2D game with a square to represent the projectile
and two vertical bars to represent the players, which bounce
the ball in opposing directions, simulating a Ping Pong game.
Sound effects are played whenever one of the bars touches
the projectile. In the years following Pong’s release, many
games were released and the audio elements grew popular
and improved. Soundtracks conquered a fundamental role in

digital games so, nowadays there are games with mechanics
focused on the rhythm of the songs (rhythm games) and even
full albums and orchestras dedicated to game soundtracks (6).

One of the techniques which emerged with the game audio
evolution is the use of dynamic audio. In the movie industry
there’s always the same sequence of events that occur in the
same order and frequency, which makes the accompanying
audio always the same (static audio). However, thanks to the
interactive nature of games, players may take different actions
leading to different situations, which can incur in some vari-
ation of the game music and sound effects (dynamic audio).
When the game soundtrack reacts to player’s interactions, we
call such technique adaptive audio (7).

In this study, we developed a tool to aid developers to
implement adaptive audio techniques in their games, focusing
on Unity engine games due to the possibility of being a
free platform and one of the most popular engines for game
development (8), having been used in the production of famous
games. Named Adaptive Audio Manager for Unity (AAMU),
the tool is an accessible unity package which provides classes
and methods that helps implementing two popular adaptive au-
dio techniques: vertical layering and horizontal re-sequencing.
Near the end of its development we conducted a preliminary
evaluation regarding its ease of use with 7 programmers with
different levels of expertise with Unity, and the collected feed-
back identified some pain points and also showed promising
benefits from using the tool in games. We made AAMU
available1 as a Unity package and expect it to encourage
developers to implement adaptive audio techniques in their
games.

II. ADAPTIVE MUSIC TECHNIQUES

There are different approaches to develop a game with
adaptive audio experience. Each can have different results for
different game environments, depending on the proposal of the
developer and his/her goal.

A. Vertical Layering

The vertical layering technique is the segmentation of an
audio in individual layers, each composed by one or more

1https://drive.google.com/drive/folders/1-o8wCZIs1hGG69EHqosJCdjf5DU5Zei-
?usp=sharing

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

instruments/sound effects. When playing a song using this
approach, the user can activate or deactivate any layer, intro-
ducing or removing the desirable sounds according to in-game
events.

For example, this technique can be used in a situation where
the player is on a peaceful state, along with a calm music,
composed by a soft piano and ambience sound. The moment
some enemies approach or are on sight, the game state changes
from peaceful to action/danger, adding some electric guitar,
bass and percussion layers. Those added instruments can give
the player a sense of danger, providing him the information
that something changed (4).

B. Horizontal Re-sequencing

Horizontal re-sequencing is a technique used to reproduce
queued audio tracks, like a playlist. Each track can have a
different duration, long tracks or short fragments, as long as
they can musically connect with each other (9). Each track
fragment is played according to the current state of the game.
As an example, consider a game character that is moving away
from a safe area, like a town, and entering a dangerous area,
like a forest or a cave. Using the horizontal re-sequencing
technique, the audio can transition along with the character,
from a calm track to a more tense track without an abrupt
interruption, as the start of a new segment can be delayed until
the current one is in a state which can harmonically transition
into the new one.

That said, a transition between tracks can happen in many
ways, some of them are: fade-in (gradually incrementing
the volume of the track being inserted), fade-out (gradually
decrementing the volume of the exiting track) and cross-
fade (simultaneous fade-in and fade-out). Those fades have
straightforward implementation, but they might cut a track in
the middle of the execution, before the music piece has ended,
what can sound off. (10).

Bridges are another option of transition between tracks.
They consist of intermediate tracks that connect two different
ones to avoid discontinuation, making the transition sound
more natural.

C. Organization and Segments Variation

Organization and segments variation focus on avoiding the
excessive repetition of audios. In many games, some sounds
occur repeatedly, which can cause ear fatigue to the player.
To avoid reproducing the same audio in quick succession, it’s
possible to create variations of the same audio by changing
its volume, tempo, and frequency or providing enough audio
variations to randomize their reproduction. As an illustration,
shooter games frequently use this technique for the sounds of
firing guns and footsteps.

III. RELATED WORKS

There are various projects and researches regarding adaptive
music techniques and their effects on video game player’s be-
havior. For example, Alves, Silva, and Araújo (11) researched
the development of audio for games using the middleware

FMOD. To synchronize in-game events, the authors create
Unity variables and link them to FMOD’s audio parameters.

For example, in a car racing game, the faster the car gets,
the louder the engine noise. To represent that, FMOD can
increase the sound level and the pitch variation to mime the
engine’s sound. Middlewares can help avoid sound repetition,
too, creating a wider variety of sounds in real-time, without
the need to repeat a preset.

Similarly, Gungormusler, Paterson-Paulberg, and Haahr (12)
evaluated the impacts that music causes on player’s feelings.
Using Unity, they developed an adaptive audio system that
can create different melodies based on two very high-level
inputs: energy and stress. The user can tweak such inputs
through sliders, and the combination of values results in
a different mood represented by a procedurally generated
song. Optionally, the user can choose one of the presets
combinations of inputs, being them: exciting, happy, tender,
neutral, depressed, sad and angry.

Grumble Labs (13) created the Adaptive Music Player
for Unity, a package that helps developers implement the
horizontal re-sequencing audio technique along with sample
audio tracks and an illustrative implementation. The Adaptive
Music Player offers an interface and some methods to manage
the execution of the tracks. There are two main structures:
layers and songs. Songs comprise at least one layer, and layers
are the audio track variations of the song that can play during
different game states.

The software provides some methods, including play, pause,
stop layer or song, fade-in, fade-out, and even cross-fade
between layers. However, the limitation of that tool is that
only one layer can be played simultaneously, not allowing the
developers to control which instrument they want to be played
at each game state.

IV. AAMU DEVELOPMENT

The Adaptive Audio Manager for Unity (AAMU) is a tool
to help implement the vertical layering and horizontal re-
sequencing audio techniques on games developed using the
Unity engine. It provides classes, methods, and a user interface
that assist developers in implementing such adaptive audio
strategies. Within the same package, there are the framework,
documentation, and a demonstrative prototype.

A. Vertical Layering Development

Firstly, to understand the vertical layering technique, some
games that use this audio technique were analyzed. The first
one was Nier: Automata (14), winner of The Game Awards
(2017) in the Best Score/Music category. The game has a
big map with different environments and enemies. When a
player discovers a new area, he hears a simple version of
that place’s music theme. As he advances the game story,
some new instruments and voice tracks are added, evoking
a feeling of progression and discovery of the world that is
being explored. Additionally, some other player actions also
trigger the addition or removal of tracks, such as the presence
or absence of enemies nearby.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 1. Basic structure of the vertical layering hierarchy technique

Portal 2 (15) is a puzzle-like game that uses the vertical
layering technique too. The game shows many different inter-
active elements, such as lasers and cubes that are part of the
puzzle solutions. When a player interacts or even approaches
such objects, a new audio track is added, playing along with
the current environment music. This technique can help the
player detect essential game elements from elements that he
can’t interact with.

Crypt of the NecroDancer (16) is a rhythm game where the
player’s goal is to explore and descend levels inside a proce-
durally generated dungeon. Each level has different enemies,
non-player characters (NPCs), chests, and items, letting the
player move only on the right moments according to that level
music rhythm. Among the map elements, there is a merchant
NPC that starts to sing that level music as approached by
the player. From the vertical layering perspective, what is
happening is that when the player is sufficiently close to the
merchant, a new audio track with the NPC’s voice is added to
the level music, communicating the player’s proximity to the
NPC.

Lastly, The Legend of Zelda: Skyward Sword (17) is an
action and adventure game that uses the vertical layering
technique in a place called Bazaar, which is a market with
some merchants that can interact with Link, the main character
controlled by the player. The Bazaar has a music theme that
is played while the player is there. Whenever the player
approaches a merchant, the audio tracks of the Bazaar theme
fade out, while the specific merchant’s theme tracks fade in.
Each merchant has a melody similar to the Bazaar theme
but using different instruments and somewhat resembling the
NPC’s mood, attitude, or profession. When a fade-in and a
fade-out co-occur, we call that a cross-fade. From the vertical
layering perspective, the music being played is always the
same. What is really changing is the activation or deactivation
of audio tracks to compose that music according to the player
position and interaction.

Before implementing the vertical layering technique, we
gathered the basic requirements based on observations of the
previously mentioned games:

1) control reproduction (play, stop, pause, resume) of single
audio tracks;

Fig. 2. VerticalAudioManager structure on Unity’s inspector example

2) control fade transitions (fade-in, fade-out, cross-fade) of
audio tracks;

3) control individual track volume;
4) control reproduction (play, stop, pause, resume) of mul-

tiple audio tracks at the same time.

As shown in Fig. 1, we defined three basic structures
that represent the audio tracks that will be reproduced when
using the vertical layering technique considering our previous
observations and our requirements:

• track: is the structure that represents a single instru-
ment/sound, being the most granular audio structure that
the user can individually control. Each track needs a name
and an AudioClip (Unity component);

• layer: is the structure representing a set of tracks that can
be controlled simultaneously. It belongs to the same song
but does not necessarily comprise all of its instruments.
For each layer, the user has to define a name and a list
of tracks;

• song: is a structure that represents a full song, including
all instruments, sounds, and sets of instruments. For each
song, the user has to define a name and a list of layers;

To have control over those structures, there is a single-
ton (18) class called VerticalAudioManager (Fig. 2)
that holds the methods and resources needed to implement
vertical layering. The VerticalAudioManager requires
two components as parameters: a Unity component called
AudioSource and an AudioPool. The AudioPool
(Fig. 3) is responsible to keep a reference and name to
each song, layer and track. It’s possible to define multiple
AudioPool for different moments in the game.

The VerticalAudioManager class has 27 methods that
can be classified into three categories: basic, transition, and
support. Basic methods are responsible for playing, stopping,
pausing, and resuming individual tracks, entire layers, or
entire songs. Stop and Pause methods take no additional
parameters. The Play method can take some parameters that
define the start volume, whether or not the track, layer, or song
should loop, whether or not other tracks should stop playing,
and the start time of the track, layer, or song. Lastly, Resume
can take the parameter that defines whether the track, layer,
or song will loop or not.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 3. AudioPool structure on Unity’s inspector example

Transition methods are responsible to smoothly start or stop
reproducing tracks, layers, and songs using Fade techniques,
and the VerticalAudioManager has three methods to
apply those techniques. The FadeIn method can smoothly
introduce a track, layer, or song progressively, from volume
zero to the target volume provided by the user. The user
can also provide parameters that will define whether or
not the track, layer, or song should loop, a fade duration
in seconds, the start time of the FadeIn, and a Unity
AnimationCurve defining the interpolation function for
the volume to go from zero to the target value. Likewise, a
FadeOut method smoothly stops a track, layer, or song by
progressively decreasing the volume to zero. The FadeOut
method can also receive as parameters the fade duration in
seconds and the AnimationCurve. Lastly, the CrossFade
method lets the user fade-in and fade-out simultaneously two
tracks, layers, or songs. Also, the user can choose different
AnimationCurve for each fade, define if the track, layer,
or song will loop, the fade duration, the time, and the final
volume for the fade-in.

Support methods implement utilities that should
set parameters and aid in the use of the other
VerticalAudioManager methods. For example, three
search methods receive a name parameter from the user and
return the related track, layer, or song from the AudioPool.
Also, two methods can be applied to each track, layer, and
song, one of them can set the current volume, and the other
get the current time of the corresponding track, layer, or song.

B. Horizontal Re-sequencing Development

Similar to how we elicited requirements to implement
vertical layering, we analyzed some games that use horizontal
re-sequencing. First, in Assassin’s Creed II (19), the player
controls a character that needs to accomplish assassination
missions that involve exploration, combat, and escape. Each of
those moments represents a game state followed by a specific
soundtrack to convey the player’s adequate intensity feeling.
While in the exploration state, the player is not being harassed

Fig. 4. HorizontalAudioManager structure on Unity’s inspector exam-
ple

by other characters, which results in a calm soundtrack.
When detected by an enemy, the game state switches from
exploration to combat, changing the soundtrack to a more
intense one. Lastly, by fleeing and hiding from the enemies,
the game eventually returns to the initial exploration state.
Those state transitions happen between fades that result in
different segments of the soundtrack that connect with each
other according to the game states.

In Spider-Man (20), the player controls the superhero that
explores the streets of New York, trying to stop crimes from
bandits and villains with superpowers. The main character
can travel through the city using his spider webs to move
among the buildings. That way, the game’s audio system uses
a set of variables like the main character’s speed, altitude,
time swinging on the web, among others, to determine which
soundtrack should be played. The game state varies in three
intensity levels according to the mentioned parameters. When
the main character’s speed drops to zero, the game state
changes to the passive state, and the intense music played
before is concluded. In this example, we can notice the
different audio tracks that replace each other in sequence
according to the game state.

Furi (21) is an action and combat game in which a prisoner
equipped with a sword and a gun defies diverse bosses in
sequence, trying to reclaim his freedom. The game state varies
according to the boss’s health bar and the combat style used
between the main character and the enemy: long-range or
melee combat. Each time the boss loses a health bar, the
combat style changes, and the soundtrack alters accordingly.
If the player loses all health, the game reverts to the previous
state along with the music. This technique allows the transition
between states to happen in determined segments so that it
doesn’t interrupt a segment of the song before it ends.

We identified two requirements for the horizontal re-
sequencing technique based on observations of the previously
mentioned games, which we list next:

1) control the current state of the game;

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 5. Possible behaviors of the whenTrackFinishes parameter

2) randomize audio tracks according to the current state of
the game.

We defined an architecture based on states to depict
a soundtrack that can be responsive to the game’s cur-
rent state. To manage the states of the game, we cre-
ated a HorizontalAudioManager (Fig. 4) structure
that keeps the current state of the game according to in-
game events. It determines the state of the soundtrack as
well as the transitions that should play between each state.
HorizontalAudioManager is also responsible for listing
all possibles game states.

Each game state has a list of tracks (the same structure
from vertical layering), a variable to determine the action to
be performed when that track finishes, and a unique value
representing that state. When there are multiple tracks in one
state, the tool randomly picks one, creating the possibility to
generate different compositions of the same music, avoiding
ear fatigue. Plus, the whenTrackFinishes enumerator,
shown on Fig. 5, determines what happens when that track
finishes. There are three possible values for that parameter:

1) PlayAnotherTrack: randomly chooses a track from
the current game state to play;

2) PlayAndIncrement: randomly chooses a track from
the current game state to play and adds 1 to the current
game state value;

3) PlayAndStop: randomly chooses a track from the
current game state to play and suspends its reproduction
in the end.

The HorizontalAudioManager has a method that
starts playing the game soundtrack according to the game state.
Finally, there is a method that forces the audio reproduction
of the HorizontalAudioManager to stop.

V. EVALUATION

We conducted a preliminary evaluation by gathering feed-
back about using AAMU from 7 developers. At the time of
evaluation, the participants were between 22 and 31 years old,
two of which were computer engineering students, three soft-
ware developers, one game engineer and a game development
professor. All of them had some experience with Unity. They

were given four options to classify their own game develop-
ment skills experience as: very experienced, experienced, not
much experienced or no experience at all. Three participants
classified themselves as not much experienced, three of them
as experienced, one as very experienced and none of them
claimed to have no experience.

Each user received a detailed activity guide with two activity
descriptions, one for each of the techniques implemented
by the tool, the user’s manual, and a Unity project with
seminal code and assets for the proposed activities. After
accomplishing the tasks, we asked each user to answer a short
survey regarding their difficulties and thoughts on using the
tool. Each activity had its guidelines and an individual Unity
Scene with the audio and visual assets necessary to implement
the solution. A pilot test was conducted before the actual
experiment to validate the evaluation methodology.

A. Proposal

On the first activity, corresponding to the vertical layering
technique, we gave users a Unity scene with 2D assets, like in
Fig. 6. The setting is divided into five areas arranged from left
to right, and a character initially positioned on the far left of
the scene (first area). The player could move in four directions
using the keyboard arrows. Given that, we gave five tasks to
the users (represented by Fig. 7):

1) T1-1: when inside the first area (Camp), only the guitar
track should play;

2) T1-2: when inside the second area (Desert), only the
guitar, bass and percussion tracks should play;

3) T1-3: when inside the third area (Rain), only the bass,
flute, guitar and percussion tracks should play. Between
the second and third areas, the new tracks had to fade-in
and the removed had to fade-out;

4) T1-4: when inside the fourth area (Mud), only the guitar
base, guitar solo and drums tracks should play. The
transition between the third and fourth areas had to occur
through a cross-fade or mixing a fade-in and a fade-out;

5) T1-5: when inside the fifth area (Red Area), all music
should instantly stop.

On the second activity, corresponding to horizontal re-
sequencing, users received a Unity scene with a background

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 6. Overview of the scene for the first activity of the evaluation

Fig. 7. Vertical layering example

image and a green bar representing the enemy health points
which starts complete (with a hundred points), shown in Fig. 8.
The player can reduce the enemy’s health by pressing the space
bar until the minimum level of zero. Given this scenery, we
asked five tasks from the users (represented by Fig. 9):

1) T2-1: at the beginning of the scene, start with the game
state 0 (zero), playing the track “Intro” just once;

2) T2-2: when the track “Intro” finishes playing, play
the tracks “Verse1-Variation1”, “Verse1-Variation2” and
“Verse1-Variation3” repeatedly and randomly (one at a
time);

3) T2-3: when the enemy’s life drop below 50%, wait for
the end of the current track and then play the track
“Bridge” just once;

4) T2-4: when the track “Bridge” finishes playing, play
the tracks “Verse2-Variation1”, “Verse2-Variation2” e
“Verse2-Variation3” repeatedly and randomly (one at a
time);

5) T2-5: when the enemy’s life reaches zero, play the track
“Ending” then stop playing any track.

B. Users’ activities conclusions

As shown in Fig. 10, all seven participants accomplished
all tasks with no or only minor errors, summing 56 (80.0%)
full correct tasks and 14 (20.0%) tasks completed but with
mistakes. When testing the implementation results for activity
one, we observed two common mistakes:

1) two users did not use the time parameter to introduce a
new track or layer while another track or layer was still
playing, as requested on T1-1 T1-2, T1-3 and T1-4, and
just played all the tracks from the beginning;

2) two other users did not play the proposed tracks while
moving from area 5 to area 4, as stated by T1-4;

When testing the implementation results for activity two,
we observed only two mistakes:

1) two users played the “Ending” track at the right time,
but twice, when the T2-5 asked to reproduce it just once;

2) one user delayed the reproduction of both “Bridge”
and “Ending” tracks, with the delay of one execution
(another track played before the asked track);

C. User’s feedback
After solving the proposed tasks, the users answered a sur-

vey about their difficulties and impressions regarding AAMU.
On the first three questions, we surveyed the participants’
perceived difficulty to use the tool to include vertical layering
(activity 1), horizontal re-sequencing (activity 2), and to read
the user manual. They could choose a number from a 1 to
4 scale, with 1 meaning very easy and 4 meaning very hard,
along with an optional input field which allowed additional
comments. The participants’ perceived difficulty is shown in
Fig. 11.

Most (five) users classified the first activity as easy and two
classified it as very easy. On the comments field, two users
stated that the concepts of track, layer and song were not clear
to them, which made the tasks more difficult.

On the second activity, the majority of users (five) clas-
sified it as very easy, one as easy and one as hard. The
user that stated this activity was hard added a comment
saying that “Although seeming a simpler system than the
vertical layering, the horizontal re-sequencing did not seem
to work intuitively”, while other three users stated that the
system was “intuitive and easy to use”. Also, one user
stated that the gameStateEndAction (older name for
whenTrackFinishes) name was not intuitive.

As for the user manual, participants classified it was either
easy or very easy to find the relevant information. On the
comments section, four users stated that the documentation
was clear and simple while one of them asked for more details
regarding the horizontal re-sequencing implementation.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 8. Overview of the second activity of the evaluation

Fig. 9. Horizontal re-sequencing example

After that, users where questioned if they considered that
AAMU could help developing adaptive audio techniques in
games, and all of them agreed. There was also an input field
for comments. Six participants mentioned that the tool made
the implementation of adaptive audio technique easier or more
simple than it would have been if they had to implement it
from scratch. Two of them highlighted the time gain using the
tool and other two recognized the importance of implementing
these techniques in games.

Fig. 10. User’s activity conclusion result

When questioned whether they would use AAMU in a
personal project, five participants replied affirmatively, and
two stated maybe. No one fully denied it. Finally, users
where given space to comment, criticize and suggest changes.
One participant stated that the manual could have more
images or examples of use, especially dealing with the
HorizontalAudioManager use. Two participants sug-
gested taking advantage of the Unity editor and creating Unity
Prefabs (preset structures that work like templates in Unity)
that use the AAMU methods to make the tool be more visual
and easily used even by non-programmers. Lastly, users also
suggested new methods for both techniques:

1) Pause with Fade-Out (vertical layering);
2) Resume with Fade-In (vertical layering);
3) New whenTrackFinishes option to subtract 1 of

the current state (horizontal re-sequencing);
4) Give the option to play a track of a given game state

without waiting another track to finish or executing a
cross-fade (horizontal re-sequencing).

VI. CONCLUSION

This paper presented the development of AAMU, a tool to
help game developers to implement adaptive audio techniques
on their games using the Unity engine. We assessed different
adaptive audio techniques, academic works, and games to
gather requirements that guided the development of a frame-
work that implemented two popular audio techniques, vertical
layering, and horizontal re-sequencing, along with prototypes
and a user manual.

We conducted a preliminary evaluation of the tool through
potential users’ perspectives with the participation of seven
developers to assess both the tool and its documentation in
search for errors and opportunities for improvement and to
collect feedback. After analyzing the results of the evaluation
and the participant’s feedback, we improved AAMU’s manual
and code resulting in a framework suitable for use and ready
to be made available1 to the community.

1https://drive.google.com/drive/folders/1-o8wCZIs1hGG69EHqosJCdjf5DU5Zei-
?usp=sharing

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 11. User’s activity and manual difficulty evaluation

With the final version of AAMU, even less experienced
developers can straightforwardly implement two popular adap-
tive audio techniques into games made on Unity: vertical
layering and horizontal re-sequencing techniques. The manual,
methods and classes provided by the package allow users to
avoid the work of implementing a full adaptive audio system
from scratch also while avoiding to learn how to use an
external tool, like a middleware.

The following steps in this research include creating new
methods and classes that increase dynamic audio implementa-
tion options, whether by improving techniques already imple-
mented or enabling the use of new techniques. Also, there are
possibilities for performance evaluation and code optimization
to improve the efficiency of the tool and further explore
the use of Unity’s Custom Editor by developing graphical
interfaces that could make the AAMU simpler, friendlier to
non-programmer users, and more dynamic.

REFERENCES

[1] T. Wijman. (2018) Mobile revenues account for
more than 50% of the global games market as
it reaches $137.9 billion in 2018. Acessado em
02 de dezembro de 2020. [Online]. Available:
https://newzoo.com/insights/articles/global-games-
market-reaches-137-9-billion-in-2018-mobile-games-
take-half/

[2] J. Abbade. (2019) Indústria dos videogames bate
recordes e fatura us 134 bilhões. Acessado em
02 de dezembro de 2020. [Online]. Available:
https://jovemnerd.com.br/nerdbunker/industria-dos-
videogames-bate-recordes-nos-eua-e-fatura-us-43-
bilhoes/

[3] J. Novak, Game development essentials: an introduction.
Cengage Learning, 2011.

[4] F. Coutinho, R. O. Prates, and L. Chaimowicz, “An
analysis of information conveyed through audio in an
fps game and its impact on deaf players experience,”
in 2011 Brazilian Symposium on Games and Digital
Entertainment, Nov 2011, pp. 53–62.

[5] G. McDonald. (2005) A history of video game music.
Acessado em 02 de dezembro de 2020. [Online].
Available: https://www.gamespot.com/articles/a-history-
of-video-game-music/1100-6092391/

[6] M. Fritsch, “History of video game music,” in Music and
Game. Springer, 2013, pp. 11–40.

[7] K. Collins, “An introduction to the participatory and non-
linear aspects of video games audio,” Essays on sound
and vision, pp. 263–298, 2007.

[8] Unity. (2016) Public relations. Acessado em
02 de dezembro de 2020. [Online]. Available:
https://unity3d.com/public-relations

[9] L. MENEGUETTE, “Áudio dinâmico para games: con-
ceitos fundamentais e procedimentos de composição
adaptativa,” Simpósio Brasileiro de Games, UNEB, 2011.

[10] L. Kähärä, “Producing adaptive music for non-linear
media,” 2018.

[11] L. H. M. Alves, J. M. S. Junior, and C. S. de Araújo,
“Desenvolvimento de áudio para jogos com unity e
fmod,” Simpósio Brasileiro de Games, Curitiba, 2017.

[12] A. Gungormusler, N. Paterson-Paulberg, and M. Haahr,
“barelymusician: An adaptive music engine for video
games,” in Audio engineering society conference: 56th
international conference: audio for games. Audio
Engineering Society, 2015.

[13] GRUMBLE LABS. (2016) Adaptive
music player. Acessado em 02 de
dezembro de 2020. [Online]. Available:
https://assetstore.unity.com/packages/tools/audio/adaptive-
music-player-52023

[14] PLATINUM GAMES. (2017) Acessado em
02 de dezembro de 2020. [Online]. Avail-
able: https://nierautomata.square-enix-games.com/en-
us/age-gate/

[15] VALVE CORPORATION. (2011) Acessado em
02 de dezembro de 2020. [Online]. Available:
https://www.thinkwithportals.com/

[16] BRACE YOURSELF GAMES. (2015) Acessado
em 02 de dezembro de 2020. [Online].
Available: https://braceyourselfgames.com/crypt-of-the-
necrodancer/

[17] NINTENDO. (2011) Acessado em 02
de dezembro de 2020. [Online]. Avail-
able: https://www.nintendo.com/games/detail/the-legend-
of-zelda-skyward-sword-wii-u/

[18] E. Gamma, Design patterns: elements of reusable object-
oriented software. Pearson Education India, 1995.

[19] UBISOFT QUEBEC. (2009) Acessado em 02
de dezembro de 2020. [Online]. Available:
https://www.ubisoft.com/pt-br/game/assassins-creed-2/

[20] INSOMNIAC GAMES. (2018) Acessado em 02
de dezembro de 2020. [Online]. Available:
https://insomniac.games/game/spider-man-ps4/

[21] THE GAME BAKERS. (2016) Acessado em
02 de dezembro de 2020. [Online]. Available:
https://www.thegamebakers.com/press/sheet.php?p=furi

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

