
UtopicSense: a tool to support the use of
synesthesia as an assistive resource in 2D games

Adriel Augusto Germano Silva
Departamento de Computação

Centro Federal de Educação Tecnológica de Minas Gerais
Belo Horizonte, Brazil
adrielags@gmail.com

Flávio Roberto dos Santos Coutinho
Departamento de Computação

Centro Federal de Educação Tecnológica de Minas Gerais
Belo Horizonte, Brazil

fegemo@cefetmg.br

Abstract—The concept of synesthesia in games comprises
providing stimuli in more than one sense, such as displaying
visual effects concurrently with sound effects on a screen.
Algorithmic synesthesia is a concept that describes multimedia
processes in which sounds, images, and in some cases, haptic
sensations have as generators the same computational process
or data source. Game developers can leverage such concept as
an ancillary resource for people with hearing loss or deafness.
Despite its advantages to the gaming experience, synesthesia
is rarely contemplated in gaming design with the focus on
accessibility. This situation usually happens because developers
are unaware of its benefits or want to avoid additional costs
and more implementation work on the project’s schedule. This
paper presents UtopicSense, a tool that automates implementing
synesthesia in 2D games inside Unity. To create it, we identified
positive and negative accessibility aspects perceived through the
analysis of 2D games. We then developed the tool which allows
users to configure aspects of the generated visual effects through
a Unity custom editor panel. We evaluated the tool in terms
of usability with potential users (Unity game developers). They
provided feedback and evaluated the tool in terms of ease of
use, flexibility, and usefulness. Participants expressed positive
reactions towards UtopicSense and indicated that it fulfilled its
goal of integrating algorithmic synesthesia into 2D games in an
easier way.

Index Terms—algorithmic synesthesia, game accessibility, hear-
ing impairment, deafness, unity

I. INTRODUCTION

Digital games are significant leisure means, and as such,
they should be a viable option to everyone, regardless of
physical or mental conditions [1]. For that to be possible,
it is necessary to take accessibility into account. Accessibility
in games is the possibility of having a good gaming experi-
ence even under functional limitations or disabilities [2]. A
technique that can improve user accessibility and immersion
associated with sensory stimuli is the use of synesthesia. This
concept refers to a neural condition in which people perceive
sensations of a stimulus through different senses (for example,
a sound stimulus linked to a visual effect). In the case of
digital games, simultaneously conveying information through
multiple media is also understood as synesthesia. And besides
the benefits to player immersion [3], in the case of players
with hearing impairment, the use of synesthesia associating
sounds with visual effects (and other media) is an alternative
to making games more accessible and exciting [4].

Despite the benefits, implementing synesthesia requires time
and is not always contemplated in projects’ schedules [5]
and, when it is, it is usually not included as an assistive
resource. Part of the process of generating different stimuli
from the same source (eg, create a visual effect based on an
audio file) can be automated in a process called algorithmic
synesthesia [4].

In this context, this paper proposes, UtopicSense, a tool to
apply algorithmic synesthesia in 2D games. It targets game
developers who seek to implement synesthesia (associating
sound and visual stimuli) in their games to improve acces-
sibility for the deaf and hard-of-hearing players, but also to
build on the game’s immersion [3], [5].

We implemented the tool within the Unity engine, which is a
popular game development software [6], [7]. Utilizing Unity,
people can create 2D and 3D games, and many developers
used it to create very successful and popular games [8].

For the development of this work, we gathered requirements
based on positive and negative aspects of accessibility we
perceived through the analysis of some 2D games. We imple-
mented a game prototype with basic synesthesia functionalities
as a model for the final tool from the defined features list.
We also conducted a preliminary evaluation with Unity game
developers assessing the tool’s quality of use.

As a result, we have a tool that allows developers to use
Unity to associate sound with visual stimuli, flexible enough
for different genres of 2D games. We developed the application
to respect the game art direction freedom and subserve the
synesthesia’s implementation process in a more automated
way. In a preliminary evaluation, from the tasks users had to
execute, they completed 85.3% without mistake, 14.7% with
errors, and there were no tasks that users could not complete.

We expect the tool to facilitate the creation of 2D games
that use synesthesia. Therefore, it can positively impact the
user experience, especially the players with hearing loss or
deafness. Another contribution stemming from the tool is the
possibility to evaluate the use of synesthesia as an assistive
resource thoroughly.

II. SYNESTHESIA

The word synesthesia has a Greek origin (sin + aisthesis),
and it means the meeting of multiple sensations. It is a concept

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



approached in several knowledge fields such as Biology and
Arts [9].

The Neuroscience field considers that synesthesia is a
neurological condition that causes the stimulus of one sense to
cause reactions in another, creating a sensory mixture between
sight, smell, hearing, taste, and touch. In Arts, synesthesia
contemplates metaphors and comparisons to evoke multiple
sensations across multiple works.

However, synesthesia exceeds those areas, reaching other
spheres such as technology [10]. In this field, a concept
introduced by Dean et al. [11] is algorithmic synesthesia.
It describes multimedia processes in which sounds, images,
and in some cases, haptic sensations have as generators the
same computational process or data source. An example would
be an algorithmic process that generates visual and sound
information simultaneously as its output.

This concept brings synesthesia to the world of interaction
and makes it a lively resource for interactive media such as
games [12]. Many games implement this concept, especially
as they have become well-established and viral immersive
media [5]. One way to increase this immersion is through
the implementation of synesthesia. Associating an event inter-
action with several sensations can engage different types of
players [13]. There are highly successful commercial games
like Journey [14] that use the synesthesia concept applied to
their artistic vision (Fig. 1).

Fig. 1. Example of the use of synesthesia in the game Journey.

III. RELATED WORKS

Different works show that synesthesia can improve the
player experience (a) by enabling higher levels of immersion
and also (b) as an assistive tool. In the first research line (a),
although the definition of immersion being a source of debate,
Bastos et al. [3] identified seven characteristics in games that
contribute to making the player feel like part of the experience,
and one of them was audiovisual synchronicity. They created
a game prototype with five of those features. After evaluation,
they observed that the synesthesia resulting from the audio and
video cohesion was the most immersive factor in the game.

Liang [5] presented different ways game designers can use
synesthesia to create a more immersive atmosphere. The study
advocates drawing inspiration from the findings from other

fields (such as Arts, Neuroscience) regarding how synesthetes
(people who have the neural condition of mixing senses)
map properties from one stimulus into another (e.g., sound
frequencies to colors).

In the second research line (b), Coutinho [4] introduced a
theoretical framework that allows designers to reflect, propose
and implement synesthesia in their games. It encompasses a
process to define the synesthesia model (shown in Fig. 2) and
another to specifically determine how to map characteristics
from one medium into the other (Fig. 3).

Fig. 2. Process of the synesthesia model implementation.

The overall process (Fig. 2) involves determining which
elements from a source medium (e.g., auditory) convey infor-
mation that should also be transmitted through a target media
(e.g., visual). Designers also define which characteristics of
the target media can be used to convey information (e.g.,
visual effects with different colors, shapes, sizes). Finally, it
requires consistent mapping criteria for features in the source
to the target medium such that in an audio to visual approach,
the visual metaphors used to represent sounds can somehow
visually depict the information conveyed through sounds.

In turn, the process to determine the mapping criteria
(Fig. 3), besides generating a consistent association, should be
harmonic with the game art style. The implementation could
be manually performed by game designers or be partly or
entirely automated (algorithmic synesthesia).

In a similar line of research, Silva, Callado, and Jucá [15]
investigated using synesthesia from the audio to visual medium
with a manual implementation. They used particle systems
with different emission shapes, movements, and colors and
tried to map different configurations of such parameters to
feelings (e.g., anger, love, fear). After an experiment with 40
users, the study found mappings with some consistency to six
emotions and made a Unity plugin with pre-configured visual
effects available.

Our work builds on the concept of algorithmic synesthesia,
also on the audio to visual mediums, by providing a Unity
tool that automates the procedural generation of visual effects
from audio files, specifically for 2D games. In addition, such

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



Fig. 3. Process of defining mapping criteria between media.

effects can be configured, allowing designers to keep control
over the art style of the visual metaphors.

IV. METHODOLOGY

This work followed a cascade software development process
split into 4 phases. The first one (1) consisted of defining
requirements for the UtopicSense tool. We surveyed the lit-
erature on synesthesia and algorithmic synesthesia. Then we
systematically analyzed some 2D games to raise potential
problems and positive aspects related to accessibility for deaf
and hard-of-hearing players. The selected games comprised
different genres with action-based 2D mechanics. We analyzed
this genre because of its popularity and the relevance of its
audio in communicating with the player [16].

After that, in the second step (2), we built an algorithmic
synesthesia prototype comprising a simple scenario with the
essential functions for mapping sounds into visual effects. The
prototype allowed us to focus first on the vital aspects for
implementing synesthesia in games, as defined in [4].

In this paper, we create visual representations for sound
stimuli, as if the player could see the game sounds. Hence,
we selected audio characteristics (e.g., frequency, volume) to
use as parameters to map into visual effects properties (e.g.,
colors, opacity, speed). After mapping those characteristics, we
implemented the synesthesia approach to produce the visual
effects based on the input sounds.

Afterward, in phase (3) we implemented a user interface for
developers to configure the synesthesia model in their projects
according to their game design concept.

In the last step (4), we assessed the tool regarding (a) the
flexibility to apply its functions into different 2D games genres
and also (b) to gather some preliminary feedback about the
tool’s user interface from Unity game developers.

V. UTOPIC SENSE

This section presents the process of creating UtopicSense,
detailing the steps described in the methodology and some
technical decisions.

A. Requirements Gathering

As an initial step, we needed to define the requirements
for a tool that supported the implementation of synesthesia.
Then, we analyzed how sounds have been used in 2D games
to convey information [16]. In doing so, we identified both
good and bad communication strategies through audio and
then proposed a set of features the tool should have. The
selected games were:

• The Legend of Zelda: Link to the past (1991) [17]
• Limbo (2010) [18]
• Mark of the Ninja (2012) [19]
• Ori and the Blind Forest (2015) [20]
• Rayman Origins (2011) [21]
• Rayman Legends (2013) [22]
• Shadow Dancer (1989) [23]
• Sonic Mania (2017) [24]
• Sonic the Hedgehog (1991) [25]
• Sonic the Hedgehog 2 (1992) [26]
• Streets of Rage (1991) [27]

We analyzed the games by experiencing them with and
without audio to compare positive and negative aspects to the
player experience in both situations. For this evaluation, we
differentiated primary (must be perceivable by the player to
play the game) and secondary stimuli (being able to play a
game does not depend upon being able to perceive these stim-
uli) proposed by Yuan, Folmer, and Harris [28]. We applied
this concept together with the differentiation of diegetic sounds
(sounds that communicate something that belongs to the game
world) and non-diegetic sounds (sounds that communicate
something through the interface but do not belong to the game
world) to make the complete analysis.

In 2D platform games and others with a side-scrolling cam-
era (e.g., Sonic the Hedgehog [25], [26], Streets of Rage [27]),
there are several situations in which the game uses audio to
communicate that a relevant event will occur in a few seconds
or is already happening. Often, this kind of sound represents
events in the game that will require some quick reaction from
the player.

Fig. 4. Reacting to a sound effect emitted from outside the view range.

A problematic situation arises when game objects located
outside the field of view emit primary auditory stimuli. In
this case, important events may happen unnoticed or only
get noticed after frustrating situations for those who do not
receive this valuable information. Fig. 4 exemplifies a problem
where the player may be frustrated by the fact that the

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



game communicates the imminence of an out of sight event
exclusively through a sound effect.

In other games, such as The Legend of Zelda: Link to the
past [17] (illustrated by Fig. 5), there are also restrictions on
what the player sees due to a simulation of darkness, fog, etc.
In this situation, there are also accessibility problems when
emitting sounds from regions outside the visual field. With the
proper receipt of the sound information, the player has a higher
propensity to have a better experience and get more resources
(valuable game items for the character) hidden in dark or foggy
places within the game. Thus, the more resources the character
has throughout the game often entail better difficulty balance
in gameplay flow and consequently better player experience.

Fig. 5. Sounds sometimes come from dark areas in games.

We identified similar situations were frequent in older
games. On the other hand, in more recent ones we could
notice considerable improvements regarding these aspects.
Despite this, there are still games that contain problems in
their accessibility for the deaf and hard-of-hearing players.

Some games still exclusively use sound effects to provide
clues of certain events, which are indispensable for progressing
in the game (unlocking new levels and other bonuses). An
example of this occurs in Rayman Origins [21]. This game
rewards the player for locating and solving tasks in hidden
areas. Finding such regions is facilitated by the fact that a
sound signal guides their location. Not receiving the audio
clue might lead the player to ignore these locations. Fig. 6
illustrates this event.

The games that do not have this type of problem use more
than one stimulus to communicate an event or call attention
to a particular location. In these cases, the valuable sound
information often comes together with simultaneous haptic or
visual effects.

Limbo [18], for example, uses the vibration provided in
the player’s control as an alternative to raising awareness of
events in the game. A game that employs the use of visual
effects linked to sounds is Mark of the Ninja [19], a 2D stealth
game illustrated in Fig. 7. It associates the footsteps sounds
of enemies (which are not always visible) and sounds of
events that occur off the screen with visual effects that players
perceive within the field of view in the game interface. The
game communicates events through stimuli in more than one
sense. Although creators may not have designed this mechanic
with a focus on accessibility, it improves the game experience
for a larger audience.

Table I
REQUIREMENTS FOR THE TOOL

Requirements
R1 Generate 2D visual effects from sounds
R2 Support different game genres
R3 Allow developers to relate sounds of their choice to visual effects
R4 Support appliance of visual effects from different artistic visions
R5 Provide visual information for elements out of the game range view
R6 Provide the option to activate or deactivate visual effects in-game

From the analysis of 2D games from different eras, we
verified that diegetic sound effects played an important role in
most positive and negative communication strategies through
audio. After this survey, we raised a list of requirements for
the synesthesia tool, which we present in Table I.

In parallel with the requirements gathering, we also needed
to define which sound characteristics we would map to visual
effects properties. Based on the classes of auditory signs
proposed by Nogueira et al. [29], we selected the following
sound features:

• Sound volume maps to the opacity of the visual effect,
that is, the lower the volume, the dimmer the effect,
making it more subtle.

• The frequency of the sound maps to the visual effect
color. Users can relate colors and particle effects to pre-
established frequency ranges according to their artistic
view.

• The range inside which the player receives a sound
maps to the area of the visual effect, with sounds which
can be heard from very far having extensive associated
visual effects.

After defining this sound-to-image mapping model and
the gathered requirements, we implemented the UtopicSense
prototype, which is detailed next.

Fig. 6. Hidden area with sound hint in Rayman Origins.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



B. UtopicSense Prototype

The UtopicSense tool prototype consisted of creating a 2D
platform game scenario in Unity with the implementation of
the algorithmic synesthesia mapping to produce the visual
stimuli from the auditory. In this phase, we wanted to create a
working scene with the effects implemented but leaving for a
later stage the creation of an interface that allowed the config-
uration of the synesthesia. In the created game location, there
were various objects emitting sounds in different situations.

We used a particle system as a visual representation of
sound effects in the generated scenario. It was built based
on the appearance of the physical ripple effect (cascade
effect) phenomenon in water (the impact of mechanical waves
gradually expanding through the water when it is disturbed).
We used a texture with a circular form as the particle material
so that the visual aspect resembled the desired design. Fig. 8
shows three stages of the lifetime of a particle.

The particle effect creates particles from the exact position
of the sound source, and they grow and lose opacity over some
time. The scene developed for the prototype had a controllable
character, a jukebox object, and a cannon shooting projectiles.
This scene (Fig. 9) contains 3 sound sources: the first associ-
ated with the cannon object (which has a sound emitted when
it shoots projectiles), another for the jukebox object which
plays music, and the controllable character (which emits a
sound when jumping and colliding with the floor).

Using Unity’s scripting system, we created a function to
emit particles when a sound plays. This script dynamically
creates particle sources that will react according to the sound
source. For this, the script detects the AudioSource compo-
nent (which is a Unity component responsible for reproducing
sounds). For the algorithm, it is possible to catch more than
one AudioSource component in a single object (an object
can emit more than one type of sound and therefore have
more than one AudioSource component). The synesthesia
function detects a sound playing and, under this condition,
starts the particle emission, which is instantiated gradually
until the sound transmission stops. An example of a visual
effect created for the cannon is shown in Fig. 10.

In the visual effects implementation function, we also added

Fig. 7. Game Mark of the Ninja depicting sounds visually.

the functionality of associating the range of the sound in Unity
to the scope of the visual effect (maximum distance of the
source from the game character from which it still hears sound
effects). Thus, the player can only see the visual effect within
the range on which the game character should listen to the
audio. Fig. 11 illustrates this functionality.

The same function maps the sound volume into visual
effect transparency, making lower volume sounds produce
more subtle visual effects. The AudioSource volume has
a range of 0 to 1, and the software multiplies this value to the
opacity of the visual effect (Fig. 12).

Based on the need for each sound to convey a unique visual
aspect to allow their differentiation (e.g., the effect for the
cannon sound being different from the one from the jukebox),
we mapped the dominant frequency bands of the audio in
different colors of the visual effect. The challenge of this
process is the fact that most sound effects are composed of a
combination of frequencies [30]. To process the audio files and
determine its dominant frequency, we used a Unity function
called GetSpectrumData1. It transforms the sound wave
from the temporal to the frequency domain and, thus, allows
the sound analysis, receiving as a parameter a Fast Fourier
Transform (FFT) window.

Unity provides different options for calculating the FFT
window (used to improve the approximation when converting
the audio signal from continuous to discrete), and we used
Blackman-Harris [31]. Although this is not the most efficient
FFT window, as it involves sophisticated calculations com-
pared to other options, it has the best accuracy for calculations
that require greater precision. Computations such as those
for determining the dominant frequency and tone (e.g., low,

1GetSpectrumData Unity documentation available in:
https://docs.unity3d.com/ScriptReference/AudioSource.GetSpectrumData

Fig. 8. Particle effect used to represent sounds visually in the prototype.

Fig. 9. Scene for implementing UtopicSense basic functionalities.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



high, etc.) of the sound signal fall into such a situation [32],
[33]. Precision is a required characteristic for UtopicSense,
so the software can map the pitch values to the expected
corresponding color. This FFT window also did not affect
the 2D game’s performance (including more complex projects
using the tool’s features).

Longer-lasting sounds, especially music, vary their domi-
nant frequency over time, so it has to be detected continuously.
Sampling is the transformation of a continuous signal into
a discrete form in signal processing. We sampled the sound
wave at regular intervals to be able to calculate the dominant
frequency. The sound is discretized into 512 samples for
frequency analysis. We chose the value through empirical tests,
which consisted of the gradual application of powers of 2 in
the sampling number 128 to 2048 (i.e., 128, 256, 512, 1024,
and 2048). We applied the value of 512 samples as it had good
results without negative performance impacts on the algorithm.

To map dominant frequencies in color, we split them into
frequency bands, described by Table II. The bands include
values between 20Hz and 20,000Hz as they are audible bands
for the human ear [34]. Thus, the scopes with lower frequency
values were arranged in smaller value intervals to enable
more significant color variability in the particle system. These
intervals were divided with non-uniform bands, as we observed
a greater incidence in detecting lower dominant frequencies
in sounds used in games. We performed an empirical analysis
with 30 songs and sound effects to sustain this observation.

We associated each frequency range with a color pattern
(color gradient), which updates colors as new dominant fre-
quencies are recognized (i.e., a color change occurs as the
prevalent frequency change occurs). The particle effect used
in the project emits colors from a color gradient over time.
That is, there is a two-color gradient related to a frequency
band. As a more concrete example, for a sound effect in the
frequency of 500Hz to 1000Hz, the particles appear red and
disappear as orange.

We picked the standard colors sampling from the visible
light spectrum. Therefore, lower frequency bands are associ-
ated with lower frequency colors in the light spectrum and
higher color frequencies representing higher frequencies in
that spectrum.

With the script to generate the visual effects implemented
into the prototype, the next step was to incorporate these fea-

Fig. 10. Particle effects in the moment the cannon emits sound.

Fig. 11. Distance from the sound mapped in the scene.

tures into a graphical interface to allow developers to configure
all of the settings. It contains the fundamental functions of the
prototype specified in this section, with further adjustments to
the features that make the application of effects more flexible
to the artistic vision of game developers.

C. UtopicSense

We implemented UtopicSense by extending the Unity editor
and creating a custom EditorWindow2. With that, it was
possible to assemble a graphical interface from pre-existing
widgets and incorporate the window in the game creation
environment (Fig. 13).

The tool detects configuration changes made by the user
through its interface and automatically saves them in a file
generated by UtopicSense within the project folder. It excludes
the need to rely on a save button and centralizes all the

2Reference: https://docs.unity3d.com/ScriptReference/EditorWindow.html

Fig. 12. Sound volume mapped to effect opacity.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



Table II
UTOPICSENSE FREQUENCY RANGES AND DEFAULT COLORS MAPPED

Frequency Ranges Gradient Colors Hexadecimal Color
Swatch

initial color FC00FF

20Hz to 100Hz final color FF0094

initial color FF004C

100Hz to 500Hz final color FF1F00

initial color FF5400

500Hz to 1000Hz final color FF8C04

initial color FFE204

1000Hz to 2000Hz final color C7FF00

initial color 1DFF00

2.000Hz to 5.000Hz final color 00FF9B

initial color 004EF8

5.000Hz to 9.000Hz final color 0000FF

initial color 4E00FF

9.000Hz to 20.000Hz final color 8300FF

synesthesia effects settings in a single file. To provide user
support, buttons with the “?” symbol in the interface open
additional windows with more detailed explanations about the
program’s functionalities. We present each of the software’s
features in the following subsections.

1) Standard and simple modes: In the upper right side
of the program interface, there is the mode selection, which
corresponds to UtopicSense being in standard or simplified
mode. The application uses the dominant sound frequency in
the standard application mode to calculate the color mapping
on the image. UtopicSense maps all sounds in a single color
gradient in the simplified mode and does not consider the
frequency in this process. Beneath this area selection, there is
the UtopicSenseActive field, where the user can activate
or deactivate the synesthesia effects in the project.

2) Select particle textures: this region provides means for
the user to select and customize their effects according to their
artistic vision. UtopicSense starts with five standard textures,
but each one can be set to any texture within the project, as
Fig. 14 illustrates.

3) Shader selection: the user can select different shaders
to change the visual effect appearance and adapt the effect
to different artistic concepts. Fig. 15 shows different shaders
applied to the visual effect in the scene.

4) Color selection: The standard colors are defined and
presented here as discussed in subsection IV-B. The user can
modify the colors assigned to frequency bands according
to need. After clicking on a color swatch, and RGB color
selector, a window will open. Besides the color box, a dropper
tool allows selecting any color on the computer screen. If the
user wants to return to the default colors of the software, one
can use the button “Reset default colors.”

5) Apply or remove effect in selected objects: it is up to the
game developer to choose and identify which scene objects
will use the synesthesia effect. They can attach the particle
system by selecting one or more game objects or prefabs3

and then clicking “Apply effect”. The user must select which
effect to apply to those objects. Additionally, he can set the
effect emission speed and change it in the selected items with
attached effects (Fig. 16). In the same region of the interface,
the user can also delete the effect in a single object or delete
all effects in the scene.

After implementing the tool, we carried out some tests,
which we describe in the next section.

D. Tool testing in 2D game projects

We tested the tool applying its functionalities to different 2D
game projects of different genres. The initial test consisted
of selecting five Unity 2D projects with different genres,

3Prefabs are objects saved in the project directory that serve as a model
for replicating objects in other games scenes.

Fig. 13. UtopicSense interface inside Unity.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



artistic styles, and complexities to apply all UtopicSense
functionalities. Among the projects, we obtained four from
Unity Asset Store and a more complex project created by us.

In each project, we imported UtopicSense and its effects
and functionalities applied to various objects and generators of
pre-fabricated objects (prefabs). Then, we executed each game
project and observed whether the effects were functional. We
tested the following UtopicSense’s features: (1) application of
the standard and simple modes, (2) change of effect textures,
(3) application of different shaders, (4) selection of new colors,
(5) the application of many different effects in the same scene,
(6) change in intensity in the visual effect, and the (7) deletion
of effects on objects.

The tests enabled us to perceive the flexibility of applying
the tool’s features to other 2D game genres. An example is
the application of effects to a project with a top-down camera
(Fig. 17) and also in more complex 2D game projects (Fig. 18).

We also observed some limitations of the tool throughout
the tests. One of the test projects contained a centralized
entity responsible for reproducing and operating sounds in
the game (a sound manager object). This entity, in general,
produces a sound when an event occurs but does not associate
it with a specific object (emission source). In this situation,
UtopicSense is not practical since the object’s location is
essential for the tool to emit particles from a sound source.
Another limitation found during the tests is that the program
can have problems if the emission speed is low in short sounds
(about 0.2 seconds long or shorter).

After performing the testing process, we evaluated Utopic-
Sense with potential users to assess the tool in terms of
usability.

VI. EVALUATION

We conducted a preliminary evaluation of UtopicSense
based on the user evaluation methodology in a controlled
environment [35]. We used this method to characterize and
evaluate the tool’s usability from the perspective of game
programmers using Unity.

Four users participated in the evaluation (U1, U2, U3,
and U4). They had at least one project already completed
at Unity and nice English reading skills. Among the partic-
ipants, two were students in the Computing field, one was
graduated and worked with information technology, and the
other was a graphics designer. The analysis we conducted
provided primarily qualitative data, reflected by impressions

Fig. 14. Texture applied to sound effect.

and reactions of the participants towards the tool. We also
collected quantitative data based on the tasks performed using
the software (completed without error, with error, and not
completed). Each participant during the test had to perform
tasks shown in Table III.

Users executed tasks in three different projects. Each par-
ticipant had time to read the assignment and ask questions
about them. After that, they had to announce when they started
and ended each task through verbal expression. The maximum
duration of the evaluation was 40 minutes. At the end of the
assessment, each participant answered a post-test questionnaire
and expressed their opinions and suggestions for improving
UtopicSense.

While conducting the assessment, each of the four users
performed 17 tasks. The evaluation includes a total of 68
tasks executed by users. Fig. 19 illustrates the proportion
of tests completed without mistakes, with mistakes, and not
completed. We can observe that users could succeed in many
tasks without errors (85.3%, corresponding to 58 tests) and
concluded a lower percentage of tasks with mistakes (14.7%,
corresponding to 10 tests). There were no tasks without

Fig. 15. UtopicSense shaders usage.

Fig. 16. Particle emission speed.

Fig. 17. UtopicSense applied to a 2D topdown game.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



Table III
TASKS USERS EXECUTED IN UTOPICSENSE DURING ITS EVALUATION

T1 - Open the UtopicSense tool
T2 – Apply effect type 1 in an object
T3 – Make the effect range bigger
T4 – Change the effect speed in an object
T5 – Apply the effect in other two different objects
T6 – Change the effect type
T7 – Change the texture related to an effect type
T8 – Change effect colors
T9 – Change the shader applied to the effect
T10 – Delete the effect in only two objects in the scene
T11 – Change the colors back to the default ones
T12 – Change the tool into simplified mode
T13 – Delete all effects in the scene
T14 – Apply the effect in the controlled character
T15 – Apply the visual effect in the bombs
T16 – Turn down the volume effect in the bombs
T17 – Apply the effect in the “Spitter” enemy

completion during the evaluation process.
Table IV specifies tasks completed with no mistakes and

with mistakes for each user. This table shows which tasks
concentrated the most errors on their execution.

Task 17 (T17 - Apply the effect in the “Spitter” enemy) had
a greater incidence of conclusion with a mistake. Tasks 3 and
4 (T3 - Make the effect range bigger, T4 - Change the effect
speed in an object) also added to the number of mistakes, with
half of the participants making mistakes on the task execution.

The errors in Task 17 allowed us to identify the need to add
more messages for the user to better recover from mistakes.
While performing the task, the tool did not inform users
if they applied the effect on objects that did not have an
AudioSource attached. Players tended to run the project
multiple times to see if the effect worked until they found out
that they had just added the effect in an object without an
AudioSource component.

Fig. 18. UtopicSense applied to a 2D complex scenario.

Fig. 19. Ratio of task execution results in the user evaluation.

Table IV
INDEX OF TASK EXECUTION RESULTS

Tasks U1 U2 U3 U4
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17

Legend: No mistakes in completing the task
Task completed with mistakes

In Task 3, users, in general, tried to complete the task
by changing the effect’s speed emission first before figuring
out they had not changed the range with that option. In the
questionnaire answered by the participants, the results were as
follows:

• 3 of 4 users considered that the tool completely met the
requirement of being easy to learn. Only one considered
that it partially complied and recommended the use of
more messages to recover from errors.

• All users found that the tool met the requirements for
ease of use, flexibility, productivity, satisfaction, and
usefulness.

• Regarding the safety of the tool for the end user’s
(player’s) health, 2 of the participants considered that this
analysis does not apply to the situation of UtopicSense
and the others stressed the importance of making it clear
somewhere in the tool about the association of specific
color patterns to epilepsy.

Based on these results, we incorporated a warning about
specific color patterns in epilepsy cases. We highlight this
subject in the help window in the tool’s color section.

In general, the participants expressed positive reactions
towards the tool, describing it as intuitive. All users tended
to complete tasks already involving subsequent steps before
being asked to do them. This situation allowed the users to
build prior knowledge about some features before using them
in a subsequent task. This situation indicates that theinterface
instigated curiosity and the software functions complement
each other.

On the other hand, users also recommended some modifica-
tions to favor the tool’s communicability. Some UtopicSense’s
section titles could be more clearly associated with correlated
functionality. An example of this situation was the suggestion
to change the word “Type”, which defines effect types to the
term “Effect”, in addition to the idea to change “Change Effect

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



Intensity” to “Change Effect Speed.”
Other problems frequently observed resulted in more mes-

sages to help avoid mistakes in the tool. An example of
this situation is that most users tended to apply effects to
objects that did not have an AudioSource component. Users
also found it difficult to perceive some features of the tool
that involved changing Unity’s parameters outside the tool’s
interface, such as the maximum distance of a source.

VII. CONCLUSION

The objective of this work was to build and present a tool
to promote the use of synesthesia as an assistive resource in
2D games inside Unity. By using UtopicSense, Unity game
developers can leverage the resources implemented in the tool
to add algorithmic synesthesia to their projects without the
need for programming. Following the proposed methodology
to create the tool, we first gathered requirements based on
the observation of aspects to improve accessibility in existing
2D games. After that we implemented a tool prototype with
base functions for the synesthesia approach. Subsequently,
we added an interface with more features and control of the
parameters to allow the customization of the generated visual
effects. We then tested the tool in different game projects and
conducted a preliminary user test focused on the usability of
UtopicSense. From such tests, we identified improvements and
limitations. Many test results will also serve as input for the
developing new features and future corrections.

This work brings contributions such as the reflection on
problem occurrences that can compromise the accessibility of
deaf and hard-of-hearing people in 2D games. The most promi-
nent contribution is the possibility, through UtopicSense, of
improving accessibility in games. The tool can also contribute
to studies and analyses related to the mapping of sound signals
into images (e.g., analysis of frequency incidence in audio).
In addition, the availability of the tool enables new studies on
the effectiveness and efficiency of synesthesia to communicate
sound information in games.

As future work, it is intended to increase functionality
in the tool and extend its application to 3D games, which
have more weaknesses regarding accessibility for people with
some hearing impairment. Also, we will implement gradual
improvements in the usability and communicability aspects
of UtopicSense to make the application of visual effects in
the tool even more flexible and increasingly attractive to
developers. We will also use the tool to study the use of
synesthesia as an assistive resource with the aid of deaf people
and people with hearing impairment to improve the tool based
on the perspective of this audience.

REFERENCES

[1] A. Carmo, “Esporte, lazer e os “deficientes”,” Deficiência fı́sica: a
sociedade brasileira cria, recupera e discrimina, pp. 127–156, 1991.

[2] K. Bierre, M. Hinn, T. Martin, M. McIntosh, T. Snider, K. Stone, and
T. Westin, “Accessibility in games: Motivations and approaches,” White
paper, International Game Developers Association (IGDA), 2004.

[3] A. S. Bastos, R. F. Gomes, C. C. dos Santos, and J. G. R. Maia,
“Synesthesia: A study on immersive features of electronic games,” SBC
Journal on Interactive Systems, vol. 9, no. 2, pp. 38–51, 2018.

[4] F. R. S. Coutinho, “Revisiting game accessibility for deaf and hard of
hearing players,” 2012, [Master thesis, UFMG].

[5] C. L. Siying Liang, “Synesthesia and its implications on video game de-
sign,” Design Engineering, pp. 995 – 1002, Dec. 2020. [Online]. Avail-
able: http://thedesignengineering.com/index.php/DE/article/view/1136

[6] GameDesign, “The top 10 video game engines,”
https://www.gamedesigning.org/career/video-game-engines/, 2018,
access: 2018-12-03.

[7] F. Tanant, “The top 10 video game engines,”
https://www.websitetooltester.com/en/blog/best-game-engine/, 2018,
access: 2018-12-03.

[8] Unity, “Games made with unity,” https://unity3d.com/pt/games-made-
with-unity, 2018, access: 2018-12-03.

[9] S. R. Basbaum, “Synesthesia and digital perception,” Subtle Technolo-
gies Festival, Toronto, pp. 01–20, 2003.

[10] ——, Sinestesia, arte e tecnologia. Annablume, 2002, vol. 173.
[11] R. T. Dean, M. Whitelaw, H. Smith, and D. Worrall, “The mirage of real-

time algorithmic synaesthesia: Some compositional mechanisms and
research agendas in computer music and sonification,” Contemporary
Music Review, vol. 25, no. 4, pp. 311–326, 2006.

[12] N. Sagiv, R. T. Dean, and F. Bailes, Algorithmic synesthesia. na, 2009.
[13] A. S. Bastos, R. F. Gomes, C. C. dos Santos, and J. G. R. Maia,

“Synesthesia: A study on immersive features of electronic games,” SBC
Journal on Interactive Systems, vol. 9, no. 2, pp. 38–51, 2018.

[14] Journey, (2012) Thatgamecompany. [Online]. Available:
http://thatgamecompany.com/journey/

[15] J. M. E. d. Silva, A. d. Castro Callado, and P. M. Jucá, “Representing
sentiment using colors and particles to provide accessibility for deaf and
hard of hearing players,” 2018.

[16] F. Coutinho, R. O. Prates, and L. Chaimowicz, “An analysis of infor-
mation conveyed through audio in an FPS game and its impact on deaf
players experience,” in 2011 Brazilian Symposium on Games and Digital
Entertainment. IEEE, 2011, pp. 53–62.

[17] The Legend of Zelda: link to the Past, (1991) Nintendo, [SNES Car-
tridge].

[18] Limbo, (2010) Playdead. [Online]. Available:
http://playdead.com/games/limbo

[19] Mark of the Ninja, (2012) Klei Entertainment. [Online]. Available:
https://www.klei.com/games/mark-ninja

[20] Ori and the Blind Forest, (2015) Moon Studios. [Online]. Available:
http://www.oriblindforest.com/

[21] Rayman Origins, (2011) Ubisoft. [Online]. Available:
https://www.ubisoft.com/en-gb/game/rayman/origins

[22] Rayman Legends, (2013) Ubisoft. [Online]. Available:
https://www.ubisoft.com/pt-br/game/rayman/legends

[23] Shadow Dancer, (1989) Sega, [Sega Genesis Cartridge].
[24] Sonic Mania, (2017) Sega. [Online]. Available:

https://www.sega.com/games/sonicmania
[25] Sonic the Hedgehog, (1991) Sega, [Sega Genesis Cartridge].
[26] Sonic the Hedgehog 2, (1992) Sega, [Sega Genesis Cartridge].
[27] Streets of Rage, (1991) Sega, [Sega Genesis Cartridge].
[28] B. Yuan, E. Folmer, and F. C. Harris, “Game accessibility: a survey,”

Universal Access in the Information Society, vol. 10, no. 1, pp. 81–100,
2011.

[29] D. N. Nogueira, F. R. Coutinho, W. Soares Jr, R. O. Prates, and
L. Chaimowicz, “Analyzing the use of sounds in fps games and its
impact for hearing impaired users,” Proceedings of SBGames SBC, pp.
127–133, 2012.

[30] R. da Silva Lima et al., “Da nota ao som: explorando territorios
harmonicos,” Ph.D. dissertation, Universidade Estadual de Campinas
(UNICAMP). Instituto de Artes, 2009.

[31] F. J. Harris, “On the use of windows for harmonic analysis with the
discrete fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp.
51–83, 1978.

[32] J. S. Bendat and A. G. Piersol, Random data: analysis and measurement
procedures. John Wiley & Sons, 2011, vol. 729.

[33] C. Roads and J. Strawn, The computer music tutorial. MIT press, 1996.
[34] D. Hammersho/i and H. Mo/ller, “Sound transmission to and within the

human ear canal,” The Journal of the Acoustical Society of America,
vol. 100, no. 1, pp. 408–427, 1996.

[35] S. Barbosa and B. Silva, Interação humano-computador. Elsevier
Brasil, 2010.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021


