SBC — Proceedings of SBGames 2021 — ISSN: 2179-2259

Computing Track — Full Papers

Assessing the Robustness of Deep Q-Network
Agents to Changes on Game Object Textures

Paulo Bruno S. Serafim
Instituto Atldntico
Fortaleza, Brazil

paulo_serafim @atlantico.com.br Fortaleza, Brazil

yuri@dc.ufc.br

Abstract—The research in autonomous agents aspires to
achieve Artificial General Intelligence, where agents, like humans,
are able to understand concepts and learn how to solve tasks.
We would like to observe this ability on game agents as well.
Recent research on autonomous agents for game playing uses a
combination of Deep Neural Networks and Reinforcement Learn-
ing algorithms. Commonly, Neural Networks present vision-based
models, usually Convolutional Neural Networks (CNN). However,
those models can undergo performance degradation when dealing
with different pixel patterns, an issue that also happens with
vision-based autonomous agents in games. Prior works have
shown that CNN-based autonomous agents cannot reproduce the
behavior learned in one scene when they are placed into a brand
new version with different textures. In this work, we evaluate
whether the agents educe high-level elements, such as enemy,
foreground, and background. Instead of testing the agent in a
completely different scene, we designed two experiments based on
slight changes. In the first experiment, we change only a subset
of the game objects. In the second experiment, the agents play in
an interpolated version of two scenes. Even when changing only
a single game object texture, the agents are not guaranteed to
present good behavior. We show that, depending on the training
scenario, the agents are not fully robust to generalize a high-level
concept of game objects.

Index Terms—autonomous agents, deep reinforcement learn-
ing, digital games, first-person shooter games

I. INTRODUCTION

In the search for Artificial General Intelligence (AGI), we
would like to develop autonomous agents capable of recog-
nizing high-level concepts inside their testing environments.
For example, in vision-based tasks, humans can easily identify
objects. That ability helps us to understand what we are
seeing. We do not look at a forest and see green and brown
dots, we see trees. The modern vision-based models used in
autonomous agents are also interested in that kind of semantic
segmentation.

In the last decade, we witness important advances concern-
ing agents in the domain of games. First, autonomous agents
learned how to master several Atari games [1], [2]. Now,
the agents can master all Atari games [3]. The defeat of the
world’s champion of the highly complex table game Go by an
autonomous agent was greatly publicized [4]. That agent was
later generalized to play Go, Chess, and Shogi [5]. The agents
were also able to achieve high performance in 3D games like
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ViZDoom [6]. And, more recently, highly complex competitive
multiplayer games, like Dota [7] and StarCraft IT [8].

Autonomous agents developed in those works have one
feature in common: they are all Deep Reinforcement Learning
(DRL) agents. As the name suggests, this method uses Deep
Neural Networks combined with Reinforcement Learning al-
gorithms. One of the most common types of Neural Networks
for vision-based tasks, like the examples presented above, is
Convolutional Neural Network (CNN).

Since we are interested to move towards AGI, we would like
to develop agents capable of segmenting the visual aspects
of the games in a way similar to humans. Today, we know
that CNNs can present some limitations, which lowers our
confidence in the current methods. For example, CNNs are
very sensitive to specific changes, which could lead from good
to poor performance when changing only a single pixel [9].
Prior works have also shown that CNNs used in DRL are not
robust to texture changes in games as well [10]. However, as
far as we know, nobody is aware of the full extent of this
limitation.

In this work, we evaluate the limitations of DRL agents
when facing game objects with different textures. To assess the
magnitude of those issues, we answer four questions: (i) is the
agent able to maintain its performance when we change the
texture of a single object? (ii) is there a correlation between the
performance of the agent and the game objects whose textures
were changed? (iii) is the amount of performance degradation
related to the number of pixels changed? (iv) can we observe
any pattern of performance degradation when the textures are
changed gradually?

To answer those questions, we extend the work of Serafim et
al. [10] to change the textures of all game objects. In [10], four
agents were trained in four different scenes of ViZDoom [11],
a Doom-based First-Person Shooter research platform, and
tested in different scenes. This was enough to verify that the
agents are not able to generalize their behavior. However, to
better understand this limitation, we designed more elaborated
experiments, in which each agent is tested in different scene
configurations.

We designed two distinct experiments. The first one tests
the agents in scenes where at least one game object texture
was replaced with a different version. Running this experiment
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3. The agents are also tested in interpolation of two environment versions
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Fig. 1. Summary of the experiments performed. (1) Four agents were previously trained in four different versions of a ViZDoom environment. (2) To evaluate
agents’ performance with unseen versions of the same game objects, we test them across all possible texture combinations. (3) To verify if the performance
degradation follows any pattern, the agents are tested in scenes with an interpolation of pixel values.

with all possible combinations of texture changes, we are able
to answer questions (i) and (ii). To answer questions (iii) and
(iv), we created custom scenes by interpolating two of the four
original scenes. With the interpolations, we can evaluate the
gradual performance changes of each agent. These experiment
processes are summarized in Fig. 1.

We show that, depending on the scene where the agents
are trained, they present a different sensibility to single game
object texture changes. Therefore, the choice of the training
scene can have a huge impact on the robustness of the model.
Moreover, we observed that the agents present a performance
degradation pattern that follows the number of changes in
pixel values. The results would assist us to encounter specific
model improvements that can support the future development
of agents fully robust to texture changes.

This paper is organized as follows. In Section II, we present
the three works that inspired the creation of the experiments
presented in this paper. In Section III, we present a brief de-
scription of DRL. In Section IV, we present the environment,
test scenes, model parameters, and describe the configurations
of the performed experiments. In Section V, we present the
results and discuss them. Finally, in Section VI, we present
closing remarks and propose future works.

II. RELATED WORKS

In this section, we present three works that evaluate the
performance of DRL autonomous agents when placed in
environments with texture changes. They all inspired the
development of this work and the designed experiments.

Chaplot and Lample [12] used a general approach to train an
agent on ViZDoom environments with random textures. After
the training is done, the agent is tested with unseen random
textures on the same map. When training with a low amount of
randomness, the agents do not present a robust performance.
However, after training with several random textures, the
agents are not affected by texture changes anymore when

tested. Although effective, this strategy relies on the fact that
multiple random textures are available to the training phase.
In our work, we would like to consider a more human-like
learning, evaluating whether or not an agent can generalize its
behavior training in a single scene with given textures.

Moreover, the authors do not perform further analysis of
the random texture training and its impact on the results. For
example, we do not know how each texture change impacts
the learning, which could be useful to reduce the necessary
training data. In this paper, we try to evaluate those questions
by testing all combinations of textures and also creating
interpolation versions of two given scenes.

Dubey et al. [13] make a series of ablation studies on the
impact of human priors on the performance of an agent. The
authors compared the results obtained by agents and humans
in different versions of a game. They create a 2D platform
game and modified its textures increasing the difficulty to the
human players. The goal of the paper was to investigate the
importance of human priors in performance on gameplay. They
found that the agents can learn the game with the same effort,
regardless of texture version. However, the human players’
performance decreased significantly when the textures were
not related to known objects.

The results indicate that prior human knowledge is not
a factor for the agents. Therefore, they could learn much
easier than human players when there is no visual aspect to
indicate the role of each game object. Instead of comparing
the performance of agents and human players, we want to
evaluate the ability of agents when trained and tested with
different texture versions. This could help us to assess the
robustness of DRL autonomous agents to brand-new versions
of the same game objects.

Serafim et al. [10] present the closest work to our proposal.
In fact, our evaluation is an extension of their experiments,
in which they tested four custom versions of a ViZDoom
environment. First, they trained one agent in each version.
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Then, all agents were tested in all scenes. Therefore, if the
agents were robust to texture changes, all of them would
present good performance in all tested cases.

The authors found that a CNN-based agent cannot general-
ize its behavior for the scenes in which they were not trained.
Considering the twelve test cases in different scenes, only one
agent was able to succeed. Their experiments indicate that the
agents are not able to generalize what they learned. However,
to have more insights into how to construct better agents, we
have to investigate what the agents can understand or not.
In our work, we want to expand those findings and evaluate
whether or not the agents can focus on specific game objects,
which is not possible when testing in a completely different
scene. The results could lead us to appropriate changes in
the agents’ settings towards the direction of achieving gen-
eralization. Another important aspect to highlight is that the
authors did not consider possible internal correlations of the
scenes in order to find any possible pattern in the performance
difference, which we also evaluate in the following sections.

III. BACKGROUND

In this section, we describe the methods used to allow the
agent to learn good behaviors through interaction with the
environment.

A. Reinforcement Learning

Reinforcement Learning is an area of Machine Learning
that presents techniques to solve interactive problems based
on trial-and-error. Unlike Supervised Learning, Reinforcement
Learning methods do not rely upon a correct answer, instead,
we have a response from a critic. Moreover, unlike Unsuper-
vised Learning, we do have a response, but in the form of a
scalar signal, called reward.

The classic interaction dynamics involve two main entities:
an agent and an environment. The agent receives the current
state, Sy, from the environment, executes an allowed action,
Ay, obtains a reward, Ry 1, and goes to a new state, Sy, with
a given probability, P, ;. Formally, Reinforcement Learning
is typically stated as Markovian Decision Processes, defined
by the state space, S, the action space, A, the probability
distribution, P S x AxS — [0,1], and the reward
distribution, R : S x A x S — R.

In Reinforcement Learning, the goal is to find a function that
returns the probability of executing each possible action for
every state. This function is called policy, 7 : S x A — [0, 1],
which effectively describes the behavior of an agent. Ideally,
we would like to find the optimal policy, 7., for each problem.

Generally speaking, in order to achieve good behavior, the
agent has to try all possible states and actions. In fact, several
Reinforcement Learning algorithms are only guaranteed to find
an optimal policy if every state is visited at least once. In
practice, however, most methods will converge to the optimal
policy if the agent visits all states multiple times [14].

A fully greedy agent, with a deterministic policy, would
follow the same path every time, which prevents it to test all
possibilities. In this case, we say that the agent is exploiting
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the environment. However, we would like to observe the agent
visiting all paths. In other words, the agent should explore all
the possibilities. Thus, we must ensure that the agent always
has a positive probability of executing every action.

There are several exploration strategies, but the most com-
mons are the ones called e-strategies [14]. In those approaches,
the agent has a big probability of choosing the greedy action
and a small probability of choosing a random action, which
is enough to allow a full environment exploration. The agent
used in this paper was trained with an e-decay strategy. In
the first epochs, the knowledge of the environment is still
unknown, therefore, it always executes a random action. Then,
the probability of executing a random agent decays while the
policy is converging. In the last epochs, the agent executes the
greedy action with a high probability.

B. Q-Learning

Q-Learning [15] is the Reinforcement Learning algorithm
used in this work. In its traditional definition, Q-Learning uses
a tabular representation to relate the state-action pairs with the
rewards. Each entry in the table stores the current Q-values,
Qr(A; | St), the expected total reward after executing A; in
S; and then following 7. After each iteration, the Q-values are
updated according to the rule that

Qnl(Ar| $1) « QulAr | S1)+alys = Qu(Ai | S|, (D

where
Yt = Rip1 +7Qx(Air1 | Sevr), )

and + is the discount factor. Note that 0 < + < 1, such that
7 decreases the value of future rewards, which gives more
importance to immediate rewards and ensures the convergence
in continuous tasks.

As the action and state spaces grow, the table size grows
exponentially. Therefore, using a tabular method becomes
unfeasible. One alternative to this problem often used recently
is the approximation of Q-values in the form of Deep Neural
Networks.

C. Deep Q-Networks

Using Neural Networks with Reinforcement Learning algo-
rithms is not a new approach [16]. However, in the last years,
with the popularization of Deep Neural Networks, a novel
method called Deep Q-Networks was developed using Con-
volutional Neural Networks and Q-Learning to solve several
Atari 2600 games [2].

Instead of using a table to store the Q-values, the Deep
Neural Network with weights 6 approximates Q. (A; | St).
After training, Qg,(A: | St) = Qnr, (A: | St). To train the
model using Stochastic Gradient Descent, we need the loss
function L,(6;) and its gradient Vg, L.(6;). The loss is a
version of the update rule (1) and they are defined such that

Lu(6:) = E[ (5~ Qu, (4, )] )
and

Vo, Lu(6:) = E[ (s — Qo (4: | $)V0,Qo,(Ar | S| @)
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One problem with the use of Neural Networks is that while
the agent is playing the game, the frames are closely related.
This causes the Neural Network weights to change towards the
current images, essentially “forgetting” the past experiences.
To break this correlation, Deep Q-Networks use Experience
Replay [17]. The frames are first stored in a structure called
Replay Memory, then a sample from the memory is taken
and passed as input to the model. Since the Neural Network
is now being updated with images from different interaction
moments, which are not correlated, the trained model is robust
to frame changes.

IV. METHODOLOGY

Inspired by the works presented in Section II, we designed
two experiments to evaluate the extension of the limitations
of the agents when faced with different textures of the same
game objects in which they were trained. We use the agents
developed by [10] and create custom versions of ViZDoom’s
scenes [11] to execute the tests.

A. Environment

The agents were trained in four different scenes: the original
Basic environment from ViZDoom [11] and three variations
of it. All versions follow the same general gameplay as the
Basic version. The environment is a four-side room with only
one static monster enemy. An episode starts with the agent on
the opposite side of the enemy. The agent always starts at the
center, while the monster starts at a random position. After
being spawned, the monster will not move until the end of the
episode. Next, we describe the specific scenes’ characteristics.

1) scenes: Each scene is a variation of the standard Basic
scene. All of them are shown in Fig. 1-1.

Basic. It is the standard basic scene present in ViZDoom.
All sprite textures are the default monster, ceiling, walls, and
floor versions from the library.

Caco. It is a scene in which the textures used on the ceiling,
on the walls, and on the floor are identical to those on the Basic
version, but the monster’s texture was changed to the original
Doom’s Cacodemon sprite. This scene simulates a different
visual appearance of an enemy with the same behavior.

Flat. In this scene, all textures are replaced by flat colors
for every game object. The ceiling is gray, the walls have a
dark brown texture, the floor is light brown, and the monster
is a dark blue rectangle. This scene simulates an older, low-
resolution version of the environment.

Animated. In this scene, we want to emulate a new version
of the game, with a more sophisticated environment, where
the floor, the ceiling, and the walls are animated textures with
colored patterns. The monster, however, is the default version.

2) Different Textures: There are exactly three texture ver-
sions for each of the four game objects.

Monsters. The original monster from ViZDoom is used in
Basic and Animated scenes (Fig. 2a). The Flat version is a
full dark blue sprite (Fig. 2b), which relates with the blue
patches in the original version. The Caco version is mostly
red (Fig. 2c) and very different from the Basic monster.
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(b) Flat.

(a) Basic and Animated.

(c) Caco.

Fig. 2. Monster texture used in each scene.

Ceiling. The Basic and Caco ceiling have a gray grid pattern
(Fig. 3a). The Flat version is a purely gray texture (Fig. 3b).
The Animated version presents blueish patches (Fig. 3c).

(b) Flat. (c) Animated.

(a) Basic and Caco.

Fig. 3. Ceiling texture used in each scene.

Walls. The Basic and Caco walls have a brick texture
(Fig. 4a). The Flat version is a purely dark brown texture
(Fig. 4b). The Animated version presents greenish patches
(Fig. 4c).

(b) Flat. (c) Animated.

(a) Basic and Caco.

Fig. 4. Wall texture used in each scene.

Floor. The Basic and Caco floor have a wooden texture
(Fig. 5a). The Flat version is a purely light brown texture
(Fig. 5b). The Animated version presents reddish patches
(Fig. 5¢).

(a) Basic and Caco. (b) Flat. (c) Animated.

Fig. 5. Floor texture used in each scene.

3) Action Space: There are three possible actions: move
horizontally to the left, move horizontally to the right, and
shoot. ViZDoom considers an action as a binary value. There-
fore, at each step, the output should tell us what actions should
be executed or not. In the environment used in this work, the
action space comprises eight discrete combinations of three
binary choices.

4) Reward Distribution: We use the sum of rewards re-
ceived in each step to evaluate the performance of the agents.
The reward values are already defined in ViZDoom and in the
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custom scenes. The agent receives a score of —1 at every step,
which encourages it to kill the monster faster. When the agent
shoots, it receives a score of —5. Since a single shot is enough
to kill the monster, the agent will also be encouraged to kill it
by shooting only once. When the monster is killed, the agent
receives a score of 100.

B. Neural Network Settings

We use the trained agents made available by [10]. Therefore,
the agents have the same settings. Although we do not train
the Neural Network, we briefly describe its settings in this
section, which also helps with the reproduction of our work.

1) Inputs and outputs: The network input is a grayscale
image of (64 x 48) pixels. Besides the reduction in the input
size, the use of grayscale images also helps to avoid a network
bias towards the pixel colors. Every pixel is a floating-point
value in the range [0.0, 1.0], in which 0.0 is a pure black pixel,
and 1.0 is pure white. Following the action space described
in Section IV-A3, there are 8 output neurons, one for each
combination of actions. Every output returns a float value that
represents the action-value ) of the corresponding action.

2) Architecture: The first two layers of the Neural Network
are convolutional (conv). The first conv layer has 32 filters,
a kernel of size (4 x 4), and a stride size of (2 x 2). The
second conv layer has 64 filters, also with a kernel of size
(4 x 4) and stride of size (2 x 2). In all conv layers, the
activation function is ReLU [18], [19] with weights initialized
using Glorot’s uniform initialization [20]. The output of the
second conv layer is flattened into an array of 8960 neurons,
which are fully connected with 512 neurons. These neurons
are fully connected with the output of 8 neurons. The model
uses Adam optimizer [21] and a mean squared error loss given
by (3). An illustration of the architecture is shown in Fig. 6.

C. Experiments

We developed two kinds of experiments to better understand
the behavior of the agents. They were designed to answer the
four questions proposed in Section I.

Convolution 1
Kernel: 4 x 4
Stride: 2 x 2

32 feature maps

Shape: 32 x 24

Convolution 2
Kernel: 4 x 4
Stride: 2 x 2

64 feature maps

Shape: 16 x 12

Input
Gray scale image
Size: 64 x 48
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1) Combinations: To evaluate if the agents can maintain the
same performance when changing specific textures, not the full
scene, we create custom scenes combining all game objects
with different textures. For example, one scene combines the
monster and the ceiling from the Basic version with the walls
and the floor from the Flat scene. This experiment will also
tell us whether there is any correlation of the game objects
with the agent’s performance. If any game object has a higher
impact on the agent’s performance, we will see it in the results.

In the case of Basic and Caco, the only possible combination
is the full Caco scene (Fig. 1-1). There are 14 possible
combinations of Basic and Flat scenes, which are presented in
Fig. 7. For the Basic and Animated combinations, there are six
possible combinations, as shown in Fig. 8. This adds up to a
total of 24 tested combinations, including the original versions
of the four scenes.

2) Interpolation: We created the second part of the exper-
iments making an interpolation of each custom scene with
Basic. The interpolation uses a percentage of the pixel values
from the Basic scene with the complementary percentage of
pixel values coming from the other scene. For example, in
an interpolation version of Basic and Animated with 25% of
Animated, 75% of every pixel value comes from the Basic
scene, and 25% of the values come from the Animated scene.

ViZDoom does not accept translucent pixels. Therefore,
when interpolating non-overlapping pixels, they will have the
color of the front texture or fully transparent. This is not
apparent in the Basic and Caco interpolation, since the textures
of both monsters are similar. However, when interpolating
the original monster with the blue square texture of the Flat
version, the difference is clear. For the 25% Flat interpolation,
the majority of transparent pixels of the Basic version make
the border around the transparent monster. Analogously, the
majority of pixels from the Flat texture in the 75% version
creates a blue border around the monster. For the 50% version,
in which the proportion of transparency and opacity is equal,
we decided to create two versions: one without a blue border
and another with a blue border.

All interpolations of Basic and Caco are shown in Fig. 9.
There are six interpolations of Basic and Flat, counting the

Output
Fully connected

Fully connected
8 neurons

512 neurons

Fig. 6. Neural Network architecture. Reproduced with authorization of Serafim et al. [10].
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(a) Only ceiling. (b) Only walls.

(e) Walls, floor, and monster. (f) Ceiling, floor, and monster.

(i) Ceiling and monster.

(1) Floor and walls.

(j) Floor and monster.

(m) Ceiling and walls.
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(c) Only floor. (d) Only monster.

(g) Ceiling, walls, and monster. (h) Ceiling, walls, and floor.

(k) Walls and monster.

(n) Ceiling and floor.

Fig. 7. All combinations of Basic and Flat scenarios.

two versions of 50%, one without blue borders, and another
with blue borders, which are presented in Fig. 10. The five
interpolations of Basic and Animated are shown in Fig. 11.

D. Testing Regime

All agents are tested for 200 hundred episodes and the
presented results are the average scores. In each episode, the
monster appears in a different position. However, to ensure a
fair comparison between the agents, the initial positions are
the same across all the experiments. We can guarantee that all
agents face the same problem using a list of episode seeds,
which is shared among all agents independently of the scene.

E. Running an agent

The frame returned by ViZDoom is preprocessed and passed
to the Neural Network. The model is executed and, for each
input, the agents choose the action with the highest Q-value.

Note that all the agents were already trained, thus there is
no model update. Since the difference of consecutive frames
is very subtle, we repeat an action for four frames, which
increases the testing speed without any noticeable performance
loss. Then, the action is executed and this process is repeated
until the end of the episode.

V. RESULTS AND DISCUSSION

This section presents the scores of each agent in all tested
cases. We also discuss the results that presented the most
notable behaviors. Note that when the monster appears in the
middle of the screen and the agent shoots immediately, the
total score will be 95. If the agent does not move or shoot at
all, the total reward will be —240. If the agent moves randomly
and shoots aimlessly, the score will be a large negative value,
depending on whether or not it killed the monster. In the worst
case, the agent receives a score of —345.
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(a) Only ceiling.

(d) Floor and walls.

(b) Only walls.

(e) Ceiling and floor.

(c) Only floor.

(f) Ceiling and walls.

Fig. 8. All combinations of Basic and Animated scenarios.
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Fig. 9. Basic and Caco interpolation scenes. From left to right: 0% Caco, 25% Caco, 50% Caco, 75% Caco, and 100% Caco.

Fig. 10. Basic and Flat interpolation scenes. From left to right: 0% Flat, 25% Flat, 50% Flat without blue border, 50% Flat with blue border, 75% Flat,

and 100% Flat.

Fig. 11. Basic and Animated interpolation scenes. From left to right: 0% Animated, 25% Animated, 50% Animated, 75% Animated, and 100% Animated.

As a reference, we used the fact that a score of around 70
or greater means that the agent presents good behavior, and is
able to kill the monster in all cases. That was chosen based
on observations of the experiments. We usually refer to that
case as good or winning behavior. In these cases, the agent
immediately moves towards the monster and kills it with a

single shot. However, any negative score means that the agent
does not kill the monster consistently. So, the agent does not
present good behavior.

A. Combinations

In the first set of experiments, we tested the agents with all
possible combinations of the Basic scene and a testing scene.
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We grouped the results according to the pair formed by the
Basic agent and the other agent. We present the results in
tables and highlight the results that stand out, positively or
negatively.

In all tables, the “Difference from Basic” column informs
the game objects whose textures were replaced by the testing
versions. A value of “None” represents the full original Basic
scene. A value of “All” represents the full custom test scene,
which can be Caco, Flat, or Animated.

1) Basic and Caco: Since the single difference from Basic
to Caco scenes is the monster, there are only two possible
combinations: the full Basic case and the full Caco case. The
Basic’s agent achieved a score of 76.92 in Basic’s scene, which
is expected since both training and testing scenes are the same.
However, in Caco’s scene, Basic’s agent achieved a score of
29.46 (Table I).

TABLE 1. BASIC’S AGENT SCORES IN BASIC AND CACO COMBINATIONS.

Difference from Basic [ Mean Score

None 76.92
All 29.46

Similarly, Caco’s agent presented a winning behavior in
Caco’s scene, with a score of 81.00. In Basic’s scene, Caco’s
agent achieved a score of 16.55, showing that it was not able
to consistently kill the monster (Table II). These results follow
the ones presented in [10].

TABLE II. CACO’S AGENT SCORES IN BASIC AND CACO COMBINATIONS.

Difference from Basic ‘ Mean Score

None 16.55
All 81.00

2) Basic and Flat: From [10], we know that the Basic’s
agent presents good behavior in both scenes, thus we would
expect it to obtain good scores in all test cases. The results
presented in Table IIT show that this is what happens with some
variations, although the two highlighted cases have scored a
little under 70.

TABLE III. BASIC’S AGENT SCORES IN BASIC AND FLAT COMBINATIONS.

Difference from Basic \ Mean Score

None 76.92
Ceiling 64.25
Ceiling, Floor 64.71
Ceiling, Floor, Monster 74.32
Ceiling, Monster 73.85
Floor 76.74
Floor, Monster 76.93
Floor, Monster, Wall 75.90
Floor, Wall 80.26
Monster 77.79
Monster, Wall 78.14
Monster, Wall, Ceiling 72.40
Wall 80.16
Wall, Ceiling 79.85
Wall, Ceiling, Floor 79.99
All 72.70

This experiment presents remarkable findings. The Flat
agent is capable of achieving a winning behavior when the
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monster is the blue texture (Table IV). However, when the
monster has the original texture, the agent does not move or
shoot at all. In this case, we can see that this agent learned
to recognize the full blue texture pattern as target. However,
this is not enough for us to affirm that it learned the concept
of ”monster” game object because the agent did not execute
any action when the monster was presented with a different
texture.

TABLE IV. FLAT AGENT SCORES IN BASIC AND FLAT COMBINATIONS.

Difference from Basic ‘ Mean Score

None -240.90
Ceiling -237.79
Ceiling, Floor -237.64
Ceiling, Floor, Monster 75.50
Ceiling, Monster 75.45
Floor -240.04
Floor, Monster 75.48
Floor, Monster, Wall 76.39
Floor, Wall -239.61
Monster 75.57
Monster, Wall 76.24
Monster, Wall, Ceiling 76.52
Wall -239.87
Wall, Ceiling -238.85
Wall, Ceiling, Floor -238.76
All 76.71

3) Basic and Animated: When we changed any of the game
objects, the Basic agent could not achieve a winning behavior.
As seen in Table V, it presented the highest score when the
walls were changed, with a mean score of 57.28. However,
even in this case, it fires shots constantly, no matter the
monster’s position. Nevertheless, it still achieved scores greater
than the minimum, with the lowest one being —152.02. This
happens because the agent keeps shooting endlessly, which
grants it some random Kkills.

TABLE V. BASIC AGENT SCORES IN BASIC AND ANIMATED
COMBINATIONS.

Difference from Basic [ Mean Score

None 76.92
Ceiling -88.53
Ceiling, Floor -126.31
Floor -152.02
Floor, Wall -137.80
Wall 57.28
Wall, Ceiling -55.76
All -140.79

The Animated agent can achieve scores close to optimal in
the versions with an animated floor. Analyzing the behavior
of the agent, it correctly learned to move towards the monster.
However, the agent sometimes shoots when the monster is
not yet in front of it, which makes it miss some shots, and
decreases its mean score.

B. Interpolation of scenes

In the second part, we tested the agents in the interpolated
versions of Basic with the three custom scenes. The results
are presented for each pair, according to the experiment.
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TABLE VI. ANIMATED AGENT SCORES IN BASIC AND ANIMATED
COMBINATIONS.

Difference from Basic \ Mean Score

None -54.40
Ceiling -50.23
Ceiling, Floor 62.20
Floor 53.49
Floor, Wall 63.63
Wall -24.18
Wall, Ceiling -33.94
All 71.33

1) Basic and Caco: With 25% Caco, we can see already
a considerable performance improvement. The red pixels are
present and the agent is able to correctly identify the monster
in all cases. Starting from the 50% Caco version, most pixels
of the monster are reddish and there are barely any blue pixels,
which leads to a good performance. In fact, in all of the last
three versions, Caco’s agent obtained winning scores. Basic’s
agent, however, had an almost linear performance degradation.
This indicates that its ability to identify the monster decreases
almost in pair with the increasing percentage of changes
(Table VII).

TABLE VII. MEAN SCORES IN BASIC AND CACO INTERPOLATION.

Agent | 0% | 25% | 50% | 75% | 100%
Basic | 76.92 | 68.14 | 51.58 | 48.54 | 29.46
Caco | 1655 | 6345 | 7542 | 78.69 | 81.00

2) Basic and Caco: The Flat agent had a very poor per-
formance in the version with 25% Flat interpolation, and also
with the 50% interpolation without the blue border. When the
monster has a distinct blue border, the Flat agent can perform
well. However, if the monster does not have a clear blue
border, the agent did not move or shoot at all. These results,
which can be found in Table VIII, corroborate the findings
presented in Section V-A and demonstrate the importance of
creating the two 50% versions. The Basic agent presented a
winning behavior in all cases, as we expected since in all cases
of combinations (Section V-A) it achieves good results.

TABLE VIII. MEAN SCORES IN BASIC AND FLAT INTERPOLATION.
501 DOES NOT HAVE BLUE BORDERS. 502 HAS BLUE BORDERS.

Agent [ 0% [ 25% [ 501% | 502% [ 75% | 100%
Basic | 7692 | 80.11 | 8126 | 7898 | 75.34 | 72.70
Flat 24090 | -222.51 | 2823 | 7534 | 76.56 | 76.71

3) Basic and Animated: Regarding the Animated agent,
there is a spike from 25% to 50% of the Animated scene,
which can be explained by the presence of a more noticeable
animation pattern (Table IX). In the 25% version, after the
preprocessing step to a low-resolution grayscale image, the
animation is almost imperceptible. Starting from the 50% ver-
sion, we can see that the animation is a little more noticeable
after the preprocessing step. This result indicates that besides
learning how to play the Animated scene, the performance
of the Animated agent is closely related to the animation
patterns. The Basic agent can achieve winning behavior in
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the first three versions but suffers a big drop from 50% to
75%. This performance degradation follows the inverse path
of the Animated agent, which indicates that the Basic agent
cannot differentiate the animations from the monster.

TABLE IX. MEAN SCORES IN BASIC AND ANIMATED INTERPOLATION.

Agent [ 0% [ 25% [ 50% | 75% | 100%
Basic 76.92 | 7936 [ 73.15 | -133.25 | -140.79
Animated | -54.40 | -51.60 | 2247 | 6474 | 71.33

VI. CONCLUSION

Inspired by prior works that evaluate the performance of
DRL agents when trained and tested with different textures of
a game scene, we designed several experiments to evaluate the
full dimension of the difference in performance. The experi-
ments were created to evaluate whether there are patterns in the
agents’ behavior when testing in slightly modified versions of
its training scenes. We observed that CNN-based autonomous
agents will not necessarily have good performance even if
we change only a single game object’s texture. Moreover, its
performance is closely related to how similar the tested scene
is when compared to the training scene. Therefore, instead of
learning high-level concepts of game objects, the agents learn
patterns according to the pixel values.

It is important to answer the four questions raised in Section
I to ensure that the experiments gave us meaningful results.
(i) Is the agent able to maintain its performance when we
change the texture of a single object? Firstly, the performance
difference when changing the textures depends on the training
scene. However, in most cases, the agents were not able to
maintain their scores. (ii) Is there a correlation between the
performance of the agent and the game objects whose textures
were changed? The agents present a different sensibility to
different game objects. For example, the agent trained in the
Flat scene presents good results when the monster is the blue
texture and poor behavior when the monster is the original
version, no matter the other textures. On the other hand,
the agent trained in the Animated scene presented its best
results when the floor was animated. We could not observe
any correlation with a specific game object across all agents.

To answer the last two questions, we can use the results
obtained from the interpolated experiments. (iii) Is the amount
of performance degradation related to the number of pixels
changed? In general, we observed that the performance degra-
dation is related to the interpolation values. Summing up, the
higher the proximity of the trained scene, the better the results.
(iv) Can we observe any pattern of performance degradation
when the textures are changed gradually? Although there is no
defined pattern across all agents, we can still observe that the
amount of pixel changes is directly related to the performance
degradation. For example, when Caco’s agent runs in a scene
with some red pixels in the monster, its performance is much
better.

The results obtained with the experiments performed in
this work suggest that although the agents cannot generalize
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under basic settings it is possible to avoid the performance
degradation using settings focused more on the game objects,
not on the pixel values. For example, the first experiment
indicates that some of the objects have a greater influence on
performance than others. Therefore, if the agents are trained to
learn general concepts like enemy or background, they could
be able to achieve comparable performance in all scenes.

With these insights, we suggest as future works to use
specific architectures that could be used for understanding
the game objects. For example, one can use Autoencoders,
which are responsible to deliver a semantic segmentation of
the objects, or training the agents to look at the border of
the objects. Although that would be more complex to train,
that kind of model may lead to more robust agents. Another
possibility would be to try to interpret how the agents see
the screen, i.e. how the weights of the Neural Network are
related to the outputs, using recent methods of Neural Network
Interpretability. Then, we could use that new information to
create mechanisms to eliminate the performance degradation
based only on texture changes.
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