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Abstract—This work presents a Reinforcement Learning envi-
ronment, called Gym Hero, based on the game Guitar Hero. It
consists of a similar game implementation, developed using the
graphics engine PyGame, with four difficulty levels, and able to
randomly generate tracks. On top of the game, we implemented a
Gym environment to train and evaluate Reinforcement Learning
agents. In order to assess the environment’s capacity as a
suitable learning tool, we ran a set of experiments to train three
autonomous agents using Deep Reinforcement Learning. Each
agent was trained on a different level using Deep Q-Networks,
a technique that combines Reinforcement Learning with Deep
Neural Networks. The input of the network is only the pixels of
the screen. We show that the agents were capable of learning
the expected behaviors to play the game. The obtained results
validate the proposed environment as capable of evaluating
autonomous agents on Reinforcement Learning tasks.

Keywords—autonomous agents, reinforcement learning, deep
learning, reinforcement learning environments, rhythm games,
guitar hero

I. INTRODUCTION

The interest in building machines capable of beating humans
in games is very old. In the eighteenth century, a machine
known as “The Turk” won chess matches against famous op-
ponents, such as Napoleon Bonaparte and Benjamin Franklin.
However, in the next century, that feat was revealed to be
a scam. Inside the machine, there was an experienced chess
player that decided which moves should be performed at each
moment [1]. At the end of the twentieth century, in 1997,
the victory of the IBM’s supercomputer, Deep Blue, over
the world’s chess champion, Garry Kasparov, reinforced that
interest [2].

Nowadays, works combining autonomous agents with
videogames obtained interesting results, such as the victory
of an agent over the world’s champion of Go [3] and the
first victory of an intelligent agent over a professional Star-
Craft II1 player [4]. The aforementioned advances were made

1StarCraft is a trademark of Blizzard Entertainment, Inc.

possible by the creation of a new machine learning approach
called Deep Reinforcement Learning (DRL). Mnih et al. [5],
[6] combined Deep Learning models [7], which stand out
in image-related problems, with the Reinforcement Learning
(RL) paradigm [8] to develop an agent capable of beating
human opponents in several games from the Atari 26002

console, using only the game screen as input.
However, rhythm games, a subgenre of action games that

use music as the central part of their mechanics, were little
explored in RL works, despite their great popularity [9]. Fran-
chises such as Dance Dance Revolution3, Guitar Hero4 and
Just Dance5 bring new challenges to intelligent agents, because
they require coordination of fast and accurate movements
following a characteristic rhythm pattern.

In this work, we present Gym Hero6, a new environment
focused on rhythm games for training and evaluation of Re-
inforcement Learning algorithms. We implemented a rhythm
game inspired by Guitar Hero, which serves as the basis
for the learning environment. Then, we implemented a Gym
environment [10] on top of the game, which is used to train
and evaluate Deep Reinforcement Learning agents. We trained
a set of three autonomous agents using Deep Q-Networks
[5], [6] and show that they can learn to play Gym Hero.
The interaction dynamics between Gym Hero and an agent
is illustrated in Fig. 1.

This paper is organized as follows. In Section II, we discuss
similar works, presenting their main features. In Section III,
we present the theoretical basis of DRL and a brief description
of rhythm games. In Section IV, the game, environment, and
agent development are described in detail. Then, in Section

2Atari 2600 is a trademark of Atari SA.
3Dance Dance Revolution is a trademark of Konami Digital Entertainment

Co., Ltd.
4Guitar Hero is a trademark of Activision Publishing, Inc.
5Just Dance is a trademark of Ubisoft Entertainment SA.
6Code available at: https://github.com/romulofff/gym-hero
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Fig. 1. Gym Hero was written using PyGame and provides a Gym interface.
An external agent would select one of the possible actions. Then, Gym Hero
gives the corresponding reward to the executed action and presents a new
observation to the agent.

V, the results obtained by training an autonomous agent using
the proposed environment are presented and discussed. Finally,
in Section VI, we present the final considerations, as well as
suggestions for some future works.

II. RELATED WORK

In this section, we describe works that report attempts
to play Guitar Hero using Computer Vision and robots that
use videogame controllers and electronic actuators to play
the notes at the right time; and, then, we discuss about an
environment for Reinforcement Learning research.

Grybot [11] is a robotic system implemented using a Field
Programmable Gate Array (FPGA), and connected to an
electromechanical system, which is responsible for pressing
the buttons of a real controller. It analyzes a set of predefined
pixels that correspond to the game’s Region of Interest (ROI),
and, after checking the notes’ colors and positions, sends a
signal for the actuator to press the button. The authors reported
an average accuracy of 97% on all difficulty levels.

CythBot is a non-humanoid robot, which was designed to
win battles against human players on Guitar Hero [12]. It
differs from Grybot because it does not use colors to detect the
notes. Instead, the authors chose to track the pixel intensity in
a specific ROI. If that value is higher than a threshold, a signal
is sent to the actuator so that it can press the button after a
delay. The authors reported an average accuracy of 80%.

GuitarHeroNoid [13] is another robot that was developed
to play Guitar Hero songs. It is divided into two subsystems:
a brain and a body. The brain receives the game’s image from
the console using a capture card; converts that image to the
HSV (hue, saturation, and value) color space; and applies a
threshold filter in order to obtain a binary image where the
notes stand out. Also, a ROI is defined, and, if the sum of
the pixel values inside the ROI reaches a threshold, this set of
pixels is considered a note. Then, 250 milliseconds after the

note is detected, a signal is sent to the body so that it plays
the correct combination of buttons.

The Rockband Robot [14] plays Rock Band instead of
Guitar Hero. It follows the same idea from the previous robots,
using a set of solenoid actuators and an image acquisition
system to play the game. The main difference is that it uses
the HSL (hue, saturation, and luminosity) color space, from
which the saturation value is used for detection. The robot was
tested against human players and the authors reported wins in
90% of the matches.

Concerning Reinforcement Learning Environments used for
that kind of research, Brockman et al. [10] presented Gym, a
set of tools that allows one to build, customize and distribute
scenarios for Reinforcement Learning research. Among the
many features of this set of tools, the focus on the environment,
rather than on the agent, stands out. That allows multiple
agents to be implemented using a different technique for
each agent, which simplifies the comparison between them.
Due to Gym’s easy customization, various environments can
be adapted to follow Gym’s standard. Moreover, the Gym
provides a Python Application Programming Interface (API),
contributing to its popularization and use in several works.

III. BACKGROUND

A. Guitar Hero

A rhythm game is a subgenre of action games that chal-
lenges the player to follow a rhythm [15] while pressing
buttons on a controller or performing movements in front
of motion detection devices. This genre is divided into two
main categories: dance games, such as Just Dance and Dance
Dance Revolution; and music games, like Guitar Hero and
Rock Band. Among the music-focused games, the Guitar Hero
franchise stands out as one of the most successful games [9].

The game mechanics of Guitar Hero uses a guitar-shaped
controller, which has five colored buttons that match buttons
on the screen. The player needs to hold down the correct
buttons and press the strum bar when the notes are over the
button indicators on the screen. Originally, the game used
custom midi [16] files to encode the songs. However, with the
popularization of Guitar Hero clones, such as Clone Hero, the
chart file format was created and adopted by the developers
[17], [18].

The chart format consists of a text file divided into five
sections: the Song, SyncTrack, and Events sections; plus two
song difficulty sections – ExpertSingle and EasySingle. The
Song section contains the music metadata, the name, the
offset, and the resolution which represents the number of ticks
on a beat. A tick is an imaginary time unit within a song.
Other metadata that may be in the chart are Difficulty, Genre,
and Audio files’ names of each instrument. The SyncTrack
section describes changes in the song’s number of beats per
minute (BPM). Each line in this section is in the format
0 = B 120000. The first number is the tick where this change
occurs, the “B” represents a BPM change and the number
120000 is the new BPM value. In the example, the BPM
should be changed to 120000 on tick 0. The Events section
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describes animations and lightning effects, but it is only used
when the song has midi files.

The song’s difficulty sections define: when each note must
be played, the note type, the color of the note, and its duration.
The lines appear in a similar fashion to those in the Events
section. The first number indicates in which tick the note
should be played. The letter represents the type of the note:
“N” means a standard note, and “S” a star note, which fills a
special power gauge, that when activated doubles the received
score. After that, there is a number from 0 to 5. The numbers
from 0 to 4 indicate the colors green, red, yellow, blue and
orange respectively. The number 5 indicates that the note
above is a special note. The last value represents the note’s
duration. These are a few examples of notes in a chart file:

3360 = N 2 0 → At tick 3360, there is a yellow note of
standard duration.

7420 = N 3 300 → At tick 7420, there is a blue note of
duration 300 ticks.

28560 = N 0 0 → At tick 28560, there is a green note of
standard duration.

28560 = N 5 0 → At tick 28560 the green note is a special
note.

B. Reinforcement Learning

Reinforcement Learning is a machine learning paradigm
focused on solving sequential decision problems through in-
teraction between an agent and an environment. The agent
performs actions in the environment and receives rewards as
a result. Ultimately, the goal of the agent is to maximize the
total sum of those rewards [8]. At time t, the agent is in state
St and executes an action At. Then, the environment returns
a state St+1 and a reward Rt+1. To maximize the sum of
rewards, the agent must find the best action to execute at every
state. That action is the one associated with the greatest sum
of discounted rewards,

Rt =
T∑

k=0

γk rt+k+1, (1)

where T is the last iteration, k is the current iteration and γ
is the discount factor. Using γ, we can guarantee that the sum
converges even when T =∞. Intuitively, we can say that the
immediate rewards receive a bigger priority than the future
ones. The mapping of each state to an action is called policy
(π).

C. Q-Learning

The goal of Q-Learning [19], [20] is to generate the optimal
policy π∗. To achieve that, the algorithm updates a scalar value
Q(s, a), for every state-action pair, according to the update
rule

Q(St, At) = Q(St, At) + α [y −Q(St, At)] , (2)

where α is the learning rate, 0 ≤ α ≤ 1, and

y = Rt+1 + γmax
a

Q(St+1, a). (3)

Throughout the learning process, the approximation will con-
verge to the optimal values Q∗(s, a). In simple tasks, the state-
action pairs can be represented by a bidimensional array, in
which the rows are states and the columns are actions [8].
However, in more complex tasks, it is necessary to use more
robust representations.

D. Deep Q-Networks

When the number of states in the environment is too large,
using a table to store the Q values becomes computationally
unfeasible. Therefore, it is common to use an approximation
function Q(s, a; θ), where the array θ contains the parameters
of the estimator, such that Q(s, a; θ) ≈ Q∗(s, a). When
that approximation is a Deep Neural Network (DNN), the
combination of Q-Learning with DNNs is called Deep Q-
Networks [5], [6]. To train the neural network, the update rule
from Q-Learning must be transformed into a loss function

Li(θi) = E
[
(yi −Q(s, a; θi))

2
]
, (4)

with
yt = rt + γ ·maxat+1

Q∗(st+1, at+1). (5)

Therefore, a trained neural network using the loss Li(θi) will
be able to approximate Q∗(s, a).

E. DRL Environments

The first Deep Reinforcement Learning projects utilized
games from the Atari 2600 console as testing environments.
Since then, several environments have been introduced, like
ViZDoom [21], OpenAI Gym [10], and Unity ML-Agents
[22]. For an environment to be useful for Reinforcement
Learning tasks, it must allow the agent to interact with
the game, to perform actions in the environment, to receive
information in the form of states or observations, and to
be rewarded based on its actions [23]. It is in this context
that rhythm games, such as Guitar Hero, appear as possible
training environment for Reinforcement Learning algorithms,
and challenge the agent’s perception of rhythm.

IV. METHODOLOGY

Gym Hero, the Reinforcement Learning environment pre-
sented in this paper, was based on the game Guitar Hero.
Although similar games do exist, the control of the inner
dynamics of the game makes ours unique, with a design that
meets the requirements of a learning environment [23]:

• it allows the agent to interact with the game, by executing
actions within it;

• it returns information about the game state, such as its
screen and score; and

• it rewards the agent for its actions.
This section details the operation and main components of
Gym Hero.

A. Gym Hero

Gym Hero was developed using Python and PyGame [24]
graphics engine. It is divided into four parts: Notes and
Buttons, Song, Score, and Game Loop.
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1) Notes and Buttons: Gym Hero’s screen (Fig. 2) has five
colored buttons and a vertical lane where the notes slide from
top to bottom until they reach the buttons or the end of the
screen. The notes, which were created using PyGame Sprites,
have the following attributes:

• Start – the note’s initial tick, i.e., the moment it must be
played;

• Type – “N” for a regular note, and “S” for a star note;
• Color – the note’s color indicates the track to which the

note belongs;
• Duration – the note’s duration in ticks;
• Image – the note’s 60× 60-pixel representation rendered

on the screen;
• Rect – storage of the note’s current position on the screen

(every Sprite in PyGame has a Rect attribute, which stores
the position of the object on the screen).

Fig. 2. Gym Hero’s main screen.

Besides those attributes, a note also has an Update function,
which updates its position on the screen by altering the value
stored in Rect. Since the notes only move vertically, just the y
coordinate is updated. The Update function also removes the
note just after it is played or just after it reaches the end of
the screen (when the player misses the note).

PyGame has a Sprite Group tool that allows calling the
Draw and Update functions associated with each Sprite mem-
ber of the Group. In Gym Hero, we use three instances of the
Sprite Group tool: two for the notes and one for the buttons.
To the first instance of Sprite Group, we add a new Sprite
for each note that is created. Thus, all notes’ positions are
updated at every iteration. The second instance of Sprite Group
is used to control which notes will be rendered. By limiting the
number of Sprite members in this Sprite Group (we used 50
sprites), the rendering time of the game is reduced, because,
even though all note positions are updated simultaneously,
only the notes that are visible to the player will be rendered.

To distinguish the buttons from the notes visually, we
painted their centers black (Fig. 3). For efficiency, the buttons
are Sprite members of a separate Sprite Group (the third

instance). However, only two attributes are present: Image and
Rect. Since buttons neither move nor disappear, the Update
function was not implemented for them.

Fig. 3. Gym Hero’s buttons.

2) Song: Gym Hero’s song is stored in a text file, follow-
ing the chart model presented in Section III. The audio is
in wav format. However, in the experiments executed with
autonomous agents, the audio was not used, since the agent
uses only its vision to play the game. Initially, we extract the
song metadata from the chart, and create a Song object that
contains the following attributes:

• Offset – the number of ticks at the beginning of the song;
• Resolution – the number of ticks per beat;
• BPM – the number of beats per minute;
• Name – the name of the song;
• Guitar – the name of the audio file; and
• BPM Dict – the changes in BPM value.

Then, the notes are created according to the chosen difficulty
level: Easy, Medium, Hard or Expert. The Easy level has only
3 buttons (Green, Red, and Yellow); the Medium level has
4 buttons (a Blue button is added); and the Hard and Expert
levels have 5 buttons (an Orange button is included). The chart
model has a section describing the notes for each difficulty
level.

3) Score: In the Guitar Hero franchise, the player’s goal is
to get the highest score possible by the end of the song. The
score is increased by 10 points for each note played correctly,
however, this score is multiplied by a value that varies from
1 to 4, according to the number of consecutive notes played
(Fig. 4). For every 10 consecutive notes played correctly, this
number is increased by one. The player can also activate the
special power, which doubles the multiplier value. In Gym
Hero, we chose not to implement the special power, only the
main score and multipliers were used, due to the increased
complexity for the agent. We also added an option to decrease
the score if the agent misses a note.

(a) Multiplier ×1. (b) Multiplier ×2. (c) Multiplier ×3. (d) Multiplier ×4.

Fig. 4. Score and Multiplier.

Alongside the Score and Multiplier, we also implemented
the “Rock-Meter” (Fig. 5), which represents the crowd’s
satisfaction with the song’s execution. It can be viewed as
the life points of the player. Thus, when the player hits many
notes, the Rock-Meter’s score increases; on the other hand,
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when the player fails to hit the notes, the Rock-Meter’s score
decreases. If the score decreases to 0, the player is eliminated,
and the song is ended earlier. We followed the original Rock-
Meter design, a three-section bar divided into red, yellow and
green, representing the increasing performance of the player.

(a) Red RM. (b) Yellow RM. (c) Green RM.

Fig. 5. “Rock Meters” (RM).

4) Game Loop: The game loop is divided into two main
phases:

• the update phase, in which all game values are updated
(the score, the Rock-meter, the notes’ positions, and the
note’s visibility; and

• the rendering phase, in which all visible objects are drawn
on the screen.

During the update phase, the player’s actions are registered.
That is done in two different ways, depending on whether it
is a human player or an agent player.

If the player is a human, the action is done using the
keyboard and the keyboard events in PyGame. When an event
happens, the game verifies weather the note intersects the
central region of the button that corresponds to 60% of the
button’s area. The smaller that percentage is, the more accurate
the player has to be. This is because the overlapping time of
the note with that region becomes smaller when the central
region of the button decreases. Thus, the challenge of the game
increases. On the other hand, if the player is an agent, the
action is registered through a five-element array representing
the five buttons, from the green to the orange button. The array
values are 1 or 0, indicating whether that button is pressed or
not, respectively. The collision of the note with the button is
considered true if the note intersects the central 60%-region
of the button.

B. Gym’s Environment

For Gym Hero to be capable of training Reinforcement
Learning agents, we chose to implement a Gym environment
because it is both easy to customize and popular, as presented
in Section III. In this Section, we describe its main character-
istics and their respective implementations. A sample code to
run a random agent is shown in Fig. 6.

1) Action Space: this is the set of valid actions in the
environment. In Gym Hero, the valid actions are the arrays
described in Section IV-A4. Therefore, the Action Space was
implemented as a MultiBinary object – an array of binary
values available in the Gym Library. The size of the Action
Space varies from 3 to 5, according to the chosen difficulty
level. It is always the same as the number of buttons available
in the game.

 1. import gymhero_env 
 2.  

 3. env = gymhero_env.GymHeroEnv() 

 4. obs = env.reset() 

 5. done = False 

 6. total_reward = 0.0 
 7.  

 8. rewards = [] 

 9. for i in range(1000): 

10.     done = False 

11.     while not done: 

12.         action = env.actionspace.sample() 

13.         obs, reward, done, = env.step(action) 

14.         total_reward += reward 
15. 

16.     rewards.append(total_reward) 

17.     total_reward = 0.0 

18.     obs = env.reset() 

Fig. 6. Sample code to run a Random Agent.

2) Observation Space: this describes the structure of the
valid observations about the environment. Gym Hero’s envi-
ronment was designed to use the game’s screen as an agent’s
Observation Space. Therefore, the Observation Space was
implemented as a Box object – a multidimensional matrix
available in the Gym library. That matrix represents the
colored game screen and its dimensions are the horizontal and
vertical sizes of the screen, respectively, 500 and 720 pixels.

3) Step function: this function controls the game’s dy-
namics. It advances a unit of time, which affects the time-
dependent elements in the environment. This time advance
is done through the Update function, described in Section
IV-B. Its input parameter consists of an allowed action from
the Action Space. The function returns a description of the
results caused by the executed action in the environment, i.e.,
it returns the following updated values:

• Observation – an Observation Space object representing
the updated state of the game;

• Reward – the reward received for executing the action;
• Done – a binary variable indicating whether or not the

episode ended;
• Info – a dictionary containing the number of correctly

played notes on an episode until the current step.
In Gym Hero, the rewards are: +10 points if the action led

to a button hit; -10 points if the action led to a button miss;
and 0 points if the action does not change the game state.

4) Reset function: this function starts a new episode, re-
verting the environment to its initial state, i.e., it starts the
game loop presented in the Section IV-A4 and returns an
initial observation, starting the cycle of agent-environment
interaction.

C. The Agent

The main goal of the Reinforcement Learning agent devel-
oped in this paper is to learn how to play Gym Hero like
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human players. The only information available to the agent
is the game’s screen. Thus, the agent can be compared to
human players more fairly, since it does not receive internal
information of the environment.

Before being sent to the neural network, the input image
passes through a preprocessing step that consists of: 1) trans-
forming the colored image (Fig. 2) into a gray-scaled image,
and cropping it (removing 150 pixels at the left and 150 pixel
at the top) – Fig. 7a; and 2) resizing the cropped grayscaled
image to a 54× 48-pixel image – Fig. 7b.

(a) Cropped grayscaled image.

(b) Final image as seen by the agent.

Fig. 7. Preprocessing step.

D. Neural Network’s Architecture

The neural network that controls the actions of the agent is
divided into the following three main parts (Fig. 8 shows the
summarized architecture):

1) Input: The input to the network is a grayscaled image
with dimensions 54 × 48.

2) Feature Extraction: First, the image passes through two
convolutional (conv) layers. The first conv layer has 32 feature
maps of 27× 24 pixels, obtained by filtering the input image
with convolutional 4×4 kernels, and 2×2 strides. The second
conv layer has 64 feature maps of 14×12, obtained by filtering
the maps from the first layer also with convolutional 4 × 4
kernels, and 2 × 2 strides. Next, the 64 feature maps are
flattened, i.e., they are arranged as a one-dimensional array
with 64 × 14 × 12 = 10752 elements; and each element is
connected to 512 neurons of the next layer.

3) Output: The output layer contains one neuron for every
possible action, and each neuron is fully connected with the
512 neurons of the previous layer.

E. Hyperparameters

We use the ReLU [25] activation function in both conv
layers and the first fully connected layer. The hyperparameter
values used were adapted from [23], due to the good results
with a similar network architecture. We initialized the weights
using Xavier’s Initialization [26] and the model was trained
using Adam’s optimizer with a mini-batch of size 32.

To reduce the similarity between consecutive frames, we
implemented an Experience Replay Memory [27]. In our

implementation, we store the last thousand frames, and, at
every iteration, the neural network receives a random sample
from the memory.

At the training’s outset, the agent explores the different
actions for each state, since it does not have enough knowledge
to decide what is the best action to execute. Therefore, we
implemented an ε-decay policy, in which for each epoch the
agent has a probability ε of executing a random action, instead
of choosing the best one for that state. In our experiments, we
followed the dynamics presented in [28], in which the ε value
started at 1.0 for the first 2 epochs. Then it decayed linearly
to 0.1 over the next 12 epochs, continuing at 0.1 until the end
of the training.

V. RESULTS AND DISCUSSION

In this section, we present the results obtained from the
experiments using the Gym Hero’s environment. The agents
are analysed in accordance with the average reward, the
average precision, and the iteration time. We also compare
them with a random agent in each difficulty level, to serve as a
baseline. Our goal is to verify if DRL agents can be effectively
trained and evaluated using the environment proposed in this
work.

A. Training dynamics

Each agent was trained for 20 epochs of 200 episodes using
randomly generated songs. An episode ends either when the
song finishes or when the agent fails. At the end of each
epoch, the agent is tested for 100 episodes with randomly
generated songs. At each new episode, a new chart was created
by choosing random samples from the Action Space of the
corresponding difficulty level every 48 ticks with a fixed size
of 1920 ticks. This allows the agent to experience a greater
number of different states while keeping a fair comparison
between the agents. Three difficulty levels were used during
the experiments: Easy, Medium, and Expert. Since the songs
are randomly created according to the number of buttons,
which is also the size of the Action Space, and both Hard and
Expert have five buttons, the generated songs are equivalent.
Therefore, we treat Hard and Expert as a single difficulty level.

The computer setting used in the experiments is shown in
Table I.

TABLE I. COMPUTER HARDWARE USED IN EXPERIMENTS.

Component Name
CPU Intel Core i7-10700 @ 2.9GHz
GPU NVIDIA GeForce GTX 1070, 8GB VRAM
RAM 2 × HyperX Fury 8GB, 3000MHz

B. Playing on Easy mode

First, an agent was trained on the Easy difficulty level.
At every epoch, we collected the minimum, maximum and
average rewards. We also registered the average precision and
the average duration of each episode. Here, precision is the
number of note hits divided by the total number of notes in
the song. The expected behavior of the agent is to wait for
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Fig. 8. Neural network’s architecture.

a note to enter the collision region of the button, and then to
send an action corresponding to the button needed to play that
note. On average, charts used on the Easy level have 61 notes.
Therefore, the mean reward value is around 610.

To achieve the highest score, the agent needs to remain alive
until the end of the song. Therefore, it has to learn how to avoid
pressing buttons when there are no notes. The agent learned
to play on Easy mode, obtaining an average reward of 600
points (Fig. 9 and 10). The average reward on the last test run
stands out, the agent obtained around 550 points, indicating
that it learned not only when to press the buttons, but also
when not to press them, since, if it had pressed, it would
have obtained more negative penalties. It also obtained a high
average precision score of 96.29% (Fig. 11), which means that
the agent was able to play almost every note correctly.

One of the characteristics that indicates a good performance
of the agent in Gym Hero is the iteration time, that is, how
long each episode lasts. Due to Rock-Meter mechanics, if the
agent misses too many notes, the song, and consequently the
episode, may end prematurely. Therefore, the ascending curve
in Fig. 12 points to a learning behavior. At the end of the
tests, the mean iteration time while playing on Easy mode
was 5 seconds, corresponding to the full length of the songs
(Fig. 12).

(a) Average training reward. (b) Average test reward.

Fig. 9. Average reward obtained by the agent trained on Easy mode.

C. Playing on Medium mode

The second agent was trained on the Medium difficulty level
according to the training dynamics described in Section V-A.

(a) Average and standard deviation
training reward.

(b) Average and standard deviation
test reward.

Fig. 10. Average reward and standard deviation obtained by the agent trained
on Easy mode.

(a) Average training precision. (b) Average test precision.

Fig. 11. Average precision obtained by the agent trained on Easy mode.

(a) Average training iteration time. (b) Average test iteration time.

Fig. 12. Average iteration time obtained by the agent trained on Easy mode.

In this difficulty level, the songs have approximately 82 notes.
Therefore, an ideal agent would gather a mean reward value
of 820 points.

The agent struggled more to learn how to play on Medium

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



mode. That happened because the Action Space’s size doubles
from Easy to Medium mode, going from 8 to 16 possible
combinations. That decreases the probability of randomly
hitting the right note from 1

8 to 1
16 .

Despite that Action Space, the agent was able to learn how
to play on Medium mode. Its average reward value was 360
points (Fig. 13), and Fig. 14 shows a greater variation through
the much larger standard deviation bars in relation to the
graph of the previous difficulty level (Fig. 10), confirming the
struggle. However, notice a learning tendency on the the mean
precision graphs (Fig. 15) due to the growth of the average
test precision over the epochs, reaching 95.52% in the last two
epochs.

The behavior of the agent trained on Easy difficulty level
in relation to iteration time is repeated on Medium difficulty
level. The generated songs for the Medium difficulty level have
the same length of 5 seconds, and the agent mean iteration
time was 4.5 seconds, indicating that it was able to finish
most songs regularly (Fig. 16).

(a) Average training reward. (b) Average test reward.

Fig. 13. Average reward obtained by the agent trained on Medium mode.

(a) Average and standard deviation
training reward.

(b) Average and standard deviation
test reward.

Fig. 14. Average reward and standard deviation obtained by the agent trained
on Medium mode.

D. Playing on Expert mode

The agent trained on Expert mode did not learn how to play
the game. In this difficulty, there are approximately 102 notes
in the chart, so, an ideal agent should gather approximately
1020 reward points. Also, the number of possible actions
doubles again, from 16 to 32, decreasing the probability of
randomly hitting the right note to 1

32 .
The agent obtained an average reward value of −79.6,

and the graphic in Fig. 17 does not show the ascending
behavior that indicates learning. Also, Fig. 18 shows that the

(a) Average training precision. (b) Average test precision.

Fig. 15. Average precision obtained by the agent trained on Medium mode.

(a) Average training iteration time. (b) Average test iteration time.

Fig. 16. Average iteration time obtained by the agent trained on Medium
mode.

standard deviation during training is larger in the second half
of training, justifying the small upward tendency observed
between epochs 10 and 18.

Fig. 19 corroborates the perception that the agent was unable
to learn as its mean precision was just 7.22%, hardly exceeding
50% in the best episodes. The mean iteration time was 1.45
seconds (Fig. 20), implying that it was not able to reach the
end of the episodes regularly, because the song would finish
earlier.

(a) Average training reward. (b) Average test reward.

Fig. 17. Average reward obtained by the agent trained on Expert mode.

E. Comparison with Random Agents

After we finished the evaluation of autonomous agents, three
agents with random behavior were executed, one for each
difficulty level. Those agents do not use a neural network for
decision making, instead, they choose a random action within
their Action Spaces. They played for 200 episodes, and we
collected the average reward and the average precision for
each difficulty level.

Table II presents a comparison between the average reward
obtained by the autonomous and by the random agents. The
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(a) Average and standard deviation
training reward.

(b) Average and standard deviation
test reward.

Fig. 18. Average reward and standard deviation obtained by the agent trained
on Expert mode.

(a) Average training precision. (b) Average test precision.

Fig. 19. Average precision obtained by the agent trained on Expert mode.

(a) Average training iteration time. (b) Average test iteration time.

Fig. 20. Average iteration time obtained by the agent trained on Expert.

RL agent performed better in all three difficulty levels. That
happened because of the low probability of the random agent
executing the right action on a given state, since there is only
one correct combination of buttons for each state and the
number of possible actions grows exponentially at each new
difficulty level.

Table III presents a comparison between the average pre-
cision of the autonomous and random agents. As seen, in
Easy and Medium difficulty levels, the RL agent obtained
over 95% precision, showing that it learned satisfactorily, but
when tested on Expert mode, the average precision of the
autonomous agent was lower than the random one. The final
results are shown in Table IV.

TABLE II. COMPARISON BETWEEN THE AVERAGE REWARD FROM THE RL
AND RANDOM AGENTS.

Mode RL Agent Random Agent
Easy 577,7± 44,9 −133.8± 31.4
Medium 360,1± 60,8 −108.8± 30.0
Expert −79.6± 46.1 −90.5± 32.4

TABLE III. COMPARISON BETWEEN THE AVERAGE PRECISION FROM THE
RL AND RANDOM AGENTS.

Mode RL Agent Random Agent
Easy 96.29% 23.72%
Medium 95.52% 16.96%
Expert 7.22% 14.01%

TABLE IV. RESULT OF 100 EXECUTIONS OF EACH TRAINED AGENT AND
THE RANDOM AGENTS.

Agent Minimum
Reward

Maximum
Reward

Average
Reward Precision Seconds /

Iteraction
Easy 480 700 577.7± 44.7 96.29% 4.86
Medium 170 510 360.1± 60.8 95.52% 4.45
Expert −160 150 −79.6± 46.1 17.30% 1.45
Random Easy −270 −60 −133.8± 35.5 23.72% 1.56
Random Medium −200 −20 −111.6± 31.4 16.96% 2.05
Random Expert −180 10 −89.9± 32.4 14.01% 2.43

VI. CONCLUSION

In this work, we proposed a virtual learning environment
for training and evaluation of Reinforcement Learning au-
tonomous agents in rhythm games. We implemented a rhythm
game similar to Guitar Hero with a Gym environment on
top of it, allowing agents to interact with it. Furthermore, to
validate the functioning of the environment within its proposed
Reinforcement Learning task, an agent was developed using
the Deep Reinforcement Learning technique called Deep Q-
Networks.

As seen in Section V, agents trained on the Easy and
Medium difficulty levels were able to learn how to play the
game, obtaining results close to an ideal agent. However, the
agent trained on the highest difficulty level was not able to win
the game and obtained results comparable to a random agent.
Thus, the developed environment was capable of evaluating
autonomous Reinforcement Learning agents, which validates
the goal of this work.

As future works, we intend to test different neural network
architectures, since the NN highly influences the performance
of the agent. We also intend to compare agents trained in
Gym Hero competing against human players. In addition, as
this is a Reinforcement Learning environment that contains
multiple difficulty levels of the same game, agents that learn
incrementally can be developed and tested using Curriculum
Learning [29]. This method proposes to sequentially present
more difficult and more complex tasks to the agents, which
seems to be useful in Gym Hero.
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