
Two Level Control of Non-Player Characters for
Navigation in 3D Games Scenes: A Deep

Reinforcement Learning Approach
Gilzamir Gomes

Department of Computing
Federal University of Ceará (UFC)

Fortaleza, Brazil
gilzamir@alu.ufc.br

Creto A. Vidal
Department of Computing

Federal University of Ceará (UFC)
Fortaleza, Brazil
cvidal@dc.ufc.br

Joaquim B. Cavalcante-Neto
Department of Computing

Federal University of Ceará (UFC)
Fortaleza, Brazil

joaquimb@dc.ufc.br

Yuri L. B. Nogueira
Department of Computing

Federal University of Ceará (UFC)
Fortaleza, Brazil

yuri@dc.ufc.br

Abstract—This paper presents a deep reinforcement learning
approach for navigation problem coupled with traditional ani-
mation processes in games. Deep Reinforcement Learning (DRL)
is a promising approach for this problem. So, we design a Non-
Player Character (NPC) as an autonomous agent guided by a
neural controller. Our approach works with the control of virtual
game characters at two different levels of abstraction. A neural
controller produces high-level actions, which are performed by
both a character controller and an animation controller. We
test our approach on a three-dimensional game scene. We find
that our approach achieves promising results in navigation of
animated characters in a game scene.

Index Terms—non-player characters, reinforcement learning,
navigation problem.

I. INTRODUCTION

Generating navigation behaviors is a typical problem when
dealing with current Non-Player Characters (NPCs). A first
approach to game navigation was the Waypoint graph [1],
which consists of a set of points of interest connected to
each other. This approach has several main drawbacks: its
manual construction is prone to human errors, it can not
control dynamic objects, it is expensive to build since it needs
to check all n(n-1) combinations of paths, and the paths tend
to not look realistic since all agents follow the same set of
constrained paths [2].

NavMesh is the currently dominant approach for navigation
problem and it has overcome the main waypoint graph prob-
lems. NavMesh divides the game map into a set of convex
regions, witch can each be trivially navigated within [2]. Once
the polygons have been placed, a graph is created by using
the polygons as nodes and by connecting adjacent polygons
with edges [2]. In each polygon, navigation is trivial. So,
search algorithms (such as A* and Dijkstra’s algorithm) find

the shortest path between any two nodes. The found path is
typically smoothed to look more realistic to the player.

However, NavMesh lack the scalability and the flexibility
necessary to provide more versatile navigation behaviors that
enable the character to follow a diverse variation of paths.
This is because adding new abilities to a preprogrammed agent
requires adding new edges to the navigable polygon graph.
While this is not an issue for simple skills, adding complex
skills often requires a redraw of the navigation map prone to
failure and rework.

Alonso and Peter [2] show that reinforcement learning can
be more flexible than NavMesh in generating complex naviga-
tion behaviors for NPCs. They also argue that reinforcement
learning is a promising approach to point-to-point navigation
in three-dimensional mesh environments. Reinforcement learn-
ing works for the navigation problem usually use very simple
characters, without character part animations for skills such as
walking or jumping (see reference [2] and Mirowski’s classic
work [3]). Furthermore, if we consider the success rate of
hitting the target, for predefined environments, NavMesh and
classic search (A*) achieved maximum success rate. But that
approach is not flexible in the sense that new agent scenarios
and skills would require manual readaptation of the agent.
Thus, their results were obtained using only simple avatars
(often a box with a texture) and basic movements (without
articulation of limbs, for example). Training a reinforcement
learning model to learn from scratch how to produce anima-
tions (e.g, articulated limbs for walking) is computationally
expensive. However, that feature is essential to viable NPCs
in modern games. So, without an appropriate decision-making
architecture, even the most complex behaviors of NPCs lack
animation expressiveness in their actions and are visually
cumbersome.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

In this work, we use a model-free reinforcement learning
since it does not force us to make strong assumptions about the
environment, and, therefore, it helps to reduce the modeling
time of the problem. We tried an approach for learning
navigation behavior in three-dimensional games in terms of
computational resources, which was easier to integrate with
game animation modeling tools, and minimizes memory con-
sumption. Thus, we use A3C algorithm for training because
we do not make assumptions about heavy use of hardware. In
fact, we want that our approach is able to run in many different
types of hardware. In addition, we adopted curriculum learning
and an informed reward function according to the approach
presented in [2].

Thus, our approach train a humanoid character through two
levels of control. In the first level, a neural network sends
an abstract action (for example, walking) to a programmed
character controller; and, in the second level, the character
controller interprets the received action in terms of velocity,
and triggers an animation produced by an animation controller
in a synchronized manner. This procedure makes it possible
to obtain movement with convincing animations, which are
designed by human modelers. We show how to encapsulate
the state of the animation to preserve the property of the
Markovian state necessary for an agent to learn to navigate in
a three-dimensional environment, while exhibiting convincing
animation of its body.

II. RELATED WORKS

The use of reinforcement learning for training NPCs has
aroused the interest of the academic community for about
a decade [4], [5], [6], [7], [8], but only recently, robust
results for AAA games have been achieved [2]. Still, only
recently game development tools have started to support agent
training using environments built with the tool, even though
this support is primarily for testing algorithms, techniques
and machine learning approaches using games as test beds
for artificial intelligence [9], [10]. In 2020, it was shown
that the navigation behaviors, in 3D videogames, obtained
with reinforcement learning are superior to those obtained
with traditional approaches [2]. The training of an NPC with
reinforcement learning capable of expressing emotions and
varying the NPC’s behavior according to its emotional state is
shown by Gomes et al. [11].

Navigation is what takes an NPC from one point to another
on a game map, so it is an essential component of an
NPC. NavMesh is the game industry’s preferred approach
to deal with the navigation problem. Unfortunately, complex
navigation skills that extend the character’s movement ability
increase NavMesh’s complexity, making it unmanageable in
many practical settings [2]. Game designers are therefore
restricted to only adding skills that can be manipulated by
NavMesh. Thus, Alonso et al. [2] proposed the use of Deep
Reinforcement Learning (Deep RL) model-free to learn nav-
igation through 3D maps using any navigation skill. They
further tested that approach in complex 3D environments using
the Unity Game Engine [9], and maps that were one order of

magnitude greater than those normally used in the Deep RL
literature. The authors reported success rates above 90% in all
tested scenes, including a real game scene.

Previous work used model-free RL for navigation, either in
simple 2D environments [12], [13] or in complex navigation
problems [2]. Recent works, to overcome the absence of
planning in model-free RL, used a hierarchical architecture,
where intermediate goals are given to a controller by a high-
level planner [14]–[16]. As navigation in a visually complex
environment is usually modeled as a partially observable
Markov decision process, the importance of memory use
has been previously recognized [3]. Although unstructured
memory like LSTM (Long-Short Term Memmory) [17] can
be used, architectures involving spatially structured memory
have also been explored [18], [19]. The use of auxiliary tasks
to accelerate the learning of RL problems based on challenging
goals was also a subject of study [3], [20], [21]. Alonso et al.
[2] used the SAC (Soft Actor Critic) algorithm as an end-
to-end solution to the navigation problem over a 3D map.
The agent is controlled by a neural network whose input
consists of a 3D occupation map, a 2D depth map and a
linear input containing information such as the agent’s position
and the target position in the game’s environment. The agent
uses a neural network with an LSTM layer to handle partial
information.

Therefore, our work differs from those in the literature
because it combines reinforcement learning with a neural
controller specially designed to interact with a character’s
controller. So, the agent has two levels of control in which
a higher level controller selects abstract actions (e.g., walk)
that are effectively performed by a preprogrammed lower level
controller. Moreover, for the reinforcement learning problem,
we combine navigation learning using the A3C algorithm
combined with curriculum learning and an informed reward
function (which is the opposite of a sparse function). For the
control of the NPC, we use a neural network architecture that
acts according to environment state perceived by the agent.

III. METHODS

Here, we shown our Deep Reinforcement Learning (DRL)
System for character control in navigation problem in games.
The main objective of the agent is to reach a given target
position randomly placed in the game’s scene. For this, the
agent’s architecture is endowed with four main components:
(1) a neural controller, (2) an agent body with actuators and
sensors, (3) a controller that receives actions from agent’s
actuators and translates those actions into agent velocity that
are applied to the agent in a manner that is consistent with the
agent’s body animations, and (4) an animation controller that
runs the agent’s body animation. The environment interaction
interface consists of sensors and actuators, which are modeled
with the AI4U tool [10], a public tool available to facilitate
the development of game environments with support for rein-
forcement learning algorithms through the Unity Game Engine
[9]. We also detail the components of the agent’s architecture
and the way to integrate them to generate navigation behaviors

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

with expressive animations. The overall DRL agent is shown
in Fig. 1.

A. Neural Network Controller

The neural network controller implements the agent’s pol-
icy. The neural network (NN) receives perceptions of virtual
sensors, and, in response to those perceptions, it outputs a
discrete probability distribution p = pa1

, pa2
, ..., pak

, where
pai is the probability of the action ai. The agent take an
observation ot at time step t, and selects the action ai in a
probabilistic manner according to the probability distribution
p.

B. A Neural Network Architecture

The agent’s neural network has a feedforward architecture
with two input layers, two hidden layers, and two output
layers. The amount of neurons in the input and output layers
depend on the type of problem you want to solve. To determine
the amount of input neurons, it was taken into account the
agent’s perception system. In addition, one of the output
layers produces the actions’ probabilities, and the other output
layer estimates the state value. The agent uses the actions’
probability distribution to select the current action. Estimated
state values are used during the agent’s training.

The network’s inputs constitute an observation ot at time
step t, which contains two groups of perceptions: a visual
data, and a linear data. The visual data is a sequence of
bidimensional matrices Rk shaping a three-dimensional signal
[I3, I2, I1, I0], where Ik is a visual signal perceived by the
agent at time step t − k. Hence, to represent the visual data,
we use frame stacking strategies based on [22]. The image Ik
is a matrix with the codes of the seen objects in each cell,
in this case. The linear input consists of the agent’s forward
direction, orientation relative to the target, distance to target,
jump status, and touch signals. In the next section, we describe
this inputs in more details.

To process those two types of input data, the network has
two feature extractors: a convolutional bidimensional feature
extractor, and a linear feature extractor. The convolutional fea-
ture extractor has two layers that use the ReLu [23] activation
function: the first layer consists of 128 (4 × 4) filters with
stride equals to 2, and the second layer consists of 64 (2× 2)
filters with stride equals to 1. The linear feature extractor has
two dense ReLu layers containing 30 neurons each. The input
features are concatenated to be processed by the deeper layers
(see Fig. 2).

We use two configurations of the deeper layers. The simpler
one is shown in Fig. 3. The more complex configuration,
shown in Fig. 4, uses two stacked LSTM (Long-Short Term
Memory) [17] layers. The purpose of the latter configuration
is to deal with aspects of the environment that are not
directly observable. Thus, the size of the visual input has
also been increased to a sequence of size eight so that the
recurrent neural network LSTM can learn from sequential data.
Experimentally, we found that the use of larger sequences in

the input increases the performance of networks that learn
sequential decisions, but at a higher computational cost.

C. The Agent’s Interface with the Environment

The agent has sensors to perceive the environment and
actuators to control the NPC. The NPC is controlled from a
player’s perspective, however, autonomously, because instead
of being controlled by a human, the character is controlled by
a script that makes decisions based on an underlying neural
network model. Thus, the NPC runs on the Unity Engine ar-
chitecture and in the AI4U framework, which allows control of
the NPC through neural network. The agent’s neural network
selects actions based on the current state. The interdependence
of the components of this architecture is shown in Fig. 5.

The actions generated by the neural network of the agent are
applied to a physical controller and to an animation controller
based on unity’s animation mechanisms. More specifically, the
neural network outputs an abstract action, such as ”walk”,
to the physical controller, which moves the agent’s avatar,
say, forward, while the animation controller produces coherent
avatar’s movements, for example, the avatar’s legs’ animation.
That two-level control is essential to apply reinforcement
learning to games, because it integrates reinforcement learning
with animations produced by artists.

Two kinds of sensors were provided to the agent: a linear
sensor, and a two-dimensional visual sensor. The linear sensor
captures global features, such as the agent’s world orientation,
relative orientation, distance to target, and touch on environ-
ment’s objects. The two-dimensional visual sensor returns an
array representing the local image seen by the agent at a
given time step. While the linear sensor provides information
more directly related to the goal of the agent’s navigation,
the two-dimensional visual sensor provides an input channel
that allows the agent to perceive nearby objects, allowing the
agent to learn how to interact with objects in a manner that is
consistent with the agent’s view.

The visual sensor uses ray-casting to generate an image It
at time step t. In our model, a 30×30-pixel image is generated
by casting rays that define a symmetrical frustum with a 90
degree field of view, as shown in Fig. 6. Therefore, as a result
of its artificial vision, at each instant, the agent receives a
matrix of 30× 30 float-point numbers representing the visual
information.

In turn, at each time step t, the agent’s linear sensor
captures:
• dt = (G − Pt)/||(G − Pt)||, the unit vector from the

agent’s current position, Pt, to the target’s position, G,
which does not change during an episode;

• ft, the agent’s view direction (a unit vector);
• δt = ft · dt, the agent’s orientation relative to the target

orientation;
• St = (gt, ht), the animation controller’s status, where gt

is a Boolean variable, which is 0 if the agent is on a flight
mode, and it is 1 if the agent is in contact with a floor,
ht is the absolute height of the agent with respect to the
ground floor; and

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 1. An overall description of our DRL System.

Fig. 2. Convolutional layers for extracting features from the agent’s visual
input.

Fig. 3. Deeper layers of the network. In this configuration, we use traditional
fully connected feedforward layers.

Fig. 4. Deeper layers of the network. In this configuration, we use two stacked
LSTM layers.

Fig. 5. Map of Interrelations between the components of the approach used
in this work. The NPC implements its functions based on AI4U and Unity.
AI4U uses the functions of Unity and provides a specific view or form of use
of Unity for those who use AI4U.

Fig. 6. Ray casting with an aperture angle of 90 degrees and symmetrical
perspective projection.

• Tt = (Tw, Tg), the touch sensor’s signal, where the
variables Tw = Tg = 0 if no touch is detected, Tw = 1
when the agent touches a wall, and Tg = 1 when the
agent reaches the target.

In addition to information captured by the linear sensors,
the model receives the pair, (at−1, rt), where at−1 is the
previous action performed by the agent, and rt is the reward
the agent received for that action. Therefore, the linear input
is represented by the tuple Lt = (dt, ft, δt, St, Tt, at−1, rt).

The actual input to the agent’s neural network at time t
consists of the last four sequences of data from both sensors,
Ot = (Lt−3, Lt−2, Lt−1, Lt, It−3, It−2, It−1, It).

To select actions, the agent has a virtual actuator that phys-
ically controls the NPC in the three-dimensional environment
of the game. Virtual actuator has two levels of control. In first
level, the agent’s neural controller sends a high-level command
action ∈ [0, 1, 2, 3, 4, 5] to the second level. Then, the second
level translates the received action into an action encoding

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

(numerical array), and sends it to the character’s controller.
The character’s controller applies a velocity proportional to
the value of the sent command, and activates an animation
controller to produce a corresponding animation based on
the received action. Specifically, at every time step t, the
character’s controller translates the command action into a
vector a = (fb, lr, ju, jf), where fb is a real number that
is used in Equation (1) to compute the agent’s forward and
backward velocity; lr is a real number that represents the
agent’s left or (right) rotation; ju = 1 if the agent is supposed
to perform an upward jump and ju = 0 otherwise; and jf = 1
if the agent needs to perform a forward jump and jf = 0
otherwise. The command list supported by the agent’s neural
controller is defined as:
• Forward (command 0): [f, 0, 0, 0], where v is a fixed

positive real number;
• Backward (command 1): [-b, 0, 0, 0], where b is a fixed

positive real number;
• Turn Left (command 2): [0, l, 0, 0], where l is a fixed

positive real number;
• Turn Right (command 3): [0, -r, 0, 0] where r is a fixed

positive real number;
• Jump (command 4): [0, 0, 1, 0]; and
• Jump Forward (command 5): [0, 0, 0, 1].
For example, if the actuator controller receives a command

code 0 (Forward movement), it translates it into an action
vector a = (f, 0, 0, 0). The character controller translates this
action into the agent’s velocity

v = (ft × f × µ)/∆t, (1)

where ∆t is the time step between two successive frames, and
µ is a multiplier factor to adjust speed to different time scales.
Then, the animation controller produces expressive movements
synchronized with the agent’s velocity.

D. Deep Reinforcement Learning in Two Time Steps

In real games, the human-like character’s movements are
expected to be animated to resemble human movements.
Instead of training the character to learn how to solve its main
navigation objective while learning to articulate its limbs in a
realistic manner, we train the character to learn how to solve its
main objective while being animated by traditional animation
mechanisms, which provide a rich library of ready-made
animations designed by professional modelers and artists.

Joint training of the agent to obtain its main behavior while
managing an animation controller (which affects the charac-
ter’s movement) adds a level of extra time to the result of the
agent’s actions. This is because the actions generate effects
with different duration (see Fig. 7), especially when using an
animation controller. For example, when the agent performs
a jumping action, no other movement actions will produce
any effect when the agent is in the air, except the rotation of
certain body parts, such as the turning of the head. We simply
expand the state of the environment with information from
the animation controller to allow the reinforcement learning
algorithm to learn how to solve the problem with a high

success rate. The necessary information is the height of the
agent with respect to the ground reference plane and the feet
contact status with the floor.

Fig. 7. The boxes labeled with a white or gray background indicate the
components of our reinforcement learning system. The blue arrow indicates
the sending of commands or actions. When the character controller receives
an action, it repeats that action k times in the environment. The black boxes
indicate the time steps in which the actions were applied. The blue boxes
indicate the actions applied in their corresponding time steps. The green
arrows indicate the duration of the effects of each action. Note that the jump
action affects the effects of the subsequent actions.

E. The Reward Function
We use the AI4U [10] tool’s description of reward functions

to annotate events in the environment with functions that
generate reward. More specifically, each agent’s action was
noted with a reward function based on [2] and shown in
Equation 2:

Rt = max(min∀i∈[0,t−1]E(t, i), goal), 0)− α+ 100touch(agent,goal), (2)

where E(t, i) = Di(agent, goal) − Dt(agent), Dt is the
Euclidean distance between the positions of its arguments
at time t, α is a positive value that represents a penalty
for each performed action (the agent is expected to perform
the least amount of actions possible for reach its goal), and
touch(agent, goal) is a predicate that is true when the agent
touches the object that represents the position it has to reach,
and false otherwise. Note that 100touch(agent,goal) is equal to
one hundred (100) only if the predicate touch(agent, goal) is
true, otherwise it produces a 0 (zero).

We use the AI4U tool to implement Equation (2) in order
to visually associate events in the environment with the gen-
eration of annotated rewards. So, AI4U manages the agent’s
reward at each time step t. At the beginning of a time step t,
that is, before the environment receives the agent’s next action,
the value of r is equal to zero.

Predefined objects (which in Unity are called prefabs) are
associated with events in the environment and increases or
decreases r as those events occur. We set up an event that is
fired whenever the environment receives an action sent by the
agent. In this case, the event adds the first part of Equation
(2) to r, that is,

R
(1)
t = max(min∀i∈[0,t−1](E(t, i), goal), 0)− α. (3)

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Then, we associate the collision event with the target object,
which indicates that the agent reaches the the main goal. The
reward generation function produces

R
(2)
t = 100touch(agent,goal). (4)

In practice, this means that r is equal to the result shown in
Equation 2, that is, r = Rt = R

(1)
t +R

(2)
t .

F. Agent’s Training

Our approach was partially based on the work of Alonso et
al. [2], with necessary adaptations for achieving efficiency and
openness. To achieve efficiency we make as few assumptions
as possible about the hardware requirements when using
the training algorithm and the action execution model. To
achieve openness we consider a training algorithm with public
implementations adaptable to the demands of our work. Thus,
since the A3C algorithm has widely used and tested public
implementations, we adapted it to run on low-cost hardware,
as described in section III-B

We use the A3C algorithm for training in a point-to-point
navigation scenario. The agent learns in two steps. In the first
step, the agent learns an easy problem, and in the second
step, a more difficult problem. In the performed experiments,
a distance greater than 4.5 units of distance (ud) substantially
increased the convergence time of the algorithm, so when the
target is placed at a maximum distance of 4.5ud, the problem is
considered easy to solve by RL. The target position is chosen
to be placed randomly in one of the buildings in the scene.
Then, the agent trains on an easy problem first until it reaches a
50% success rate. Next, the agent trains on a difficult problem,
until it reaches a 90% success rate or up to approximately
6,000 training episodes.

IV. EXPERIMENTS

To demonstrate the capacity of our DRL system, we used a
map with dimensions of 400m×400m×35m shown in Fig. 8.
The evaluated configurations are found in Table I. To show
that our reinforcement learning system is capable of learning
how to solve the problem of navigation in games when we
have two different levels of control, we tested a base case
and three variations of our system. In the first configuration,
we used a feedforward neural network model (neural network
architecture shown in Fig. 3), providing each required input to
that model. In the second configuration, we used a feedforward
neural network model, but we do not use information from
the animation controller (jump status and NPC height). The
purpose of this configuration is to verify the hypothesis that
the agent only learns with a state description that takes into
account information from the animation controller. Next, we
tested two configurations with LSTM networks. One with
a single layer and one with two stacked layers. The two
stacked layers contain 128 neurons each. The single-layer
LSTM network is shown in Fig. 4. Based in [3], LSTM hidden
units output LSTM hidden activation signals.

During the training phase, each configuration of our DRL
system was trained for 6,000 episodes. Each configuration

TABLE I
REINFORCEMENT LEARNING SYSTEM CONFIGURATIONS. FF IS THE

NEURAL NETWORK ARCHITECTURE SHOWN IN FIG. 3 AND LSTM IS THE
ARCHITECTURE SHOWN IN FIG. 4

Configuration Model Architecture State
Base FF It includes animation status
VAR1 FF It does not include animation status
VAR2 LSTM (One Layer) It includes animation status
VAR3 LSTM (Two Layers) It includes animation status

shown in Table I was tested in the simulated environment with
the same set of initial seeds for the different configurations.
We obtained results with a confidence level of over 95%.

V. RESULTS AND DISCUSSIONS

The test results show that the proposed approach obtained
NPC navigation behaviors with animated avatar. The graph in
Fig. 9 shows the agents’ success rate’s evolution per episode
over 6, 000 episodes during training. Fig. 10 shows the success
rate’s moving average per episode for each approach after
the training of the agent over 100 episodes. In this case, we
assess whether the agent maintains performance after training,
that is, in a testing phase (in analogy to what is done in
supervised learning). In the test phase, the agent has already
been trained and it is no longer learning. In addition, the
environment is initialized differently from the training phase,
such that the position of obstacles is randomly placed in the
scene. And in this case, the pseudo-random number generator
is initialized with different seeds in relation to the training
phase. During the test phase, it is natural that the success
rate at the beginning is high and decreases with time until it
stabilizes (see Fig. 10), given that the probability of the agent
making a mistake increases with time.

The results show that the agent was able to learn in a scene
with obstacles. The scene’s topology contains ramps, walls
and stairs arranged in a way that looks like a city street,
but containing a wide open space that could cause the agent
to wander in the empty region. Fig. 11 shows, qualitatively,
the the agent’s behavior of avoiding obstacles, jumping stairs,
going up a ramp and successfully reaching the target.

The experiments showed that all variations of the proposed
approach were able to improve their success rates during
training. The Base configuration with a feedforward neural
network obtained the best performance, both qualitatively
and quantitatively. The comparison between Base and VAR1
models tells us that the information from the animation con-
troller and the height of the agent are two essential pieces
of information for the agent to learn a refined control of its
actions.

The agents with LSTM network (VAR3 and VAR4) obtained
a much worse result than the agents Base and VAR1. Note
that the number of episodes was stipulated a priori, consid-
ering a configuration of experiments with few computational
resources. The problem is modeled as a partially observable
problem, because at each moment, the neural network has
the global information of the target’s location and the local

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 8. Map used in the experiments (a three-dimensional map with dimensions of 400m × 400m × 35m, containing ramps, obstacles and towers).

Fig. 9. The success rate’s moving average of the last hundred episodes during
training of the agents.

information of the obstacles, including the ground touch
sensors and the agent’s height sensor. Thus, at each instant,
the agent has all the relevant information to reach the target
position. In this scenario, LSTM networks are not essential.
Thus, given the same amount of training, it is natural for a
feedforward network to converge faster than a more complex
model like a LSTM network.

VI. CONCLUSION

The reinforcement learning approach presented in this work
proved to be effective in solving the navigation problem of
animated NPCs in games, being able to combine global in-
formation, directly related to the goal, with visual information
to promote navigation behavior that avoids different types of
obstacles. We also used a direct and effective training strat-

Fig. 10. The success rate’s moving average during testing of the agents.

egy that combines easy and difficult episodes. This training
strategy using the A3C algorithm proved to be efficient in
obtaining policies with a higher entropy, which is necessary
for environments with different scenes.

We also showed that managing an animation control, while
the agent navigates the environments, adds extra complexity,
since an animation controller can invalidate the Markovian
state’s assumption, hindering the learning convergence. This
was solved simply by adding information from the animation
controller to the state perceived by the agent. This approach
achieved greater performance in the tests.

Finally, although we have shown that reinforcement learning
systems are efficient for the point-to-point navigation problem
of animated virtual characters, there is still a number of
problems that need to be solved if reinforcement learning
systems are viable candidates to replace the approaches of the

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 11. The agent’s behavior evading obstacles, jumping stairs and going up a ramp. The captured frames are in a temporal sequence, but with variable
capture time between them. The red line indicates the agent’s trajectory. The blue line indicates a jump and the straight line indicates that the agent performed
the walk action. In this case, the agent reached the target (greenish cylinder).

classic NavMesh. Among those problems, we can mention:
generalization of scene (adapting agents that are trained in
one scene to function in other scenes), behavior variability,
navigation problem with sub-problems along the way, and
navigation in open worlds games.

REFERENCES

[1] L. Lidén, “Strategic and tactical reasoning with waypoints,” in AI Game
Programming Wisdom, S. Rabin, Ed. Hingham, MA, USA: Charles
River Media, 2002, pp. 211–220.

[2] E. Alonso, M. Peter, D. Goumard, and J. Romoff, “Deep reinforce-
ment learning for navigation in aaa video games,” arXiv preprint
arXiv:2011.04764, 2020.

[3] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu et al., “Learning to
navigate in complex environments,” arXiv preprint arXiv:1611.03673,
2016.

[4] S. Phon-Amnuaisuk, “Learning chasing behaviours of non-player char-
acters in games using sarsa,” in Applications of Evolutionary Com-
putation, C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt,
A. I. Esparcia-Alcázar, J. J. Merelo, F. Neri, M. Preuss, H. Richter,
J. Togelius, and G. N. Yannakakis, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 133–142.

[5] T. Barron, M. Whitehead, and A. Yeung, “Deep reinforcement learn-
ing in a 3-d blockworld environment,” Deep Reinforcement Learning:
Frontiers and Challenges, IJCAI, vol. 2016, p. 16, 2016.

[6] F. G. Glavin and M. G. Madden, “Learning to shoot in first person
shooter games by stabilizing actions and clustering rewards for reinforce-
ment learning,” in 2015 IEEE Conference on Computational Intelligence
and Games (CIG), Aug 2015, pp. 344–351.

[7] J. Beck, K. Ciosek, S. Devlin, S. Tschiatschek, C. Zhang, and K. Hof-
mann, “Amrl: Aggregated memory for reinforcement learning,” in In-
ternational Conference on Learning Representations, 2019.

[8] A. Dobrovsky, U. Borghoff, and M. Hofmann, “Applying and
augmenting deep reinforcement learning in serious games through
interaction,” Periodica Polytechnica Electrical Engineering and
Computer Science, vol. 61, no. 2, pp. 198–208, 2017. [Online].
Available: https://pp.bme.hu/eecs/article/view/10313

[9] A. Juliani, V.-P. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and
D. Lange, “Unity: A general platform for intelligent agents,” arXiv
preprint arXiv:1809.02627, 2020.

[10] G. Gomes, C. A. Vidal, J. B. Cavalcante-Neto, and Y. L. Nogueira,
“Ai4u: A tool for game reinforcement learning experiments,” in 2020
19th Brazilian Symposium on Computer Games and Digital Entertain-
ment (SBGames). IEEE, 2020, pp. 19–28.

[11] G. Gomes, C. A. Vidal, J. B. Cavalcante Neto, and Y. L. B. Nogueira,
“An emotional virtual character: A deep learning approach with rein-
forcement learning,” in 2019 21st Symposium on Virtual and Augmented
Reality (SVR), Oct 2019, pp. 223–231.

[12] P. Mirowski, “Learning to navigate,” in 1st International Workshop on
Multimodal Understanding and Learning for Embodied Applications,
2019, pp. 25–25.

[13] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva,
and D. Batra, “Dd-ppo: Learning near-perfect pointgoal navigators
from 2.5 billion frames,” in International Conference on Learning
Representations, 2019.

[14] S. Bansal, V. Tolani, S. Gupta, J. Malik, and C. Tomlin, “Combining op-
timal control and learning for visual navigation in novel environments,”
in Proceedings of the Conference on Robot Learning, ser. Proceedings of
Machine Learning Research, L. P. Kaelbling, D. Kragic, and K. Sugiura,
Eds., vol. 100. PMLR, 30 Oct–01 Nov 2020, pp. 420–429.

[15] B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search on the replay
buffer: Bridging planning and reinforcement learning,” in Advances in
Neural Information Processing Systems, 2019, pp. 15 246–15 257.

[16] X. Meng, N. Ratliff, Y. Xiang, and D. Fox, “Scaling local control to
large-scale topological navigation,” arXiv preprint arXiv:1909.12329,
2019.

[17] S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time lag
problems,” in Advances in neural information processing systems, 1997,

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

pp. 473–479.
[18] E. Parisotto and R. Salakhutdinov, “Neural map: Structured memory for

deep reinforcement learning,” arXiv preprint arXiv:1702.08360, 2017.
[19] E. Beeching, J. Dibangoye, O. Simonin, and C. Wolf, “Egomap:

Projective mapping and structured egocentric memory for deep rl,” in
European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML-PKDD), 2020.

[20] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder,
B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight experience
replay,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, ser. NIPS’17. Red Hook, NY, USA:
Curran Associates Inc., 2017, p. 5055–5065.

[21] D. Ghosh, A. Gupta, J. Fu, A. Reddy, C. Devin, B. Eysenbach, and
S. Levine, “Learning to reach goals without reinforcement learning,”
arXiv preprint arXiv:1912.06088, 2019.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. A. Riedmiller, “Playing atari with deep reinforcement
learning,” CoRR, vol. abs/1312.5602, 2013.

[23] H. Ide and T. Kurita, “Improvement of learning for cnn with relu
activation by sparse regularization,” 05 2017, pp. 2684–2691.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

