
Centralized Critic per Knowledge for Cooperative
Multi-Agent Game Environments

Thaı́s Ferreira
Instituto de Computação

Universidade Federal Fluminense
Niteroi, Brazil

thais ferreira@id.uff.br

Esteban Clua
Instituto de Computação

Universidade Federal Fluminense
Niteroi, Brazil

esteban@ic.uff.br

Troy Costa Kohwalter
Instituto de Computação

Universidade Federal Fluminense
Niteroi, Brazil
troy@ic.uff.br

Abstract—Cooperative multiplayer games are based on rules
where players must collaborate to solve certain tasks. These
games bring specific challenges when using Multi-Agent Rein-
forcement Learning (MARL), since they present requirements
related to the training of these collaborative behaviors, such as
partial observations, non-stationary, and the problem of credit
assignment. One of the approaches used in MARL to solve these
challenges is centralized training with decentralized execution.
The idea is to use the available knowledge about the full state
and information of the environment in the training phase, but
policy learning takes place in a decentralized way, not depending
on this knowledge. In this work, we study the approach of
centralized training with decentralized execution. We seek to
validate whether the division of knowledge about the environment
(e.g. observations, perception of objects, enemies, obstacles) by
different groups (different centralized critics) improves learning
performance in multi-agent environments. Our results show
that specifying a centralized critic per knowledge improves the
training, but it also increases the time of the training process.

Index Terms—Cooperative Multi-Agents, Reinforcement
Learning, ML-Agents, MA-POCA

I. INTRODUCTION

The usage of modern Artificial Intelligence (AI) techniques
in games has evolved due to advances in hardware and
research. This evolution follows the constant growth of the
gaming industry and the availability of new tools and frame-
works. Besides that, one of the game genres that have been
gaining prominence in the last year is multiplayer games. In
games like Among Us and Deceit, the players must collaborate
to solve the tasks at hand. In these multi-agent environments,
the agents can learn from other agents’ expertise and from
their own experience. In this paper we intend to present how
centralized critic per knowledge can impact cooperative multi-
agent based games.

In these environments, there are restrictions so that some
agents, at a given time, may not know everything about
the world that others know [1]. Typically, agents have a
partial observation, not having complete information about
the environment and other agents’ behavior, requiring them to
communicate with their neighbors and learn the ideal policies
based on observed local information [1]. Furthermore it is
possible to have different agents that learn and adapt from
each other’s context in the environments.

This work is supported by CAPES and FAPERJ

These characteristics configure a non-stationary environ-
ment, as the behavior of other agents constantly changes
during the training process [2]. Minor modifications in learned
behaviors can result in random changes of macro properties
resulting from the communication of these agents.

Reinforcement Learning (RL) techniques have attracted
many researchers in the investigation of multi-agent envi-
ronments [1] [2] [3] [4]. It has been used to solve the
problem of how an autonomous agent that feels and acts in
a given environment can learn to choose optimal actions to
achieve its objective [5]. More recently it is used for building
intelligent agents to solve complex challenges with multiple
agents in gaming environments. For example, AlphaStar [3]
which achieved the best professional player level performance
in Starcraft II and OpenAI Five [4] that defeated the world
champion in Dota II. Due to the results, Multi-Agent Re-
inforcement Learning (MARL) offers new possibilities for
the development of intelligent agents in games with multiple
artificial agents.

In the MARL domain, there are several agents who usually
have their own private observation and want to take an action
based on that specific set of observations. These observations
are usually is constrained to a local issue and aren’t necessarily
the same as the full state of the environment. However, in
a simulation environment such as games, we usually have
access to the full state and information in the training phase.
Therefore, it is possible to use this knowledge combined with
decentralized execution, since the agents cannot have access
to the full state during the execution phase. In decentralized
policies, each agent selects its own action conditioned only on
its local action-observation history [6].

Another challenge in MARL is the problem of credit
assignment [7]. This problem occurs when agents who did
not contribute to the task’s resolution are rewarded. This type
of practice can encourage behaviors that do not help with the
task resolution, as an agent who executed a sub-optimal policy
is being rewarded. We assume that in multi-agent learning it is
necessary to find a way to give credit (reward) only to agents
who contribute to achieving the goal. In cooperative settings,
joint actions typically generate only global rewards, making it
difficult for each agent to deduce its own contribution to the
team’s success [6].

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

To solve these problems, the approach of centralized train-
ing with decentralized execution has recently been developed
by the deep RL community ([8], [9]). Many of these works
propose new techniques or try to improve existing algorithms.
However, it is still necessary to analyze the impact of agents’
knowledge on the centralized critic’s coordination, especially
in environments that require agents to handle with many obser-
vations and perceptions about the environment. Depending on
the environment and the complexity of the tasks, it might be
interesting to divide the observations and perceptions among
different groups of agents, each one coordinated by a specific
critic.

In our work we propose to study the approach of centralized
training with decentralized execution. We seek to validate
whether the division of knowledge about the environment
(e.g. observations, perception of objects, obstacles, enemies)
by different groups (different centralized critics) improves
learning performance in multi-agent environments. We seek to
analyze how the division of knowledge influences the gain of
group rewards, the episode length, losses and policy statistics,
and how much the increase in the number of centralized
critics influences the time of the training process. We evaluated
our approach through experiments using the MA-POCA [10]
algorithm that allows centralized training with independent
policy learning. Our results show that specifying a centralized
critic per knowledge, in general, improves the process, but it
also increases the time of the training process.

Our paper is organized as follows: Section 2 presents the
concepts and terms about reinforcement learning and cooper-
ative multi-agent tasks. Section 3 outlines the related work for
this work, introducing some techniques used to solve the most
common problems in MARL. It also describes the algorithm
used in our experiments. Section 4 presents approaches for
extending policy gradients in multi-agent settings, detailing
the approach adopted in this work. Section 5 describes the
test experiments conducted, introducing the environments and
the configurations for the agents and neural network hyper-
parameters. Section 6 presents the analysis of the results.
Finally, Section 7 concludes this work, listing contributions,
limitations, and future work.

II. BACKGROUND

A. Reinforcement Learning

RL is a subfield of machine learning that teaches an agent
how to choose an action from e predefined action space. It
interacts with an environment, in order to maximize rewards
over time. In RL we have: (i) agents that is the program
we train, with the aim of complete a specified task; (ii)
environment, which is the world where the agent performs
actions; (iii) action, that corresponds to things the agents can
do and may cause changes in the environment; (iv) rewards,
that is a feedback to the agent and can be positive or negative;
and (v) states that the agent observes.

Agents learn in an interactive environment by trial and
error using feedback (reward/penalties) from their actions and
experiences. An agent essentially tries different actions on the

environment and learns from the feedback that it gets back.
The goal is to find the optimal results. The choice of which
action to take in each state in order to get optimal results is
known as the policy, π [11]. The policy is a function that
maps states to the actions and can be approximated using
neural networks (with parameters θ). In general, policies may
be stochastic, specifying probabilities for each action [12].

The RL process involves iteratively collecting data by
interacting with the environment (experiences). Traditionally,
the agent observes the state of the environment s and takes
action a based on policy π(a|s). Then agent gets a reward
r and is mapped to the next state s′. Collection of these
experiences (〈s, a, r, s′〉) is the data that agent uses to train the
policy (parametersθ). Typically the experiences are collected
using the latest learned policy, and then uses that experience to
improve the policy in an interactive way. The agent may read
data from the environment in order to collect the samples. The
policy πk can be updated with data collected by πk itself. We
optimise the current policy πk and use it to determine what
spaces and actions to explore and sample next. This means
trying to improve the same policy that the agent is already
using for action selection. The policy used for data generation
is called behavior policy. In general, the behavior policy is
equal to the policy used for action selection.

B. Cooperative Multi-Agent Task

A fully cooperative multi-agent task can be described
as a stochastic game G, defined by a tuple G =
〈S,U, P, r, Z,O, n, γ〉 , in which n agents identified by a ∈
A ≡ {1, ..., n} choose sequential actions. The environment
has a true state s ∈ S. At each time step, each agent
simultaneously chooses an action ua ∈ U , forming a joint
action u ∈ U ≡ Un which induces a transition in the envi-
ronment according to the state transition function P (s′|s, u) :
S × U × S −→ [0, 1]. All the agents share the same reward
function r(s, u) : S × U −→ R and γ ∈ [0, 1) is a discount
factor.

We consider a partially observable setting, in which agents
draw observations z ∈ Z according to the observation function
O(s, a) : S × A −→ Z. Each agent has an action-observation
history τa ∈ T ≡ (Z × U)∗, on which it conditions a
stochastic policy πa(ua|τa) : T × U −→ [0, 1]. We represent
joint quantities over agents in bold, and joint quantities over
agents other than a given agent a with the superscript −a.

In actor-critic approaches, the actor (policy) is trained by
following a gradient that depends on a critic, which usually
estimates a value function [6]. The gradient must be esti-
mated from trajectories sampled from the environment, and
the (action-)value functions must be estimated with function
approximators. Consequently, the bias and variance of the
gradient estimate depend strongly on the exact choice of
estimator [13]. In this paper, we train critics on-policy adapted
to be used with deep neural networks.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

III. RELATED WORKS

A naive approach to solve multi-agent problems is to use
single-agent RL algorithms for each agent and treat other
agents as part of the environment. One popular method is
the Independent Q-Learning (IQL) [14], where each agent has
one separate action-value function that gets the agent’s local
observation to select its action based on it. Unfortunately, this
does not perform well in practice because the dynamic of the
environment is constantly changing, being hard to approximate
the Q-function [15].

Another possible solution is to centralise training and
decentralise execution. There are several works that try to
follow this method and can be divided into two groups: value-
based methods (e.g. Value Decomposition Networks (VDN)
and QMIX); and actor-critic methods (e.g. MADDPG and
COMA). The first one tries to propose a way to be able to
use value-based methods (e.g. Q-learning), train them in a
centralized way and use them for decentralized execution.

Sunehag et al. [16] propose the usage of separate action-
value functions for multiple agents and learn them by just
one shared team reward signal. The joint action-value function
is a linear summation of all action-value functions of all
agents. Actually, by using a single shared reward signal, it
tries to learn decomposed value functions for each agent and
use it for decentralized execution. They used two centralized
agents as baselines and perform the set of experiments on
two-dimensional maze environments.

QMIX [17] is an extension to VDN [16] but tries to mix
the Q-value of different agents in a nonlinear way. They use
global state st as input to hypernetworks to generate weights
and biases of the mixing network. Rashid et al. [17] evaluate
QMIX on a challenging set of StarCraft II micromanagement
tasks and show that QMIX significantly outperforms existing
value-based multi-agent reinforcement learning methods.

Actor-critic-based methods try to use actor-critic architec-
ture [13] to do centralized training and decentralized execu-
tion. Usually, they use the full state and additional informa-
tion which are available in the training phase in the critic
network to generate a richer signal for the actor. Foester et
al. [6] propose the usage of policy gradient methods with
a centralized critic and test their approach on a StarCraft
micromanagement task. They learn a single centralized critic
for all agents, learning discrete policies and combine recurrent
policies with feed-forward critics.

Lowe et al. [18] suggest an approach similar to counter-
factual multi-agent policy gradients [6] but learn a centralized
critic for each agent, allowing for agents with differing reward
functions including competitive scenarios. They used feed-
forward policies and learning continuous policies. They also
focus on the problem of micromanagement in StarCraft.

In our work, we use MA-POCA (MultiAgent POsthumous
Credit Assignment) [10], which is a novel multi-agent trainer
that trains a centralized critic. We may give rewards to the team
as a whole, and the agents will learn how best to contribute
to achieving that reward. Agents can also be given rewards

individually, and the team will work together to help the
individual achieve those goals. MA-POCA builds on previous
work in multi-agent cooperative learning those we discussed
before ([6], [18]).

IV. CENTRALIZED CRITIC PER KNOWLEDGE

Our goal is to study the approach of centralized training
with decentralized execution. We seek to validate whether the
division of knowledge about the environment (e.g. observa-
tions, perception of objects, enemies, obstacles) by different
groups (i.e., different centralized critics) improves learning
performance in multi-agent environments. We use two envi-
ronments divided into two different scenarios to achieve our
goal.

In the first scenario of each environment, there is only one
group being coordinated by a centralized critic. All agents
in this group need to complete the same complex task and
have the same knowledge about the environment. In the second
scenario, the complex task is split into two new simpler tasks.
There are two groups, each having a different task and knowl-
edge about the environment. Each group is coordinated by a
different centralized critic. Fig. 1 illustrates our approach. For
a better understanding of the approach, the next subsections
present methods to apply policy gradients to multiple agents.

Fig. 1. Centralized critic with common knowledge and distributed knowledge.

A. Independent Actor-Critic (IAC)

The simplest way to apply policy gradients to multiple
agents is to have each agent learn independently, with its
actor and critic, from its action-observation history. Each agent
has its policy network and is trained separately only using its
experience [19]. IAC uses an actor-critic algorithm for each
agent, treating other agents as part of the environment.

In this implementation, the learning process can be opti-
mized by sharing parameters among the agents [6]. The agents
can still behave differently because they receive different ob-
servations. The learning process remains independent because
each agent’s critic estimates only a local value function. Inde-
pendent learning is one of the most straightforward approaches
to MARL. However, the lack of information sharing at training
time makes it difficult for an individual agent to estimate the
contribution of its actions to the team’s reward.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

B. MultiAgent POsthumous Credit Assignment (MA-POCA)

The difficulties discussed above arise because, beyond the
parameter sharing, IAC fails to exploit the fact that learning
is centralized in our setting. For these reasons, we use MA-
POCA, which overcomes this limitation and uses a cen-
tralized critic. In IAC, each actor π(ua|τa) and each critic
Q(τa, ua) or V (τa) conditions only on the agent’s own action-
observation history τa. However, the critic is used only during
learning, and only the actor is demanded during execution.
Since learning is centralized, we can use a centralized critic
that conditions the true global state s or the joint action-
observation histories τ [6].

A naive way to use this centralized critic would be for
each actor to follow a gradient based on the temporal dif-
ference (TD) error estimated from this critic. However, TD
error considers only global rewards [12]. Thus, the gradient
computed for each actor does not explicitly reason about how
that particular agent’s actions contribute to that global reward
(the credit assignment problem). The gradient for that agent
becomes very noisy since the other agents may be exploring
[6].

Therefore, MA-POCA uses a baseline that marginalizes the
action of the agent associated with its observations. The MA-
POCA uses a network body that uses a self-attention layer
to handle state and action input from a potentially variable
number of agents that share the same observation and action
space. This network body is used to compute the value and
MA-POCA baseline for a variable number of agents in a group
that all share the same observation and action space.

The POCA baseline calls a method in the network body
that returns sampled actions. This method uses as parameters
the agent observations. The POCA baseline uses parameters
based on the observation of the agent, a tuple of observations
and actions for all groupmates, and optional parameters about
memory usage. The output is a tuple of reward stream to tensor
and critic memories. Finally, a centralized value function calls
the forward pass of the network body with only the states of
all agents. It uses a list of observations for all agents in the
group and returns a tuple of reward stream to tensor and critic
memories.

V. EXPERIMENT

In this section, we present the analysis of the performance
for multiple agents in two different environments through our
approach of centralized critic per knowledge. The experiments
are performed using the Unity ML-Agents Toolkit [20]. The
flexibility of Unity enables the creation of tasks ranging
from simple 2D grid-world problems to complex 3D strat-
egy games, physics-based puzzles, or multi-agent competitive
games. Unlike other research platforms, Unity is not restricted
to any specific genre of gameplay or simulation, making it
a general platform. Furthermore, the Unity Editor enables
rapid prototyping and development of games and simulated
environments.

The experiment was conducted in two 3D environments
composed of multiple agents: Dungeon Escape environment

and Survival environment. As in multiplayer games, agents
need to work cooperatively to achieve a goal. This goal can be
the same for all agents or not. In some games, it is necessary
for one group to perform certain tasks while another group
performs others. There are groups with different sub-goals but
working cooperatively in the same environment.

Thus, we conducted our experiments in two environments
with different scenarios. In the first scenario, there is only
one group being coordinated by a centralized critic. All
agents in this group need to complete the same complex
task and have the same knowledge about the environment
(they notice all objects, enemies, obstacles). This scenario is
referred to as a Common Knowledge scenario. For the second
scenario, the perceptions and observations of the group from
the Common Knowledge approach were divided between two
different groups. Each group has a specific behavior and is
coordinated by a centralized critic. This scenario is referred
to as a Distributed Knowledge scenario. In the following
subsections, we introduce the two 3D environments and their
scenarios.

A. Dungeon Escape Environment

In the Dungeon Escape environment, the episode completes
successfully when the agents escape from the dungeon before
the dragon escapes through the portal. The dragon starts at one
end of the dungeon and must cross it to enter the portal and
escape. It has specific behavior, programmed manually. Agents
need to defeat the dragon, collect the key it drops and escape
through a door that will appear once they picked the key. The
agent needs to get one of the swords scattered around the map
(there are two swords) to defeat the enemy. If an agent that
doesn’t have the sword collides with the dragon, that agent is
removed from the episode and the enemy remains alive. If an
agent holding the sword collides with the dragon, the agent
is removed from the episode, but the enemy is defeated and
drops the key. Since then, the other agents can collect the key
and open the door that will appear, escaping the dungeon and
completing the objective.

In both scenarios of this environment, agents have informa-
tion about position, rotation, physics properties, and collider.
Agents perceive the environment through ray cast sensors.
These sensors can perceive an element through a tag every
time a ray finds an object. If the tag of that object is specified
in the sensor, the agent can perceive the object. The agents can
perceive walls, the door, the dragon, other agents, the portal,
sword, and key. Agents collect observations through an obser-
vation vector. ML-Agents Toolkit provides a fully connected
neural network model to learn from those observations. These
observations vary from the Common Knowledge scenario to
Distributed Knowledge scenario. Fig. 2 shows the Dungeon
Escape environment.

1) Common Knowledge Scenario Configuration: In the
Common Knowledge scenario, which is composed of one
group (one group), all agents collect observations about who
has the sword and who has the key. The agents’ ray cast sensor
contains both these object tags. In this scenario all four agents

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 2. Dungeon Escape environment.

can take the sword and the key. Once one sword is collected,
the other disappears. The group is positively rewarded when
the agent who holds the key collides with the door. It is the
only time the agents are rewarded. Group rewards are meant
to reinforce agents to act in the group’s best interest instead
of individual ones. The MA-POCA trainer rewards agents as a
group and allows them to learn how their contributions helped
achieve the goal. Even when an agent is removed in the middle
of the episode, he is still able to learn how his actions affected
the team’s performance. This feature is extremely important
for the development of intelligent agents in video games.

2) Distributed Knowledge Scenario Configuration: In the
Distributed Knowledge scenario the agents were divided into
two different groups. The sword group is formed by two
agents able to collect the sword, who have the same objective:
to defeat the dragon. This group is positively rewarded only
when it defeats the dragon. The key group is formed by two
agents able to collect the key and have the same objective: to
open the door. This group is positively rewarded only when it
opens the door. The sword group ray cast sensor contains the
sword tag but it does not contain the key tag. The key group
ray cast sensor contains the key tag but does not contain
the sword tag. The sword group observation vector collects
information only about who has the sword. The key group
observation vector collects information only about who has
the key. In this configuration, there is a centralized critic
responsible for coordinating sword group and another specific
centralized critic for key group.

B. Survival Environment

In the Survival environment, the episode completes success-
fully when the agents collect the necessary resources before
the night arrives. This environment has twelve agents that need
to collect water, food, and light two bonfires. To take the water,
the agents need a bottle. To take the food the agents need a
bag. Finally, to light the bonfire, the agents need to collect
wood. If an agent tries to interact with a resource without
possessing the item needed to collect it nothing will happen.
To interact with the items/resources, agents need to collide
with them. Thus, the initial goal of the agents is to move
around and explore the map.

In both scenarios of this environment, agents have informa-
tion about position, rotation, physics properties, and collisions
obstacles. Agents perceive the environment through ray cast

sensors. The agents can perceive walls, bags, bottles, woods,
water, food, bonfire, trees, and other agents. Agents collect ob-
servations through an observation vector. These observations
vary from the Common Knowledge scenario to Distributed
Knowledge scenario. Fig. 3 shows the Survival environment.

Fig. 3. Survival environment.

C. Common Knowledge Scenario Configuration
In the Common Knowledge scenario, which is composed

of one group (survival one group), all agents collect observa-
tions about who has the bag, bottle, and wood. In this scenario,
all twelve agents can take the bag, bottle, wood, water, food,
and light the bonfires. The group is positively rewarded when
the agents take two units of water, two foods, and light two
bonfires. It is the only time the agents are positively rewarded.
The group is negatively rewarded every step of the episode.
The episode is restarted, and agents receive no rewards when
the episode’s duration ends before the agents complete the
objective.

1) Distributed Knowledge Scenario Configuration: In the
Distributed Knowledge scenario the agents were divided into
three different groups. The survival food group is formed by
four agents able to collect and perceive the bag and food. The
survival food group observation vector collects information
only about who has the bag. This group is positively rewarded
only when it takes two foods. The survival water group
is formed by four agents able to collect and perceive the
bottle and water. The survival water group observation vector
collects information only about who has the bottle. This
group is positively rewarded only when it takes two units of
water. The survival bonfire group is formed by four agents
able to collect and perceive the wood and bonfire. The
survival bonfire group observation vector collects information
only about who has the wood. This group is positively
rewarded only when it lights two bonfires.

Each group is negatively rewarded every step of the episode.
The episode is restarted, and agents receive no rewards when
the episode’s duration ends before any group completes the
objective. In the Distributed Knowledge scenario, there are
three centralized critics responsible for coordinating each
group.

D. Configuration File
We define the training hyperparameters for each behavior in

the scene through a configuration file. In both environments

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

(Dungeon Escape and Survival), there is one complex behavior
to be trained in the Common Knowledge scenario. In the
Distributed Knowledge scenario, the complex behavior was
divided into simple behaviors that will learn at the same
time. For the Dungeon Escape environment, there are two
behaviors, one for each group (sword group and key group).
For the Survival environment, there are three behaviors, one
for each group (survival food group, survival water group
and survival bonfire group). In the configuration file, the
only difference between the two scenarios (Common and
Distributed Knowledge) is the number of neural networks that
are trained. For each behavior, we have a different network.

The behavior parameters for training the neural network
are composed of the observation space and the actions. As
mentioned before, in both environments (Dungeon Escape
and Survival), the observation space is formed by the raycast
sensor capable of perceiving the objects through the spec-
ified tags and the observation vector (which agent has the
sword/key/bag/bottle/wood). All agents have a raycast sensor,
being able to perceive the environment according to the tags
specified in the sensor.

The actions consist of one discrete action branch with seven
possible actions: turn clockwise and counterclockwise, move
along four different face directions (right, left, up, down),
or do nothing. The agents learn through the cycle: collect
observations, select an action using its policy, take an action,
reset if it reaches the maximum number of steps or if it
completes the task. For example, if an agent that has the
key perceives the door (through the sensor) it must make the
decision to move to the door. Once it collides with the door,
its group is rewarded, and the agent learns that when it has
the key it must search for the door and go to it.

The neural network simulates this behavior by learning
about collected observations and then predicting outcomes.
As the neural network learns, the weights of the connections
between the neurons are “fine-tuned”, allowing the network to
come up with accurate predictions. All network hyperparam-
eters are set to the same values as shown below.

The trainer type is set to POCA. In the common trainer
configurations, the maximum number of model checkpoints
to keep is set to 5. Checkpoints are saved after the number of
steps specified by the checkpoint_interval option (the
number of experiences collected between each checkpoint by
the trainer). Once the maximum number of checkpoints has
been reached, the oldest checkpoint is deleted when saving a
new checkpoint.

The number of steps of experience to collect per agent be-
fore adding it to the experience buffer is set to 64; the number
of experiences that need to be collected before generating and
displaying training statistics is set to 60000. There are 2 hidden
layers to the neural network. Each fully connected layer of the
neural network has 256 units. We do not apply normalization
to the vector observation inputs, because normalization can be
harmful with simpler discrete control problems.

The extrinsic reward is configured as follows: 0.99 to
gamma (discount factor for future rewards coming from the

environment.) and 1.0 to strength (factor by which to multiply
the reward given by the environment). The POCA hyperpa-
rameters are configured as follows:
• batch_size = 1024 (typical range: 512 - 5120). Cor-

responds to the number of experiences in each iteration
of gradient descent;

• buffer_size = 10240 (typical range: 2048 - 409600).
Corresponds to the number of experiences to collect
before updating the policy model;

• learning_rate = 0.0003 (typical range: 1e-5 - 1e-
3), which is the strength of each gradient descent update
step;

• beta = 0.01 (typical range: 1e-4 - 1e-2), which is the
strength of the entropy regularization;

• epsilon = 0.2 (typical range: 0.1 - 0.3). This influences
how rapidly the policy can evolve during training and
corresponds to the acceptable threshold of divergence
between the old and new policies during gradient descent
updating;

• lambd = 0.95 (typical range: 0.9 - 0.95). Corresponds
to the regularization parameter used when calculating
the Generalized Advantage Estimate (GAE). This can be
thought as how much the agent relies on its current value
estimate when calculating an updated value estimate.

• num_epoch = 3 (typical range: 3 - 10). Corresponds
to the number of passes to make through the experience
buffer when performing gradient descent optimization.

• learning_rate_schedule = constant. Determines
how learning rate changes over time. Constant learning
rate keeps the learning rate constant for the entire training
run. For POCA is recommend decaying learning rate until
max_steps so learning converges more stably.

VI. RESULTS

Our goal is to validate whether the division of knowledge
about the environment by different groups (different central-
ized critics) improves learning performance in multi-agent
environments or not. We want to analyze how the division
of knowledge influences the (1) gain of group rewards, (2)
the episode length, (3) the losses statistics, (4) the policy
statistics, and (5) how much the increase in the number of
agents coordinated by centralized critics influences the training
process. Therefore, in the following subsections, we analyze
some statistics saved throughout the training process related
to each of those five factors.

A. Group Rewards

The ML-Agents Toolkit saves statistics during learning ses-
sions that can be viewed with TensorBoard. Group Cumulative
Reward is the mean cumulative episode reward overall groups
and it is expected to increase during a successful training
session. We divide the analysis by environments.

1) Dungeon Escape: Fig. 4 shows the resulting graph
for the two training sessions (Common Knowledge and Dis-
tributed Knowledge scenarios) for the Dungeon Escape envi-
ronment. The blue line represents the only group (one group)

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

in the Common Knowledge scenario (all agents can take the
sword, defeat the dragon, take the key and open the door). The
orange line represents the key group (which must collect the
key and open the door) of Distributed Knowledge scenario, and
the gray line represents sword group (which must collect the
sword and defeat the dragon) also from Distributed Knowledge
scenario.

Fig. 4. The mean cumulative episode reward overall groups for Dungeon
Escape environment.

It is possible to observe that until 360k steps, the group
that accumulated the most rewards was the sword group
(rewarded for defeating the dragon). It occurs because this
group is rewarded as soon as the dragon is defeated. Although
(one group) has four agents capable of performing this task,
they are only rewarded after collecting the key and opening
the door. Until 360k the key group (rewarded by opening the
door) is expected to perform less than the sword group, as the
key group depends on the sword group accomplishing its goal
(defeating the dragon), in order to key group accomplishing
theirs (take the key that the dragon dropped and open the
door).

Between 120k and 480k steps, the cumulative group reward
grows a lot for the key group. At this point, the sword group
reward begins to stabilize, indicating that this group is learning
how to complete its objective, allowing the key group to
learn theirs. In general, the group cumulative reward for
the one group grows more slowly than the others. It occurs
because this group needs to perform more tasks to achieve the
goal and be rewarded.

2) Survival: Fig. 5 shows the resulting graph for the
two training sessions (Common Knowledge and Distributed
Knowledge scenarios) for the Survival environment. In this
environment, we ran two tests for the Common Knowledge
scenario, as we wanted to ascertain whether the group’s
accumulated reward would indeed be lower and more unstable.
The orange and red lines refer to the tests in the Common
Knowledge scenario. The blue, pink, and green lines refer
to each of the three groups in the Distributed Knowledge
scenario.

The tests of the Common Knowledge scenario showed lower
mean cumulative rewards than the Distributed Knowledge
scenario. It may be related to some factors such as the smaller
number of tasks that the groups need to complete after the
knowledge division, the more immediate reward due to this

Fig. 5. The mean cumulative episode reward overall groups for Survival
environment.

division, and the smaller number of agents coordinated by the
same centralized critic. In the Distributed Knowledge scenario
the groups maintain the reward gain stable and close to the
maximum mean cumulative reward (1.0).

B. Episode Length

The episode length is the mean length of each episode in the
environment for all agents. By analyzing the average episode
duration, we can get a sense of whether or not the agents are
taking longer to complete their tasks.

1) Dungeon Escape: Fig. 6 shows the Episode Length
episode length for the Dungeon Escape environment. The
episode length for the sword group is always shorter compared
to the other groups. It occurs because this group is rewarded
more immediately, as the agents need to collect the sword
and collide with the dragon. In one group the agents need to
collect the sword, defeat the dragon, get the key and open
the door; and the key group depends on the sword group to
complete its objective.

Fig. 6. Episode length for the Dungeon Escape environment.

2) Survival: Fig. 7 shows the Episode Length for the
Survival environment. By analyzing it, we realized that the
division of tasks and perceptions between the groups caused
the agents to complete the tasks more quickly. In the tests of
the Common Knowledge scenario the episodes evidenciates
that the agents were taking more time to complete the tasks.

C. Losses

We analyzed the policy and value loss for the losses
statistics. The policy loss is the mean magnitude of the policy
loss function. It correlates to how much the policy (process for

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

Fig. 7. Episode length for the Survival environment.

deciding actions) is changing. The policy loss measures how
much the agent prediction was wrong. When the agent makes
poor predictions, the policy loss will be high. It is expected
that these values oscillate during training.

1) Dungeon Escape: Fig. 8 shows that the magnitude of
the policy loss is decreasing during the training session for
all groups in the Dungeon Escape environment. It means the
agents’ predictions (predict what the best action would be in
the current situation) are getting better.

Fig. 8. The mean magnitude of the policy loss function for the Dungeon
Escape environment.

The value loss is the mean loss of the value function update.
It correlates to how well the model can predict the value of
each state. The value indicates the long-term desirability of
states after taking into account the states that are likely to
follow and the rewards available in those states [17]. This
should increase while the agent is learning, and then decrease
once the reward stabilizes. Fig. 9 shows that the value loss
for the sword group is higher than the other groups. In the
initial steps, agents in this group are learning faster, which
corresponds to the group with the greatest reward in the initial
steps.

2) Survival: Fig. 10 shows that the magnitude of the policy
loss, in general, is decreasing during the training session for
all groups in the Distributed Knowledge scenario. It means
the agents’ predictions are getting better. In the Common
Knowledge scenario, we can perceive that the orange line
started at 0.023 but is increasing over time. It means the
agents’ predictions are not getting better. This may be related
to the number of agents coordinated by the centralized critic,
where only one is coordinating all twelve agents.

Fig. 9. The mean loss of the value function update for the Dungeon Escape
environment.

Fig. 10. The mean magnitude of the policy loss function for the Survival
environment.

The value loss should increase while the agent is learning,
and then decrease once the reward stabilizes. Fig. 11 shows
that the value loss remains varying in the Common Knowledge
environment. It happens because the agents remain to make
random decisions and are not learning satisfactorily. On the
other hand, in the Distributed Knowledge scenario, we notice
that the values increase a little at the beginning because the
agents of the three groups are learning. A little later, they
manage to reach rewards close to the maximum value and
we notice that the value loss starts to fall, indicating that the
agents are learning to perform the tasks.

Fig. 11. The mean loss of the value function update for the Survival
environment.

D. Policy

For the policy statistics, we analyze the entropy and the
value estimate. The entropy means how random the decisions

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

of the model are. It is expected to slowly decrease during
a successful training process. At the beginning of the train-
ing, the agents’ decisions are more random, however, as the
training progresses, they learn and their actions become fewer
random.

1) Dungeon Escape: Fig. 12 shows the graph for entropy.
All three groups take fewer random actions during the training
session because they are learning. The value estimate is the
mean value estimate for all states visited by the agents. These
values should increase as the cumulative reward increases.
They correspond to how much future reward the agent predicts
itself receiving at any given point. In Fig. 13 the value estimate
increase as the cumulative reward increases. In the 300k step,
the key group cumulative reward starts to increase more than
the one group cumulative reward.

Fig. 12. Entropy for the Dungeon Escape environment.

Fig. 13. Extrinsic value estimate for the Dungeon Escape environment.

2) Survival: Fig. 14 shows the graph for entropy. The en-
tropy for the Common Knowledge scenario decreases slowly,
because the model make more random decisions than in the
Distributed Knowledge scenario.

Fig. 15 shows the value estimate for Survival environment.
As seen in the cumulative reward graph, all three groups in the
Distributed Knowledge scenario achieved high mean cumula-
tive rewards. As the reward gain increasing, the extrinsic value
estimate increasing too, since it corresponds to how much
future reward the agent predicts itself receiving at any given
point.

E. Considerations

In the Dungeon Escape environment, the cumulative reward
group was better in Distributed Knowledge scenario, where

Fig. 14. Entropy for the Survival environment.

Fig. 15. Extrinsic value estimate for the Survival environment.

each group performs specific tasks and has different goals.
Regarding entropy, both scenarios showed a gradual decrease
in the randomness of the taken actions. Distributed Knowledge
scenarios also had the highest values for model prediction.

In the Survival environment, the differences are more
evident. The cumulative reward group was much better in
Distributed Knowledge scenario, where each group performs
specific tasks and has different goals. Distributed Knowledge
scenario also shows better results for episode length, pol-
icy loss, value loss, entropy, and value estimate. Distributed
Knowledge scenarios also had the highest values for model
prediction.

It indicates that sharing knowledge among different groups
in the same environment can bring better results. Agents learn
to find rewards more efficiently, making less random deci-
sions in fewer steps, making more accurate predictions, and
decreasing the time it takes to complete tasks. This improved
performance may be related to the smaller number of agents
being coordinated by the centralized critics in the Distributed
Knowledge scenario. Also, in this scenario, agents have fewer
observations and perceptions about the environment, so the
neural network does not have to deal with as many inputs.

We can conclude that specifying a centralized critic per
knowledge, in general, improves the training process. How-
ever, the test execution time for the Distributed Knowledge
scenarios was much higher. The execution time of the training
process in the Dungeon Escape environment takes 1 hour and
13 minutes to reach 720k steps in the Common Knowledge
scenario. In Distributed Knowledge scenario it takes 2 hours
and 57 minutes. Both scenarios showed good results, with an

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

improvement in the Distributed Knowledge scenario.
The execution time of the training process in the Survival

environment takes 2 hours and 6 minutes to reach 1.62M
steps in the Common Knowledge scenario. In Distributed
Knowledge scenario it takes about 11 hours. However, up to
1.62M steps, only the Distributed Knowledge scenario showed
good results. The rewards and other factors remained very poor
for the Common Knowledge scenario. The training runtime
for the Distributed Knowledge scenario is due to the larger
number of neural networks (each behavior has one neural
network). In the Survival environment, there are three neural
networks in the Distributed Knowledge scenario and only one
in the Common Knowledge scenario. We can conclude that
distributed knowledge is more appropriate when there are
many agents in the same environment, which occurs in many
games.

VII. CONCLUSION

In many cooperative multiplayer games, players must col-
laborate to solve certain tasks. However, these environments
present challenges related to the training of these collaborative
behaviors, such as partially observations, non-stationary, and
the problem of credit assignment. One of the approaches used
in MARL to solve these challenges is centralized training
with decentralized execution. The idea is to use the available
knowledge about full state and information of the environment
in the training phase, but policy learning takes place in a
decentralized way, not depending on this knowledge.

In this work, we proposed studying the framework of cen-
tralized training with decentralized execution in two different
environments. We validated whether the division of knowl-
edge about the environment (e.g. observations, perception of
objects, obstacles, enemies) by different groups (different cen-
tralized critics) improves learning performance in multi-agent
environments. We analyzed how the division of knowledge
influenced the (1) gain of group rewards, (2) the episode
length, (3) the losses statistics, (4) the policy statistics, and (5)
how much the increase in the number of agents coordinated
by centralized critics influences the training process.

For the experiments, we use the POCA trainer, an approach
that allows training policies in a centralized way, but each pol-
icy acts independently during the inference. The experiments
are performed using the Unity ML-Agents Toolkit. The results
show that specifying a centralized critic per behavior improves
the training process but also increasing the time execution. We
can conclude that distributed knowledge is more appropriate
when there are many agents in the same environment. Also,
since each agent has its actor-critic with its local observations
and perceptions, decreasing the number of observations makes
it easier for the centralized critic to coordinate the independent
actors.

ACKNOWLEDGMENT

The authors would like to thank NVIDIA, CAPES and
FAPERJ for the financial support.

REFERENCES

[1] D. Vidhate and P. Kulkarni, “Enhanced cooperative multi-agent learning
algorithms (ecmla) using reinforcement learning,” in International Con-
ference on Computing, Analytics and Security Trends (CAST), pp. 556–
561, IEEE, 2016.

[2] Q. Zhang, D. Zhao, and F. L. Lewis, “Model-free reinforcement learning
for fully cooperative multi-agent graphical games,” in International Joint
Conference on Neural Networks (IJCNN), pp. 1–6, IEEE, 2018.

[3] O. Vinyals, I. Babuschkin, W. Czarnecki, and et al., “Grandmaster
level in starcraft ii using multi-agent reinforcement learning,” Nature,
vol. 575, pp. 350–354, 2019.

[4] OpenAI, C. Berner, G. Brockman, and B. C. et al., “Dota 2 with large
scale deep reinforcement learning.” arXiv:1912.06680, 2019.

[5] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237—-285, 1996.

[6] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in AAAI Conference on
Artificial Intelligence (AAAI), pp. 2974–2982, AAAI, 2018.

[7] Y. Chang, T. Ho, and L. Kaelbling, “All learning is local: Multi-agent
learning in global reward games,” in Advances in Neural Information
Processing Systems, pp. 807–814, MIT Press, 2004.

[8] J. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” in
Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, p. 2145–2153, Curran Associates Inc.,
2016.

[9] E. Jorge, M. Kageback, and E. Gustavsson, “Learning to play
guess who? and inventing a grounded language as a consequence.”
arXiv:1611.03218, 2016.

[10] Unity. https://github.com/Unity-Technologies/ml-agents/blob/main/ml-
agents/mlagents/trainers/poca/trainer.py, 2021. Accessed: 2021-06-18.

[11] S. Marsland, Machine Learning An Algorithmic Perspective. Boca
Raton, FL: Chapman & Hall/CRC, 2015.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 2018.

[13] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in Neural Information Processing Systems, p. 1008–1014, 2000.

[14] M. Tan, Multi-agent reinforcement learning: Independent vs. cooperative
agents, pp. 487–494. San Francisco, CA: Morgan Kaufmann Publishers
Inc., 1997.

[15] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Independent rein-
forcement learners in cooperative markov games: a survey regarding
coordination problems,” Knowledge Engineering Review, vol. 27, no. 1,
pp. 1–31, 2012.

[16] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, “Value-decomposition networks for cooperative multi-agent
learning based on team reward,” in Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’18, (Richland, SC), pp. 2085–2087, International Foundation for Au-
tonomous Agents and Multiagent Systems, 2016.

[17] T. Rashid, M. Samvelyana, C. S. Witt, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in In Proceedings of the Interna-
tional Conference on Machine Learning, pp. 4292–4301, 2018.

[18] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments.” arXiv:1706.02275v4, 2020.

[19] F. Christianos, L. Schäfer, and S. V. Albrecht, “Shared experience actor-
critic for multi-agent reinforcement learning,” in Proceedings of the
34th Conference on Neural Information Processing Systems (NeurIPS),
pp. 10707–10717, 2020.

[20] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy,
Y. Gao, H. Henry, M. Mattar, and D. Lange, “Unity: A general platform
for intelligent agents.” arXiv:1809.02627v2, 2020.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021

