
GEnEbook: A Game Engine to Provide Electronic
Gamebooks for Adventure Games

Victor Travassos Sarinho
Lab. de Entr. Digital Aplicado (LEnDA)

Univ. Estadual de Feira de Santana (UEFS)
Feira de Santana, Bahia, Brasil

vsarinho@uefs.br

Abstract—Gamebooks can be defined as a printed fiction that
allows the reader to participate in the story by making choices.
They were famous in the 80s or 90s and are reappearing today
due to the combination of readers’ interest with the ease of use
and the presentation novelty provided by ebooks. This paper
presents GEnEbook, a game engine proposal able to provide
electronic gamebooks for adventure games. It uses a game data
model and a multimedia game panel capable of dynamically
represent gamebook adventures, together with a game builder
structure able to provide valid ebook files according to security
limitations defined by ebook readers. As a result, a development
approach able to create interactive and gamified ebooks (the g-
books) was provided, together with a reusable perspective for
the fast generation of electronic gamebooks (g-books) without
worrying about interpretation and execution details of compatible
ebook readers.

Index Terms—game engine, ebook, gamebook, g-book, inter-
active story, adventure game

I. INTRODUCTION

Books can reveal how great people made things possible,
spreading words of wisdom and transforming the readers lives.
They are also able to connect ordinary people to the best minds
that have accomplished something in life, and connection is
the correct word to define our current moment in the world.

In contrast to the pleasure of touching and feeling the
reading of a physical book, digital books (ebooks) have been
gaining a notorious space in today’s internet time. They offer
many benefits and advantages, which can be summarized
as: delivered almost instantaneously, no trees required to
manufacture them, sold nowadays with bonuses, no space to
store them, portable, searchable, can be interactive, no packing
and shipping expenses, and so on1. As a result, ebooks allow
people to really use the phrase “there are so many books and
so little time to read them” that crosses the minds of many
who are passionate about books and reading.

Per gamebooks, it is “a book with a story that can be read
sequentially or not” [1], where the player keeps reading until
he reaches a fork in the story, going to a different page every
time the book asks him to make a choice, until he reaches the
end of the book2. Since most gamebooks have more than one
ending, when the player finishes reading the first time, he can
go back and start again, but this time making a totally different

1https://www.successconsciousness.com/ebooks benefits.htm
2http://gamesvsplay.com/a-brief-history-of-gamebooks/

set of choices, resulting in a completely different story for your
enjoyment.

Gamebooks became famous in the 80s or 90s, and a possible
resurgence of gamebooks is coming, due to the combination
of the readers interest with ease of use and presentation
novelty currently provided by the technological support of
ebooks. However, despite the multimedia resources offered by
ebooks, they require, for security reasons, a static structure
for navigation and representation of their elements. As a
consequence, it makes difficult to dynamically represent in
a systematic reusable way all the necessary elements to create
gamebooks, especially when observing the current production
strategies of text adventure games, where the developer only
sets the desired characteristics for the game without worrying
about interpretation and execution details.

In this sense, this paper presents the design, production
and validation of the GEnEbook, a Game Engine proposal
able to provide Electronic gamebooks for adventure games.
It is based on a game data model and a multimedia game
panel capable of dynamically represent gamebook adventures,
together with a gamebook builder application able to construct
ebook packages for a g-book in line with security limitations
defined by ebook readers.

II. RELATED WORK

A. Adventure Games & Development Approaches

Text adventures represent a subset of the adventure genre,
where the player takes the role of the protagonist in an
interactive story driven by exploration and puzzle solving
[2]. It represents one of the oldest types of computer games
genre, and contains different types of concepts, examples and
reusable strategies able to develop them.

Focusing on the reuse of text adventure games, Gabsdil et
al. [3] described a game engine for text adventure games that
uses computational linguistics and theorem proving techniques
based on description logic.

Following a data-driven approach, Quest is a free, open
source software for creating interactive stories and text ad-
venture games [4]. It is a point and click editor that config-
ures main elements and commands necessary to represent a
textual adventure, such as rooms and exits, verbs to read and
respective responses, objects to interact, player inventory, and
so on.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



As an open-source tool for telling interactive, nonlinear
stories, Twine allows the creation of interactive fiction in the
form of web pages3. A Twine game is made from “nodes”
(or “passages”) and links between them. The application’s
interface represents each node as a box, and links between
nodes as arrows from one box to another 4. Twine also allows
the creation of simple stories without writing any code, but
it is possible to extend the stories with variables, conditional
logic, images, CSS and JavaScript via defined macro system.

Finally, regarding text messaging platforms, Script Creation
Utility for Nodejs Maniacs (SCUNM)5 is a text-adventure
game engine that uses Telegram as standard output for text,
images (even animated gifs) and interactive selections to
represent the gameplay.

B. Javascript Game Engines for Text Adventure Games

TextAdventure6 is a text adventure game engine based on
four main components: a simple server, a retro command
line that represents the Terminal, the text adventure engine
itself colloquially called the Console and finally the cartridges
(game configs) which are defined by two JavaScript objects.

Cartridges are loaded into the Console to be playable by
the user. They consists of two important objects, gameData
and gameActions, together with a collection of helper func-
tions. The gameData object has four required components;
commandCounter, gameOver, introText, outroText, along with
a player object and a map object. It can also contain any
number of other fields, objects and functions as needed by the
cartridge. The gameActions object holds functions that the user
can access as available actions that will be performed during
the gameplay.

Text-engine7 is a small (approximately 200 lines) and easy
to use text-based adventure game engine. It uses a disk
metaphor (JSON data) to represents the configured game,
which describes three top-level properties: roomId (String),
a reference to the room that the player currently occupies;
inventory (Array), the list of items in the player’s inventory;
and rooms (Array), the list of rooms in the game.

Each room has: a name (String), that will be displayed
each time it is entered; an id (String), that represents an
unique identifier for this room; the img (String), that will be
displayed each time the room is entered; a desc (String), with
the description of the room that is displayed when it is first
entered and when the player select the look command; the
items (Array), with a list of items in this room that can be
interacted; and the exits (Array), with the list of paths from
this room. Each exit indicates the direction the player must go
to leave (the dir property) and the next room that the player
will go (the exit id property). Each item has a name (String)
to identify it, a desc (String) to be displayed when the player
looks at the item, the isTakeable (Boolean) indication whether

3http://twinery.org/
4http://catn.decontextualize.com/twine/
5https://github.com/jlvaquero/SCUNM
6https://github.com/TheBroox/TextAdventure.js/
7https://github.com/okaybenji/text-engine

the player can pick up this item (if it’s in a room), and the use
(Function) that will be called when the player uses the item.

Advenjure8 is a text adventure game engine that allows the
player to move around rooms and interact with items through
verb commands such as Go, Look, Take, etc. Per items, they
are represented by maps, having a name, a description and a
set of key-value pairs to customize behavior. Rooms can have
only one name, and an optional attribute to display an initial
room description the first time the player visits it. Rooms are
also maps, and once the developer have created a lot of items,
it needs to put them in a room or directly into the player’s
inventory. Each room map is built by connected rooms in a
plain clojure hash map.

As advanced features available in the engine, it is pos-
sible to: Overriding messages, using custom messages for
a given action on a room or item; define Pre conditions,
a function hook to define if an action can be performed;
define Post conditions, a function hook to customize how
the game state is modified after an action is performed;
use Dialogs, in this case interactive dialogs with “character”
items; apply Text customization and internationalization; use
Custom verbs/commands; and define Plugin hooks, in order to
customize a game behavior without modifying the library.

C. Providing Gamified Ebooks

Regarding the production of games to play in different
types of game platforms, Okuda and Emi [5] showed how to
make a game using the EPUB39 format with some interactive
functions based on HTML5 related technologies.

For the production of gamified ebooks in a game engine per-
spective, Figueiredo and Bidarra [1] presented an evaluation
of the possibility of creating gamebooks that are effective in
teaching and learning. After analyzing the features available
in free and open tools for making ebooks, they decided to
develop an Unity based tool to provide a novel interactive
book (the g-book).

An extension of Figueiredo and Bidarra work was proposed
by Figueiredo, Bidarra and Natálio [6], were EPUB3 and
iBooks Author10 versions were provided to build a model of
a dynamic book that may function as an educational game.
Preliminary tests with the developed prototypes revealed a
good usability and a promising pedagogical potential for the
proposed models.

Droutsas, Patsilinakos and Symvonis [7] also described a
personalized system for learning, based on EPUB3 format,
that allows the creation and use of interactive and personalized
eBooks for educational purposes.

Miller and Ranum [8] developed an open source electronic
textbook that incorporates a number of active components such
as video, code editing and execution, and code visualization as
a way to enhance the typical static electronic book format, the
learning experience for students and the teaching experience
for instructors.

8https://github.com/facundoolano/advenjure
9http://idpf.org/epub/30/
10https://www.apple.com/ibooks-author/

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



Fig. 1. Feature diagram of the proposed JSON game data.

Möslein-Tröppner and Bernhard [9] presented the produc-
tion of collaborative gamebooks11 as an alternative and con-
temporary method for transmitting knowledge in education. To
this end, it presented a manual for the creation of digital game-
books with collaborative elements, capable of transmitting the
learning content in an interactive, fun and collaborative way
through modern media.

Finally, Sigarchian et al. [10] proposed a novel concept of
an EPUB 3-based Hybrid e-TextBook to allow the interaction
between the digital and the physical world. For this, an
EPUB 3-based Hybrid e-TextBooks prototype was developed
to connect the EPUB learning content to smart devices in
classrooms, leveraging both digital publishing and Semantic
Web tools.

III. METHODOLOGY

Game engines for text adventure games present common
structures and behaviors able to be configured in new and
distinct adventure games, such as rooms, items, actions, con-
ditions to perform, and so on. Regarding the production of
gamified ebooks, it is limited to the development of specific
and dedicated gamebooks, or to the use of game engines to
build casual and mini gamebooks in dedicated platforms. As an
attempt to integrate these two perspectives in a public format
for ebook readers, GEnEbook provides a game engine for
text adventure gamebooks able to be executed in compatible
EPUB3 readers.

In this sense, the GEnEbook construction was performed in
three main steps. The first one was the creation of a JSON
model able to represent text adventure games, as stated in

11https://www.gamebook.ch/dgb/eisenhower/

defined structures described in related work. The second step
was the production of a JavaScript+HTML5 game engine
able to execute the modeled JSON in line with security
limitations imposed by ebook readers. The third step was the
implementation of a gamebook builder able to: 1) apply a
default EPUB3 structure in the desired ebook; 2) insert the
required media according to the modeled JSON data in a static
way; and 3) put the developed game engine together with the
JSON data in a valid EPUB3 file for ebook readers.

A. The JSON Model

Domain analysis is a requirements engineering approach
for a Software Product Line (SPL) with a result that can be
documented in a feature model [11], or in a JSON data model
as a Domain Specific Language (DSL) representation [12]. It
is an important step in the SPL Engineering process (SPLE),
whose main objective is: 1) the explicit manipulation of system
variability, and 2) the systematic reuse of implementation
artifacts [11].

Looking for the systematic reuse of text adventure game
artifacts, five main features were defined in a proposed JSON
game data able to represent a DSL for text adventure games:
player, actors, items, locations and ends (Fig. 1). They are
based on common structures represented by related text ad-
venture game engines, such as: gameActions, player and map
objects of the TextAdventure; rooms, inventory and exits of
the Text-engine; and items, pre-conditions and pos-conditions
of the Advenjure. An extra structure was also defined to
represent game messages that are used during the gameplay,
such as gameTitle, gameIntroduction, goButton, creditsText,
among others.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



The player feature presents information about: the current
game state (currentState), the current room of the player
(currentLocation), a list of collected items due to performed
actions (collectedItems), a list of performed actions (per-
formedActions) to be interpreted by game rules, and the current
player status (status) with information about number of lifes,
powerUps, etc.

The actors feature presents a list of possible Non-Player
Characteres (NPCs) and enemies with desired information for
the game story. Each actor feature in the actors list has a name,
a title, a description and an image to be shown to the player,
together with the current room in the game (location), the list
of collected items (collectedItems), and the status properties,
such as number of lifes or if the actor is yet active or not.

The items feature presents a list of items available in the
game. Each item in the items list has a name, a title, a descrip-
tion, an image and an audio to be shown to the player. The
location property describes the room where the item is avail-
able, and the requiresToShow property describes the conditions
to decide when the item can be shown or not to the player. If
the player has some previous items (requiresToShow.items),
or performed previous actions (requiresToShow.actions), or
has conditions (requiresToShow.conditions) whose evaluations
results were true, then the player can see the respective item
when entering the room where the item is located,

The locations feature presents a list of available rooms in
the game. Each location has a name, a title and possible
descriptions with text, image and audio to show, according to
the evaluation of the associated condition. Possible actions to
be performed in the location are also available, with name, text,
requiresToShow, requiresToPerform and number of attempts
remaining for each configured action to describe it.

The requiresToPerform property is similar to
requiresToShow, but including success and failure
behaviors to be performed after the requiresToPerform.items,
requiresToPerform.actions, and requiresToPerform.conditions
evaluation. Both success and failure present text, image
and audio content to be shown to the player, together with
the consequence execution, becoming possible to execute
JavaScript expression and commands, game engine routines
or execute another action if necessary.

As possible exits in a location to visit another location, each
exit defines the name identification, the text description for
the exit button, the destination (another location name to go)
and the requiresToShow property. For each player visit in a
configured location, the visit property is incremented by one.

Finally, the ends feature applies verification conditions to
determine if the gamebook was finished or not. For this,
collected items, performed actions, player lifes, time limit and
other condition values can be verified by the requiresToFinish
property after each player interaction with the ebook. Together
with the verified conditions, the final content to be presented
to the player is also defined by the title, text, image and audio
properties, according to the specified death situation for the
player.

B. The Game Engine

There are several limitations to use JavaScript+HTML in an
ebook for the EPUB3 format. The security mode, for example,
avoid the inclusion of dynamic content in an ebook due to
the sandbox security for EPUB3 files with embedded scripts.
As a persistence problem, the values of script variables in
an ebook content can be erased after loading a new ebook
chapter or ebook topic due to the reader navigation over the
ebook. In addition, the loading of external JSON files presents
some synchronization problems during an ebook initialization
or chapter loading, becoming possible the duplication or
the restart of declared values in script variables. Moreover,
a previous declaration and inclusion of all external media
content that will be used in an ebook is required for security
reasons, becoming necessary a dynamic building of the ebook
structure in line with the applied ebook media.

In order to solve these described limitations, the GEnEbook
was defined as a game panel that is loaded in the ebook
initialization together with the modeled JSON data (game data
and game engine in only one file). It works as a media state
control able to show and hide media resources that should or
should not be presented according to the ebook story.

The proposed game panel includes a pool of static buttons
for possible items, actions and exits able to be shown according
to the gameplay, whose labels are based on local storage
values that are updated according to the gamebook reader
interaction. For the gamebook required media, it is previously
included in the game panel as HTML tags for media content
(audio and img), but with the hidden property activated.

Predefined areas are also configured in the proposed game
panel to organize the gamebook presentation (text, buttons and
media content), such as: introduction, inventory, map, credits,
info, end, story, items, actions, exits and options. They are
represented as HTML tags whose content are defined by the
manipulation of innerHTML and style properties according to
the player context during the gameplay.

To control the presentation of this game areas, 7 main
rendering states will indicate when each one will be shown:
game-start, game-status, game-info, game-inventory, game-
map, game-credits and game-end (Fig. 2). Game-start is
activated when the gamebook is initialized, presenting the
introductory information about the gamebook. Game-status
shows the current status of the game, working as the main
panel of the gamebook. Game-info presents intermediary in-
formation about the game, such as the result of a game action,
or more details about an available item in a room. Game-
inventory shows the current items collected by the player that
are available to be used. Game-map presents all the rooms that
the player visit during the current gamebook reading. Game-
credits present some information about the gamebook creators.
Finally, game-end shows the game end that the player achieved
during the gameplay, which can be represented by different
types of game wins or losses.

Some game routines are also provided by the game en-
gine to execute player interactions according to the proposed

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



Fig. 2. GEnEbook state machine for rendering states life cycle.

rendering states. They are used to: get specific elements
in the current player context (getPlayer, getActor, getItem,
getLocation and getAction); execute player routines to change
the game context (putInTheBag, takeOutOfTheBag, insertAc-
tion, removeAction and execAction); and perform the “player
navigation” among rendering game states (goToGameStatus,
goToNewLocation, goToActionInfo, goToItemInfo, goToGame-
Credits, goToGameMap and goToGameInventory).

As an example, the execAction routine, when called by the
goToActionInfo routine, is responsible to execute the indicated
action in a button after the player click. To complement an
action execution, the execAction routine can also be called by
a success or failure consequence, which is performed by the
evaluation of the respective requiredToPerfom property.

C. The Gamebook Builder
An EPUB3 ebook is a packaged file that follows a pre-

defined directory structure populated with specific file types
according to the EPUB3 format. The “opf ” file type, for
example, is responsible to define the external/extra files that
will be used by the ebook. Navigation files, such as “nav.ncx”
and “nav.html” are responsible to indicate the book content
(summary, chapters, book sections) that the player can select
to navigate over the book. Furthermore, “mymetype”, “con-
tainer.xml” and “EPUB.css” files are necessary to complete
the EPUB3 compatibility with ebook readers according to the
proposed format.

Each EPUB3 ebook has some particular data to identify
it, such as title, description, cover image, creator, content,
language, creation data, modified data, attribution URL, and

Fig. 3. JSON model for book configuration.

so on. In addition, due to security reasons, each EPUB3 ebook
demands the static definition of the necessary content (xhtml,
script, figures, audio) to be evaluated by the ebook reader.
Furthermore, the EPUB3 directory content must be validated
and correctly packaged to become a valid EPUB3 file for
ebook readers.

Two JSON files are used by the GEnEbook gamebook
builder to prepare and build a final and valid EPUB3 file: the
game-config and the book-config. Game-config is responsible
to define the game logic according to the proposed DSL based
on features for text adventure games. Book-config defines
the necessary information to configure predefined structure
according to EPUB3 format (Fig. 3). Two directories (images

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



Fig. 4. EPUB3 directory and files of the Invasion gamebook.

and sounds) are also necessary to allocate JPG images and
MP3 audios that will be used as static media resources for the
gamebook.

Both JSON files and media directories are used by a
NodeJS12 app (genebook.js called by make.sh) that performs
the following steps to provide a valid EPUB3 directory and
content: 1) open and read the JSON files; 2) make a new
ebook directory based on the new ebook name; 3) copy a
baseline EPUB3 content to the created ebook directory; 4)
copy multimedia content (images and sounds directories) to the
new book directory; 5) prepare the “nav.xhtml” and “nav.ncx”
files using book-config data; 6) integrate the game engine
and the game-config data in the “engine.js” file; 7) prepare
the “engine.xhtml” file to be the game panel with static and
hidden media content; and 8) prepare the “package.opf” file
with the references for the static media resources. In the

12https://nodejs.org/

end, the pack-single.sh (also called by make.sh) executes the
EPUBcheck.jar13 file to validate the EPUB directory content
and generate the desired EPUB3 file. Fig. 4 illustrates a
gamebook directory example and the provided EPUB directory
after the gamebook builder execution steps.

D. The Invasion Gamebook

GEnEbook developers can define dynamic rules with multi-
media content to represent locations, items, actions, exits and
ends in a desired game. The freedom is limited by the use
of requiresToShow, requiresToPerform and requiresToFinish
elements to decide when and what information must be shown
or not to the player according to the gameplay context.

In this sense, an evaluation gamebook called “Invasion” was
developed using the proposed GEnEbook assets. The game
objective is to escape from a thief that invaded the kitchen
of the house, after the player wakes up. A battle against the
thief is also performed during the gamebook reading, and the
player can win or not according to the player luck during the
fight. If the player wins the fight it can get the thief knife,
which is the necessary tool to escape the house and call the
police in the end.

Fig. 5 shows the use of requiresToShow and requiresToPer-
form elements in a location to provide a fight with a dynamic
result in the game, where: 1) the “attack-thief” action appears
to the player, if the Thief is alive and the player has the Bat;
2) when the “attack-thief” action is performed, it reduces
the Thief live with a random value and executes the “verify-
thief-resistence” action; and 3) the “verify-thief-resistence”
evaluates if the Thief.life <= 0, inserting the “defeated-thief ”
action in the performedActions list of the player and killing the
Thief (status.active = false) as a result. If the Thief.life > 0,
the player live will be reduced by a random value, whose result
will be verified by the ends.requiresToFinish element to decide
if the game was finished or not after the action execution.

Regarding the gamebook execution, Fig. 6 presents the
first rendered page of the gamebook when it is initialized
by the ebook reader14. At this moment, the game-start status
is activated, and the introduction area presents the game-title
text, game-intro text, and game-start button. If an initial game-
image or game-audio content is configured in the JSON data,
the respective img and audio tags are shown by setting the
HTML display property.

When the player clicks on the game-start button, the game-
status is activated. Then, the main panel of the game is shown
by the ebook reader15, hiding the introductory game info and
showing the story, items, actions, exits and options areas with
the respective player location content (Fig. 7). The story area
presents the location title and the location description that can
change according to the gamebook story, together with the
configured story-audio and story-image content. Items, actions
and exits are represented as a list of available buttons for
the player selection, whose innerHTML values are changed

13https://github.com/w3c/EPUBcheck
14https://readium.org/
15https://github.com/futurepress/EPUB.js/

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



Fig. 5. JSON actions for the player fight in the Invasion gamebook.

Fig. 6. Initial screen of the Invasion gamebook at Readium14 ebook reader.

dynamically according to the gamebook story. The options
area presents buttons that allow the player to navigate to the
game-inventory (Fig. 8), game-map (Fig. 9) and game-credits
states, showing the respective content as a result according to
the ebook reader16 17.

When the player selects an exit button, a new location is
defined (the goToNewLocation routine), and the game-status
refresh the game panel content to show the new game context
information (Fig. 7). When the player selects an item button,
the game-info status is activated to show the respective item
information (Fig. 9). The same status is also activated when
an action button is selected, indicating the action name to be
executed (the execAction routine), and showing the success
or failure results of the action execution. In both cases, an
update of the info-title, info-image, info-text, info-audio and

16https://www.edrlab.org/software/thorium-reader/
17https://play.google.com/store/apps/details?id=com.gmail.jxlab.app.reasily

&hl=engl=US

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



Fig. 7. Main screen (game panel) of the Invasion gamebook at EPUBjs15

ebook reader.

Fig. 8. Inventory screen of the Invasion gamebook at Thorium16 ebook reader.

info-go values is performed, as illustrated in Fig. 9 by the
ebook reader18. To exit this state, the info-go player’s click
(at the button with “>>>” label) sets the currentStatus of the
player to game-status, refreshing the main game panel with
the current game context values.

Finally, considering the gamebook end, by each verification
of the JSON ends conditions, when one of the ends condition
is satisfied, the game-end state is activated and the end-title,
end-image, end-audio and end-text values are shown to the
player by the ebook reader19 (Fig. 10).

18https://play.google.com/store/apps/details?id=com.faultexception.reader&
hl=engl=US

19https://calibre-ebook.com/

Fig. 9. Map screen at Reasily17 ebook reader, and Information screen for
items and actions at Lithium18 ebook reader.

Fig. 10. End screen of the Invasion gamebook at Calibre19 ebook reader.

IV. OBTAINED RESULTS

As different types of ebook readers are available today, the
generated gamebook Invasion was evaluated in distinct ver-
sions of ebook readers for desktop, mobile and web platforms.
Table I presents the used ebook readers and their respective
platforms, together with the identified inconsistencies and
possible reasons and solutions to solve them.

As obtained results, desktop versions presented audio and
image dimension problems, web versions presented image
dimension and security restriction problems, and no problems
were found in mobile versions during the gamebook execution.
However, despite the identified execution problems, it is im-
portant to state that the gameplay of the Invasion gamebook in
general was not affected by them. The only exception was the

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



TABLE I
EVALUATION RESULTS OF THE INVASION GAMEBOOK.

Ebook Reader Platform Problems, Reasons and Solutions
Calibre (v5.22.1) Desktop Audio controls are shown but sounds

are not played. Unfortunately, the
sound support is not available for this
ebook reader.

Thorium (v1.7.1) Desktop Audio controls are not shown. Im-
ages with wrong dimensions. Possible
workaround for audio play is available
to be applied. Necessary use extra style
configurations for image components.

EPUBjs (v0.3) Web —
Readium (v2.31.1) Web Images with wrong dimensions. Nec-

essary use extra style configurations
for image components.

EPUB Reader
(v2.0.12)

Web Security problem with audio and im-
age loading. Necessary to investigate
whether it is a Javascript issue, an
EPUB configuration issue, or an ebook
reader incompatibility.

Lithium (v0.24.1) Mobile —
Reasily (v2021.08) Mobile —
Adobe Digital Edi-
tions (v4.5.11)

Mobile —.

TABLE II
REUSE METRICS OBTAINED WITH THE INVASION GAMEBOOK.

Gamebook SLOC / Total
SLOC

Gamebook CC / Total CC

15+395/(463+1286+15) =
23,24%

1+13/(78+142+1) = 6,33%

EPUB Reader20 use, which was not able to run the gamebook
correctly.

Regarding the reuse level achieved with GEnEBook, Fig.
11 presents some collected metrics [13] using the Plato code
analyzer [14] for the Javascript files of the Invasion gamebook.
These metrics are used to calculate the Gamebook SLOC and
Gamebook Cyclomatic Complexity (CC) by the sum of game-
config.js and book-config.js data (Table II), and to calculate
the Total SLOC and Total CC by the sum of engine.js, gene-
book.js and book-config.js data (Table II). As game-config.js
is combined with engine.js to provide a valid Javascript code
for a final version of the engine.js file, game-config.js data
is not included in the sum of Total SLOC and Total CC. As
obtained result, without considering the reused HTML and
extra EPUB assets necessary to provide a valid ebook file,
approximately 77% of SLOC reuse and more than 93% of
CC reuse were obtained, showing the game core reusability
and maintainability for developed GEnEBook games.

V. CONCLUSIONS AND FUTURE WORK

This paper presented the GEnEbook, a game engine pro-
posal able to provide electronic gamebooks (g-books) for ad-
venture games. It provided a JSON model in a DSL perspective
capable of representing text adventure games according to
related text adventure game engine models. It also provided a

20https://chrome.google.com/webstore/detail/EPUB-
reader/mbcgbbpomkkndfbpiepjimakkbocjgkh?hl=en

JavaScript+HTML5 game engine able to interpret JSON data
according to security limitations imposed by ebook readers,
together with a gamebook builder application that can integrate
the modeled game and the developed game engine in an initial
gamebook structure able to provide a valid EPUB3 file for
ebook readers.

For the initial GEnEbook prototype, locations, items, ene-
mies, inventory, player status, exits, requirements to perform
actions, requirements to show outputs and requirements to
finish the game can be modeled by the JSON game data. For
the JavaScript+HTML5 game engine, a pool of buttons, whose
values are adapted according to local storage values, were used
as input interfaces for player interactions (items, actions, exits
and options) in a main game panel that shows the current
game status and content (text, audio and image) according
to the player context in the adventure game. Finally, for the
ebook production, a NodeJS builder was responsible to provide
the final EPUB3 file to represent the modeled gamebook,
by integrating a previous directory structure according to
EPUB3 format with: the modeled JSON, the implemented
game engine, and the static media content that will be used
by the gamebook.

Regarding the related work, these have either developed
their own readers to represent the modeled gamebooks, or their
static solutions and manuals/support rules for programming
a specific and desired ebook. GEnEbook can provide valid
gamebooks according to the EPUB3 format in a systematic
reusable perspective (a new gamebook for each new JSON
data) without worrying about interpretation and execution
details of ebook readers. As a result, GEnEbook proposed
a possible solution that covers these two related production
strategies, since it uses only JSON configurations to represent
the desired adventure game model. Furthermore, it is able to
build gamified ebooks (g-books) with interesting reuse metrics
results for different ebook readers, becoming interesting and
possible to be extended by new game builders for different
game environments and platforms as dedicated gamebook
readers.

However, as GEnEbook limitations, not all ebook read-
ers presented the generated EPUB3 file in a correct way.
As identified errors, they are associated with security limits
imposed by the browser when using media content, and
with HTML5+Javascript compatibility in the configuration of
style properties. Moreover, it is also necessary to improve
the interface layout for the provided gamebooks, as well
as their respective web components, something that will be
achieved through necessary improvements in the CSS settings
together with an advanced use of the Canvas component
resources. Finally, additional tests are necessary to determine
the performance results with the proposed gamebook structure,
in special to evaluate the media content limit that can be loaded
by evaluated ebook readers, in order to avoid long delays
capable of compromising the player’s interaction with modeled
gamebooks.

As final considerations for this research, despite the lim-
itations found in ebook readers [15], which were mostly

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021



Fig. 11. Collected metrics using the Plato code analyzer.

“circumvented” in the case of GEnEBook, EPUB3 files can
be considered as a “safer” and standardized platform for
compressing and distributing games and dynamic multimedia
resources in comparison with other web publishing strategies.
In this sense, it is important to emphasize that, despite the
GEnEbook ability to generate games that are able to be
packaged and distributed as a web game for different types
of browsers, the challenge of this research was to provide
gamebooks using EPUB files, which is a known, stable and
limited standard for packaging multimedia content for a dedi-
cated audience. Moreover, regarding the current GEnEBook
development and audience, a GEnEBook version with fps
generation and graphic manipulation (drag’n’drop, point-and-
click) is already in production. In this sense, the GEnEBook
target audience for this moment will still be game program-
mers. However, there is the interest to allow the GEnEbook use
by a less specialized audience, which opens the possibilities
for the creation of support tools (such as Twine) to simplify its
use in the development of games for specific game domains,
such as quizzes, puzzles, adventures, cards, among others.

As extra work for this research, make the GEnEBook
available for the community, conduct courses to publicize the
tool and get feedback from external developers are important
activities that will be carried out in the near future. In addition,
as only an initial trial version was produced with GEnEBook
to show the potential use of JavaScript features in games for
ebooks, it is also necessary to select some physical gamebooks
to be converted to the EPUB3 format by GEnEBook assets for
validation purposes. Moreover, as extra work for this research,
it is necessary to carry out: the creation of a graphic editor for
composing game adventures according to the proposed JSON;
the creation of a web repository to make the produced adven-
ture games openly available; the creation of game builders for
different target platforms (messaging applications, embedded
environments, customized reader); the creation of games of
different genres (quiz, storytelling) based on extensions of the
proposed JSON model; the implementation and improvement
of new interaction components capable of being used as game
elements (puzzles, animations, etc.); and the extension of the

compatibility of the produced EPUB3 file with other ebook
readers currently in use.

REFERENCES

[1] M. Figueiredoa and J. Bidarrab, “The development of a gamebook for
education,” Procedia Computer Science, vol. 67, pp. 322–331, 2015.

[2] A. Rollings and E. Adams, Andrew Rollings and Ernest Adams on game
design. New Riders, 2003.

[3] M. Gabsdil, A. Koller, and K. Striegnitz, “Building a text adventure
on description logic,” in International Workshop on Applications of
Description Logics, Vienna, September, vol. 18, 2001.

[4] B. D. Ballentine, “Textual adventures: Writing and game development
in the undergraduate classroom,” Computers and Composition, vol. 37,
pp. 31–43, 2015.

[5] S. Okuda and K. Emi, “Make once, play anywhere!: Epub 3 interactive
function enables us to make and play game software anywhere!” in 2013
IEEE 2nd Global Conference on Consumer Electronics (GCCE). IEEE,
2013, pp. 381–384.

[6] J. Bidarra, M. Figueiredo, and C. Natálio, “Interactive design and gam-
ification of ebooks for mobile and contextual learning,” International
Journal of Interactive Mobile Technologies (iJIM), vol. 9, no. 3, pp.
24–32, 2015.

[7] S. Droutsas, P. Patsilinakos, and A. Symvonis, “Interactive personalized
ebooks for education,” in 2018 9th International Conference on Infor-
mation, Intelligence, Systems and Applications (IISA). IEEE, 2018, pp.
1–8.

[8] B. N. Miller and D. L. Ranum, “Beyond pdf and epub: toward an
interactive textbook,” in Proceedings of the 17th ACM annual conference
on Innovation and technology in computer science education, 2012, pp.
150–155.

[9] B. Möslein-Tröppner and W. Bernhard, Digitale Gamebooks in der
Bildung. Springer, 2018.

[10] H. Ghaem Sigarchian, S. Logghe, R. Verborgh, W. De Neve, F. Salliau,
E. Mannens, R. Van de Walle, and D. Schuurman, “Hybrid e-textbooks
as comprehensive interactive learning environments,” Interactive Learn-
ing Environments, vol. 26, no. 4, pp. 486–505, 2018.

[11] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-oriented software
product lines. Springer, 2016.

[12] V. T. Sarinho, G. S. de Azevedo, F. M. Boaventura, and F. de San-
tana, “Askme: A feature-based approach to develop multiplatform quiz
games,” in XVII Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames), 2018.

[13] W. Frakes and C. Terry, “Software reuse: metrics and models,” ACM
Computing Surveys (CSUR), vol. 28, no. 2, pp. 415–435, 1996.

[14] Plato, “Javascript source code visualization, static analysis, and com-
plexity tool,” https://github.com/es-analysis/plato, 2012.

[15] B. Leporini, L. Minardi, and G. Pellegrino, “Interactive epub3 vs. web
publication for screen reading users: the case of’pinocchio’book,” in
Proceedings of the 5th EAI International Conference on Smart Objects
and Technologies for Social Good, 2019, pp. 235–238.

SBC – Proceedings of SBGames 2021 — ISSN: 2179-2259 Computing Track – Full Papers

XX SBGames – Gramado – RS – Brazil, October 18th – 21st, 2021


